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CHAPTER 1

Rings and their properties

Definition 1. A Ring is a set R with two binary operations, + and ×,
such that the following are true:

(1) (R,+) forms an abelian group
(2) (R− {0},×) is associative
(3) The distributive law holds. I.e., a × (b + c) = a × b + a × c and

(b+ c)× a = b× a+ c× a

The following statements refer to terminology surrounding types of rings:

(i) R is a ring with identity if if there exists 1 ∈ R such that 1 · a =
a · 1 = a for all a ∈ R

(ii) A ring R with 1 is called a division ring if every nonzero element
has a multiplicative inverse

(iii) If R is a division ring and × is commutative, R is called a field.

Example.

Z = {0,±1,±2, ...}(+,×)

This is a ring, with identity (or, as we call it, ”with 1”). However, it is not
a division ring ( and therefore not a field) -because not every element of Z
will have a multiplicative inverse that is in the set of integers.

Other examples of fields include Q, R , and C.

Example.

Z/nZ = {0, 1, 2, ...(n− 1)}
this forms a ring under modular multiplication and addition with respect to
n. It happens to be a commutative ring with identity, but is not a field in
general- but is a field if n is a prime integer.

Example. Choosing some K ∈ Z we see that K ·Z is a ring without an
identity (multiplicative identity, of course)

The following are assorted properties of a ring R, where a ∈ R:

(1) 0 · a = a · 0 = 0
(2) (-a)(b)= (a)(-b)
(3) (-a)(-b)=(a)(b)
(4) If ∃1 ∈ R, it is unique.

Definition 2. A unit is an element of R with a multiplicative inverse
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6 1. RINGS AND THEIR PROPERTIES

Definition 3. A zero divisor is a nonzero element a ∈ R such that
when b ∈ R, a · b = b · a = 0 for some b 6= 0

These properties of elements of a ring are mutually exclusive.

Proof. Suppose a is a unit. Then,

x · a = 1

for some x ∈ r. If a · b = 0, then since b = 1 · b,
x · a · b = x · 0 = 0

by which we see a contradiction. �

Example. In Z, the units are ±1

Example. For Z/nZ, we claim that each element is either a unit or a
zero divisor. The proof of this claim will be excluded.

The result of the would-be proof of the above example would lead us to
the conclusion that if n was prime, every nonzero element of Z/nZ would be
relatively prime to n, and thus would be a unit. If every element is a unit,
it then has a multiplicative inverse, and thus Z/nZ would be a field.

Example.

R[x] = polynomials of x with coefficients in R

= {a0 + a1x+ a2x
2 + ...+ anx

n|n ≥ 0, ai ∈ r}
If ring R has an identity, then R[x] must also have an Identity. Also notice
that when R = Z the element x (which is in Z ) is not a unit (because no
polynomial can act on x to yield 1) but it is also not a zero divisor. This
demonstrates that while the properties of being a unit/zero divisor may be
mutually exclusive, an element is not forced to be one or another.

Definition 4. An integral domain is a ring with no zero divisors. For
example, Z is an integral domain because if x, y ∈ Z and xy = 0, we know
that either x = 0 or y = 0 (or both). This is equivalent to the claim that
’there are no zero divisors’.

Notice that if R is an integral domain, and a, b, c ∈ R and ac = bc then
ac − bc = 0, so (a − b)c = 0, so we know that a − b = 0 or 0 or a = b or
c = 0. This is also helpful in showing that a ring is not an integral domain.

Example. Take the modulus group R = Z/nZ, and let a, b, c ∈ R.
Then we know that if R is an integral domain, we can apply the rules above.
However, suppose n=6, c=3, a=2 and b=0. We can then see that a ·c = b ·c,
but c 6= 0 and a 6= b, so we see that Z/6Z is not an integral domain.

We should notice that we picked a convenient value for n. We should
notice the following relation:

Z/nZ is an integral domain ⇐⇒ Z/nZ is a field ⇐⇒ n is prime
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Theorem 1. Any finite integral domain is always a field. 1

Proof. We need to show that if a ∈ R, a 6= 0, then a has a multiplicative
inverse. Consider the following maps:

R 7→ r

x 7→ a · x
This is a one to one function2, and since R is finite, this map is a bijection.
So, ax=1 for some x, so a must have an inverse x ∈ R. This demonstrates
that all nonzero elements are unites, so R is a field. �

We can now understand that a Field is always a Division ring and an
integral domain. The reverse relationship isn’t always true; A division ring
is a field only if every nonzero element is a unit and its operation × is com-
mutative. Also, a division ring is an integral domain if it has commutativity.
The diagram looks something like the following:

(1) Field +3

��

Division Ring

xx

ff

Integral domain

>>

Example.
Z[D] ⊆ 3 Q[D] = {a+ b

√
D|a, b ∈ Q}

Taking the case where D=-1, we have:

Z[D] = {a+ bi|a, b ∈ Z}
This set is called ”The Gaussian Integers”, and is a subring of Z[−1] ⊆ C

Definition 5. The degree of an element p(x) ∈ R[x] is n if p(x) =
anx

n + ...+ a1x+ a0 where n > 0

Let R be an integral domain, and let p(x), q(x) ∈ R[x]. The following
are true:

(1) deg(p(x) · q(x)) = deg(p(x)) · deg(q(x))
(2) R[x] is an integral domain
(3) The units of R[x] are units of R

The proofs for these properties will be excluded. Also notice that if S is a
subring of R, the following is true:

S[x] ⊆ R[x]

1an integral domain is always a commutative ring with 1
2a one to one function is a function f from A to B such that f(a)=f(c)=b, a=c
3We have started to use the symbol ’⊆’ to mean ’subring of’
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Definition 6. Let R and S be rings. A ring homomorphism is a func-
tion ϕ : R→ S such that ϕ(x+ y) = ϕ(x) +ϕ(y) and ϕ(x · y) = ϕ(x) ·ϕ(y).

Example. Given R, consider a map from R[x] to R:

eval : R[x]→ R

Where this map takes p(x) ∈ R[x] and maps its constant term a0 to R. Since
eval(p(x) · q(x)) = eval(p(x)) · eval(q(x)) and eval(p(x)q(x)) = eval(p(x)) ·
eval(q(x)) so the map eval is a homomorphism.

Definition 7. Given ϕ : R → S, a homomorphism, we define the
Kernel and Image of ϕ to be the following:

Ker(ϕ) = {a ∈ R|ϕ(a) = 0}
Im(ϕ) = {b ∈ S|b = ϕ(a), a ∈ R}

Example. Take the homomorphismϕ : Z → Z/nZ. We see that the
Ker(ϕ) = nZ and that Im(ϕ) = Z/nZ

From this example we can now interpret different things about the Ker-
nel and Identity, specifically:

Ker(ϕ) = 0 ⇐⇒ The homomorphism ϕ is injective

Im(ϕ) = S ⇐⇒ The homomorphism ϕ is surjective

Also, the homomorphism ϕ is bijective if it is both injective and surjec-
tive. Another Fact to notice is that:

Ker(ϕ) ⊆ R) and Im(ϕ) ⊆ S
Recall from group theory that if G is a group and N is a normal subgroup,

that G/N is a group. We defined N ≤ G to be normal if and only if:

gNg−1 ⊆ N ∀g ∈ G, or gN = Ng ∀g ∈ G
The elements of G/N are equivalence classes under g1 ∼ g2 if and only if
g1g
−1
2 ∈ N . G/N is a group with the well defined operation (g1N)(g2N) =

(g1g2)N



CHAPTER 2

Quotient Rings

Definition 8. Let R be a ring. A [Left] right ideal is a subset I such
that:

a · I ⊂ I (or for a left ideal) [I · a ⊂ eqI] ∀a ∈ R

If I is a left AND right deal, then we just say that I is an ideal. Notice
that if R is commutative, left and ideals are automatically the same.

Example. Let a ring R = Z, I = 3Z = {0,±3,±6,±9, ...} To check
that I is a right ideal, we have to check that given n ∈ Z, n · I ⊆ I. This is
true, because no matter what integer you multiply a factor of 3 by, you will
always end up with another factor of 3.

More generally, nZ is an ideal of Z for all n ∈ Z.
One remark to notice is that although 3Z is a sub-ring of Q, 3Z is not

an ideal of Q, because it will not be closed under multiplication of elements
in Q.

Example. Let R = Z[x], I = sub-ring of polynomials with even coeffi-
cients. Since this subset I is closed under multiplication, it is an ideal.

Theorem 2. Let I be a sub-ring of R. Then,

R/I = {a+ I|a ∈ R} under the equivalence relation:

a+ I ∼ b+ I ⇐⇒ a− b ∈ I
Is a ring under the operations:

(a+ I) + (b+ I) = ((a+ b) + I) and (a+ I)(b+ I) = (ab+ I)

If and only if I is an ideal.

The following is a diagram illustrating the concept of how a group R
would be split up into a quotient group- the collection of the elements of
R are split up into equivalence classes, which will be the elements of the
quotient group. The most common and easy to understand example of a
quotient group is the modulus group Z/nZ, where the elements are divided
into equivalence classes under modular arithmetic with respect to n.

Notice that if r ∈ I, then r + I ∼ 0 + I. Then,

(r + I)(s+ I) = rs+ I and (0 + I)(s+ I) = 0 + I

9
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So we need rs + I ∼ 0 + I for it to be a well defined equivalence relation.
So, rs ∈ I if r ∈ I, s ∈ R, which is always true since we assumed I was an
ideal of R.

On the other hand, if I is an ideal:

(r + I) · (s+ I)
?
= (r + i1 + I) · (s+ i2 + I) = rs+ ri2 + i1S + i1i2 + I

for some ii, i2 ∈ I? Consider the following:

(rs+ I)− (rs+ ri2 + i1S + i1i2 + I) = (ri2 + i1s+ i1i2)

We know that i1i2 ∈ I since I is a sub-ring, and closed under multiplication.
We can say that ri2 is in I if I is a left ideal, and similarly we can say that i1s
is in I if I is a right ideal. Therefore, to nail down the equivalence relation
and to ensure that elements will be closed under actions, we have to assume
that I is both a right and left ideal.

Fact. When given a homomorphism ϕ : R → S, where R and S are
both rings, the Ker(ϕ) is an ideal

Operations on Ideals: Let I, J be ideals in R.

(1) I + J = {a + b|a ∈ I, b ∈ J . Since I and J are ideals, r(a + b) =
ra+ rb ∈ I + J for some r ∈ R.

(2) IJ = {
∑n

i=1 aibi|ai ∈ I, bi ∈ J}
Let A ⊆ R be any subset of R. The smallest ideal of R containing A will

be:

=
⋂

I≤A, ’I’ an Ideal

I, sometimes denoted ’(A)’

Called the ’ideal generated by A’.

Fact. If R is a commutative ring, then

(A) = {ra|r ∈ R, a ∈ A}
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is an ideal. Any ideal containing A must contain this, so therefore it is the
smallest ideal containing A, or ’(A)’

Definition 9. Let R be a ring. A principal ideal is an ideal that can be
generated by a single element, I = (a), for some a ∈ R.

Example. Take the ideal nZ ∈ Z

nZ = (n) = {K · n|K ∈ Z} = (−n) = {K · −n|K ∈ Z}

Example. Take the ideals (3) and (6) in Z. For any m|n where m,n ∈
Z, (n) ⊆ (m). Therefore, (6) ⊆ (3)

Theorem 3. The 1st isomorphism theorem:

If ϕ : R→ S is a ring homomorphism, then R/Ker(ϕ) ∼= Im(ϕ)

Proof. Suppose there is a map:

r +Kerϕ 7→ ϕ(r)

The following is then true:

(r +Ker(ϕ) · (s+Ker(ϕ)) = rs+Ker(ϕ) 7→ ϕ(rs) =

= ϕ(r) · ϕ(s) = F (r +Kerϕ) · F (s+Ker(ϕ))

For some function F. Thus we see that there exists some relationship between
ϕ(rs) and some function F involving what looks like the members of the
quotient group R/Ker(ϕ). �

If I is an ideal of R, then:

R
π7−→ R/I, r 7→ r + I

Which is a ring homomorphism. The Kernel of this map is exactly I, since:

π(r) = r + I = 0 + I ⇒ r ∈ I

Theorem 4. The 4th isomorphism theorem: if R is a ring an I is an
ideal, then there is a bijection between:

Subrings of R containing I←→ Subrings of R/I

This suggests a map:

A 7−→ A/I

which implies that if A is an ideal of R, A/I is an ideal of R/I. This
correspondence preserves ideals.

Fact. Let I be an ideal of R. If I ⊆ S ⊆ R, then sI ⊆ I∀s ∈ S. So, I is
thus an ideal of S.

Let R be a ring with 1. The following are then true:

(1) Let I be an ideal. Then, I=R ⇐⇒ I contains a unit.
(2) If R is a field, then the only ideals are R and {0}.
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Proof. If I contains a unit, some a ∈ I, then we know that x · a = 1
for some x ∈ R. x · a ∈ I, so we know that 1 ∈. Then, since y = y · 1 for
any y ∈ R, we can see that by taking the actions of all elements in R on the
element 1 in I, that I = R. �

Proof. If I is an ideal of a field R, and I 6= 0, then I contains some
a ∈ R, a 6= 0, which is a unit- so therefore, using the same reasoning as
above, I = R. �

Definition 10. An ideal M of R is maximal if there is no ideal N of R
such that:

M ( N ( R

Theorem 5. Let R be a commutative ring with identity, where M is an
ideal of R. M is maximal if and only if R/M is a field..

Proof. By the fourth isomorphism theorem, we see that:

Ideals A of R containing M
1−1←→ Ideals of R/M

A 7→ A/M

If R/M is a field, then the only ideals of R/M are 0 and R/M . This implies
the only ideals A of R containing M are A = M and A = R, so M must
be maximal. In proving the other direction of this statement, assume M is
maximal. Note that:

A 7→ A/M

M 7→M/M = 0

R 7→ R/M

Since M is maximal, then there does not exist some ideal A such that M (
A ( R,, so there is no ideal such that 0 ( A/M ( R/M . Since, 0 must
be maximal in R/M . In a result proved in the homework (mainly that if
the maximal ideal of a ring is 0, that ring is a field) we see that R/M is a
field. �

Fact. If R is a ring, and A is an ideal of R, then there exists some
maximal ideal M of R, containing A.

Example. Ideals of Z are nZ, for some integer n. All these ideals are
principle ideas, since nZ = (n) = (−n). nZ is maximal if and only if Z/nZ
is a field, which we already know happens when n is a prime number.

Example. Look at the ideal (2, x) ∈ Z[x]. This ideal looks like this:

(2, x) = {2 · p(x) + xq(x)|p(x), q(x) ∈ Z[x]}
This first term (2 ·p(x)) is any polynomial with all even constant terms. The
second term (xq(x)) is any polynomial with a zero constant term. Thus, the
elements in Z[x] this set contains are all polynomials with even constant
terms. This turns out to not be a principal idea.
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Example. Now consider:

Z[x]/(2, x) ∼= Z/2Z
Where:

p(x) + (2, x) 7→ p(0) mod 2

Z2 is a field, so therefore (2, x) must be maximal in Z[x].

Example. Let R be the ring of functions from X → R. Pick some p in
X, and let the ideal I be functions f : X → R such that f(p) = 0. Consider
the quotient: R → R. By definition, Ker(f(p))=I. By the 1st isomorphism
theorem,

R/I ∼= Im(f) ∼= R
And since R is a field, I must be a maximal ideal.

Fact. An ideal P of R where P 6= R is called prime, or ’a prime ideal
of R’, if it satisfies the following:

Whenever ab ∈ P , where a, b ∈ R, either a ∈ P or b ∈ P .

Example. When R = Z, the ideals are nZ, where n ∈ Z. For which n
is nZ a prime ideal? Well, if ab ∈ nZ, then either a ∈ nZ or b ∈ nZ. As
the name of the ideal implies, it turns out that this happens when n is a
prime number. This is because if ab=nm, we know that either n|a or n|b,
so either a ∈ nZ or b ∈ nZ. On the other hand if nZ is a prime ideal than
n is a prime number. If n|ab⇒ n|a or n|b,∀a, b then n is prime.

Example. If n=4, 2 · 2 ∈ 4Z, but 2 /∈ 4Z. So 4Z is not a prime ideal.

Theorem 6. Let R be a commutative ring with 1. Then P is a prime
ideal in R if and only if R/P is an integral domain.

Proof. P is prime means that ab ∈ P ⇒ a ∈ P or b ∈ P . (R/P is
commutative with identity: 1+P since R is commutative.) R/P not having
any zero divisors implies and is implied by:

(a+ P ) · (b+ P ) = (0 + P )⇒ 0 + P

Which means that

a+ P = o+ P or b+ P = 0 + P

ab+ P = 0 + P ⇒ a+ P = 0 + P or b+ P = 0 + P

Where (ab ∈ P ). This would imply that P is a prime ideal. �

Example. Let R = Z[x]. Let I = (x), all polynomials without constant
terms. The following is then true:

Z/(x) ∼= Z
Which is an integral domain, which tells us that I is prime. This isomorphism
is brought about by the following map:

eval : Z[x] 7→ Z
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eval(p(x)) 7→ p(0)

I.e., the map ’eval’ is yeilds the constant term of the polynomial p(x). This
is also a ring homomorphism. Notice that:

Ker = (x)

Because (x) will yeild all polynomials without constant terms, we can see
that Ker((x)) = 0. Thus, by the first isomorphism theorem,

Z[x]/Ker = Z/(x) ∼= Im(eval) = Z

However, (x) is not maximal in Z[x], because:

(x) ( (x, 2) ( Z[x]

Fact. When R is a commutative ring with 1, every maximal ideal is
prime.

Proof. If an ideal I is maximal in R, this implies that R/I is a field,
which implies that R/I is an integral domain, which implies that I is prime
in R. �

1. Understanding Fractions:

Think of the field Q, a set of what we commonly call ’fractions’. It is
an understandable question to ask how this set was constructed. Consider
’elements’, called fractions, ab where a, b ∈ Z. However, there are immediate
problems that arise from this idea, we need a stronger set of definitions to
ensure that 1

2 = 2
4 = 3

6 . It turns out we will admit the following definition:

a

b
=
c

d
⇐⇒ ad = bc

The General idea is that given a ring R and some subset D of R, we
think of as elements of R that we want to invert (multiplicatively). We have
chosen the letter ’d’ to represent this subset, because it will intuitively stand
for ’denominator’. Consider pairs:

(a, b) ∈ R×D

with the equivalence relation:

(a, b) ∼ (c, d) ⇐⇒ x(ad− bc) = 0

For some element x ∈ D. As you can see, this mimics the structure of what
we would usually call a ’fraction’. Taking the equivalence classes, call this
set:

D−1R

And try to define a ring by the following operations:

a

b
+
c

d
=
ad+ bc

bd
, and

a

b
· c
d

=
ac

bd

Now, the following conditions must be upheld:
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(1) We need D to be closed under multiplication in order for addition
to be defined and nonempty

(2) If we want a map i : R→ D−1R, r → r
1 to be 1-1, we need D to have

no zero divisors. This is because if we can show that d ∈ D is a zero
divisor, d

1 ∼
0
1 . Suppose that d · x = 0 then d

1 = dx
x = 0

x = 0 = 0
1 .

Thus the map i is not 1-1, since there are elements in the Ker(i)
that are not equal to 0.

Theorem 7. Let R be a commutative ring with 1, and D is a nonempty
subset of R closed under multiplication. there then exists a commutative ring
with 1 denoted D−1R and a ring homomorphism:

ϕ : R 7→ D−1R

such that:

(1) If d ∈ D is a zero divisor, ϕ(d) = 0
(2) If d ∈ D is not a zero divisor, ϕ(d) is a unit
(3) D−1R is the ’smallest such ring’.

For any S with some map π : R→ S that satisfies requirements (1) and (2),
there exists a uniqe ring homomorphism f : D−1R→ R such that f ◦ϕ = π

(2) D−1R

∃!f
��

R

ϕ
77

π // S

Restating this theorem more directly, considering the ring homomor-
phism I : R→ D−1R we have th following 4 properties:

(1) If x ∈ D ⊆ R is not a zero divisor, then i(d) ∈ D−1R has an inverse
under multiplication.

(2) Given any ring S and a homomorphism π : R → S such that π(d)
is invertible whenever d ∈ D is not a zero divisor, then there exists
a unique ring homomorphism f : D−1R→ S such that f ◦ i = π

(3) If D has no zero divisors, then i : R → D−1R is 1-1 (so, we can
think of R as sitting inside D−1R, and all the elements of D are
invertible).

(4) If D has no zero divisors and D = R− 0, then D−1R is a field.

Proof. Construct D−1R. Take:

R×D = {r, d|r ∈ R, d ∈ D}

And consider the following equivalence relation:

(r1, d1) ∼ (r2, d2) or
r1
d1
∼=
r2
d2
⇐⇒ x(r1d2 − r1d1) = 0 for some x ∈ D−1R

This definition satisfies the reflexive, symmetric, and transitive properties
for a valid equivalence relationship. We then define operations in D−1R as
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follows:
r1
d1

+
r2
d2

=
r1d2 + r2d1

d1d2
and

r1
d1
· r2
d2

=
r1r2
d1d2

We would then like to show that this makes D−1R a commutative ring with
11.

Therefore, D−1R must be well defined, commutative, an abelian group
under addition, associative under multiplication, and the distributive law
must hold. Define:

i : R→ D−1R as i(r) =
rd

d
, d ∈ D

Notice that:

rd

d
∼ re

e
, and that i(r1 + r2) =

(r1 + r2)d

d
=
r1d

d
+
r2d

d
= i(r1) + i(r2)

Now suppose that d ∈ D and d isn’t a zero divisor. Then, i(d) = de
e . Does

this have an inverse? Under our definitions of multiplication, we can see
that it will have an inverse as follows:

de

e
· e
de

=
de2

de2
∼ 1 ∈ D−1R

To prove out second requirement, that there exists a unique ring homomor-
phism f : D−1R→ S, we offer the following diagram:
(3)

π(r)

π(d)−1

S

R
i //

π

55

D−1R
f

hh

d−1

[[

r

YY

r // i(r) = rd
d = r)d−1d

Look at the Kernal of I : R → D−1R. I(r) = rd
d ∼

0
d ⇐⇒ x(rd2 − d ·

0) = 0, x ∈ D. This implies that rxd2 = 0, so, x ∈ D, d ∈ D ⇒ xd2 ∈ D,
since D is closed under multiplication. Since we assumed that D had no zero
divisors, we know that r must then be zero.

1To really understand D−1R, we need to have a good understanding of some concept
of ’1’. A good candidate will be d

d
, for all d ∈ D.
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To prove the 4th claim, let D = R−{0}, and let D have no zero divisors.
Then, i : R→ D−1R is 1-1 and every nonzero element of D−1R is invertible,
so D−1R is a field. �

This leads us to an interesting result:

Fact. Every integral domain sits inside some ’field’, called ’the field of
fractions’ of an integral domain.

We now need to address why 0 /∈ D. Since we know the following:

(a, b) ∼ (c, d) ⇐⇒ x(ad · −bc) = 0 for some x ∈ D
We can always let x = 0, and we then see that any elements (a, b), (b, c) are
equivalent under this relation. Thus, every element reduces down to zero;
the restriction is made on D to avoid the trivial case.

Example. Let R = Z, D = Z− {0}. Then, D−1R ∼= Q since 0 /∈ D, so
x(ad− bc) = 0 is really just the same as ad− bc = 0.

Example. Let R = Z, D = 2Z−{0}. Then, D−1R = {a/2b|a, b ∈ Z, b 6=
0}. Since the following is true:

x

y
=

2x

2y
=

z

2y
, z ∈ Z, z = 2x

We realize that we can assign the following relationship between Q and
D−1R:

Q f→ D−1R D−1R
g→ Q

x

y
→ 2x

2y

a

2b
→ a

2b

f ◦ g = Id, since a
2b ∼

2a
2(2b) And, g ◦ f = Id, since 2x

2y ∼
x
y . Thus:

D−1R ∼= Q

Definition 11. A Ring of formal power series:∑
n≥0

anx
n, n ∈ Z = a+0 +a+ 1x+ a2x

2 + ...





CHAPTER 3

The Chinese Remainder Theorem

An arithmetic problem: suppose we are given m1, . . . ,mn ∈ Z+ and
b1, . . . , bn ∈ Z, with g.c.d.(mi,mj) = 1 ∀i 6= j. Can we find an x ∈ Z such
that x ≡ bi mod mi ∀1 ≤ i ≤ n? The answer is yes, and we find out that if
x works, then so does x+ (m1m2 · · ·mn); there is a unique solution up to a
multiple of m = m1m2 · · ·mn.

1. Construction

Consider R = Z. For each i, let Ii = (mi) be an ideal of Z (recall:
mZ + nZ = g.c.d.(m,n)Z). Since g.c.d.(mi,mj) = 1 for i 6= j, we get that
Ii + Ij = Z ∀i 6= j (In such a case that Ii + Ij = R, we call Ii and Ij
co−maximal).
We want x − bi ∈ Ii = miZ = (mi) ∀1 ≤ i ≤ n, and we write this: xi ≡ bi
(mod Ii). Then the question becomes: Is there a function f such that:

f : Z→ Z/Ii × . . .× Z/In
Or equivalently,

f : Z→ Z/m1Z× . . .× Z/mnZ
Under such a function, we would get

x 7→ (b1, . . . , bn)

All that would be left to show is surjection (which is clear), and we know
that the kernel of such a function is exactly mZ, where m = m1 · · ·mn.

Theorem 8 (Chinese Remainder Theorem). Let R be a ring with iden-
tity and A1, . . . , An be ideals. Suppose that for all i 6= j we have Ai+Aj = R
(Ai, Aj are comaximal). Then,

π : R→ R/A1 ×R/A2 × . . .×R/An
Where π(r) = (r mod A1, . . . , r mod An) = (r+A1, . . . , r+An) is surjective
and the kernel is

⋂n
k=1Ak.

Corollary. R/
⋂n
k=1Ak

∼= R/A1 × . . .×R/An.

Remark. In Z, mZ ∩ nZ = mnZ for g.c.d.(m,n) = 1. So,
⋂
imiZ =

(m1 · · ·mn)Z for g.c.d.(mi,mj) = 1.
Proof: r ∈ Ker(π) implies π(r) = (0, . . . , 0) = (0 + A1, . . . , 0 + An).

But, π(r) = (r + A1, . . . , r + An) so r ∈ Ai ∀i, so r ∈ A1 ∩ . . . ∩ An =

19
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A1 · · ·An ⇒ Ker(π) ⊂ A1 ∩ . . . ∩ An. Similarly, A1 ∩ . . . ∩ An ⊆ Ker(π).
Hence, Ker(π) = A1 ∩ . . . ∩An = A1A2 · · ·An.

Proof. Consider n=2 (rest follows from induction). Since they are
comaximal, A1 +A2 = R. That means, we can choose x ∈ A1, y ∈ A2 such
that x + y = 1. This gives us a couple of congruences, namely y ≡ 1 mod
A1 and x ≡ 1 mod A2. So given (b1 mod A1, b2 mod A2) ∈ R/A1 × R/A2,
we get the following:

(b1modA1, b2modA2) = (b1modA1, 0) + (0, b2modA2)

= (b1modA1, b1modA1)(1, 0) + (b2modA2, b2modA2)(0, 1)

= π(b1)π(y) + π(b2)π(x)

= π(b1y + b2x)

So π is surjective.
All that’s left to show is A1 ∩ . . . ∩An = A1A2 · · ·An.

Fact. A1 ∩A2 ∩ . . . ∩An = A1 · · ·An when R is commutative.

Claim. A1 ∩A2 = A1 ·A2 = {
∑n

i=1 aibi|ai ∈ A1, bi ∈ A2}.

[Subclaim: M · N ⊆ M ∩ N is always true for ideals in a ring. By
definition of ideals,

∑
ai · bi ∈M ∩N since mi · ni ∈M and mi · ni ∈ N ∀i.]

Proof of claim: We need to check that A1 ∩ A2 ⊆ A1 · A2. Write
1 = x+ y where x ∈ A1, y ∈ A2. Given a ∈ A1 ∩A2 implies:

a = 1a = (x+ y)a = xa+ ya ∈ A1 ·A2

In this case, x, a ∈ A1 and y, a ∈ A2, and this sum xa+ ya ∈ A1 ·A2.
�

Example. Let m,n ∈ Z, g.c.d.(m,n) = 1. Let Z→ Z/mZ× Z/nZ. By
the theorem, this is surjective with kernel mZ ∩ nZ = (mn)Z. So,

Z/mnZ
as rings∼= Z/mZ× Z/nZ for g.c.d.(m,n) = 1

Corollary. Let n = pk11 · · · p
kj
j for n ∈ Z where each pi are distinct

primes ∀ 1 ≤ i ≤ j (k1, . . . kn ≥ 1 ∈ Z). Then,

Z/nZ = Z/pk11 Z× . . .× Z/pkjj Z



CHAPTER 4

Domains

One should note that generally speaking, when considering a ring R in
this section, it will be an Integral Domain.

The following will be stated as true now, but will eventually be proven:

Fields ⊆ Euclidean Domains ⊆ Principal Ideal Domains ⊆

Unique Factorization Rings ⊆ Integral Domains

Definition 12. A Norm on a ring R is a function

N : R→ Z+ ∪ {0}

Such that N(0) = 0. If N(r) 6= 0 for r 6= 0, we say that N is a positive
norm.

Example. Let R = Z. The candidate for a norm would be as follows:

N(k) = |k|, k ∈ Z

This happens to be an example of a positive norm.

Example. Let R be a polynomial ring, say S[x] where S is any ring.
Let:

N(p(x)) = deg(p(x))

If s ∈ S, s 6= 0, then N(s) = 0.

Definition 13. An integral domain R is a Euclidean domain if there is
a norm such that for any two elements a, b ∈ R, b 6= 0, there are q, r ∈ R
such that:

a = qb+ r Where r=0 or N(r) < N(b)

Example. Let R = Z, with N(K) = |K|. Given a, b ∈ Z, b 6= 0, we see
that:

a = qb+ r where r = 0 or |r| < |b|
This shows that Z is a Euclidean domain.

Example. Extending the example of a norm on a polynomial ring S[x],
we see that if S = R that the given definition of a norm would also qualify
S[x] as a Euclidean domain.

21
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This form in a Euclidean Domain allows an algorithm called the division
algorithm, which is as follows: In a domain R, given a, b ∈ R, b 6= 0, we can
write:

a = q0b+ r0 where r0 = 0 or N(r0) < N(b)

assuming r0 6= 0 we see that:

b = q1r0 + r1 where r1 = 0 or N(r1) < N(r0)

r0 = q2r1 + r2 where r2 = 0 or N(r2) < N(r1)

r1 = q3r2 + r3 where r3 = 0 or N(r3) < N(r2)

...

this process continues until rn = 0.

Example. If F is a field, then F is a Euclidean domain with the norm:

N : F → Z+
⋃
{0} where N(x) = 0

Given a, b ∈ F, b 6= 0 we see that:

a = ab−1 + 0 where ab−1 will be the ”q” term and 0 will be the r term

Since F is a field, ab−1 ∈ F , so this norm holds.

Example. Let R = Z, and N(x) = 0 . Then:

a = qb+ 0

But since not every element of Z has an inverse, we will not always find a
good candidate for ’q’. Take for example:

2 = q3 + 0

Since 2
3 is not a member of Z, this will not be a valid Euclidean domain

under this Norm.

Definition 14. An integral domain R is called a principle ideal domain
(PID) if every ideal in R is principle, i.e., it is generated by a single element.

Example. Let R = Z. The ideals of R are then nZ, for n ∈ Z and since
nZ = (n) = (−n), so Z is a principle ideal domain.

Example. Take R = Z[x]. Then consider the ideal (2, x). This ideal
cannot be generated by a single element, so thus Z[x] is not a PID.

Theorem 9. Every Euclidean domain is a Principle ideal domain.

Proof. Let R be a Euclidean Domain under some norm N. Let I be
an ideal of R. We have to show that I is principle. Chose a ∈ I, a 6= 0,
and N(a) to be smallest in that ideal. Since a ∈ I we know that (a) ∈ I,
which shows that (a) ⊆ I. We then have to show the reverse inclusion to
prove that (a) = I. We know that for any b ∈ I, we can make the following
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representation: b = a · x, x ∈ I. Let’s assume that b 6= 0, a 6= 0. Since R is a
Euclidean domain, we know that there exist q, r ∈ R such that:

b = qc+ r where r=0 or N(r) < N(a)

Since we assumed that the norm of the element a was the smallest in the
ideal I, we know that r must then be zero. So then, we conclude that
b = q · a, so b in(a), and since b is any arbitrary element in I, we know that
I ⊆ (a). This shows that I = (a), which tells us that R is a Principle ideal
domain. �

Definition 15. A greatest common divisor of 2 elements a, b ∈ R (de-
noted ’gcd’) is an element d ∈ R such that:

(1) d|a and d|b (i.e., d = dx, b = dy, x, y ∈ R)
(2) If e|a and e|b, thene|d.

Remark. Taking this definition of a common divisor of elements are
putting it in terms of ideals, we have:

d|a ⇐⇒ a = dx, for some x ⇐⇒ a ∈ (x) ⇐⇒ (a) ⊆ (d)

And

d|b ⇐⇒ b = dy for some y ⇐⇒ b ∈ (d) ⇐⇒ (b) ⊆ (d)

So then, we have the following two requirements in terms of ideals:

(1) d|a and d|b ⇐⇒ (a, b) ⊆ (d) Where (a, b) =
∑
c · a + f · b =∑

c · dx+ f · dy = d
∑

(cx+ fy)
(2) If (a, b) ⊆ (e), then (d) ⊆ (e).

So, the gcd of a and b is d, if (d) is the smallest principle ideal containing
(a, b).

Example. In Z, let a, b ∈ Z, a = 12, b = 16. Since (4) = (−4) are
the smallest principle ideals containing (12, 16), we know that the greatest
common divisors of a and b are ±4.

Fact. The following are true:

(1) If (a,b) is principle, then (a,b)=(x) and x is the greatest common
divisor of a and b.

(2) If R is a PID, for any two elements a, b ∈ R, the greatest common
divisor of a and b exists.

Example. Z[x] is not a PID, because (2, x) is not principle. But, we
know that the greatest common divisor of 2 and x does exist. In finding the
gcd, (let’s call it ’p’) we need to find an element such that the following is
true:

p|2 and p|x
Since the only candidate for p is ±1, we know that the greatest common
divisor of 2 and x is ±1.
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Lemma. If (d) = (d′), where both ideals are non zero in a ring R, d′ = ud
for some unit u ∈ R. So, any two greatest common divisors (d, d′) differ by
some unit u.

Proof. If (d) = (d′), then d ∈ (d′), so d = xd′. Similarly, d′ ∈ (d) so
d′ = yd. Thus, d = xyd, which implies that x(1 − xy) = 0. So, xy = 1
since we know that these ideals are nonzero in R, displaying that x and y
are units. Thus, d and d′ differ only by a unit. �

Remark. If (a, b) ⊆ (d), (a, b) ⊆ (d′) then d and d′ are gcds of a and b
if and only if (d) = (d′).

Definition 16. x and y are called ’associates’ if x = uy for some unit
u.

Recall that if R is a Euclidean Domain and a, b ∈ R, a, b 6= 0 that

a = q0b+ r0, N(r0) < N(b) or r0 = 0

...

And that we can continue this process until we get some rn, where rn+1 = 0.
Our Claim is now that this rn is a1 greatest common divisor of a, b.

Proof. We need to show that rn|a and rn|b. This is easy to do. We
know that:

rn|rn−1
And by working up, that

rn|rn−2
...

rn|a, rn|b

Then we need to show that rn = xa + yb, for some x, y. Then, if e|a and
e|b, then we know that e|rn, which will show that rn is a greatest common
divisor. Again, this comes from working upwards:

rn = rn−2 − qnrn−1 = rn−2 − qn(rn−2 − qn−1rn−2)

...

rn =vv a+ vv b

�

1we say ’a’ greatest common divisor because as we’ve seen, the gcd of two elements
does not have to be unique.
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Fact. (a|b, b|a) ⇐⇒ ((b) ⊆ (a) and (a) ⊆ (b)) ⇐⇒ a and b are
associates. If a and b are associates, then a = bu, u−1a = b. Conversely, if
(a)=(b) then

(a) ⊆ (b)⇒ a = bx

And

(b) ⊆ (a)⇒ b = ay

Thus,

a = bx = axy ⇒ a(1− xy) = 0

Thus, xy = 1 so x and y are units. Since a = bx, where x is a unit, we know
that a and b are associates.

Corollary.

(a) = R if and only if a is a unit.

Proof. R=(1), so if (a)=(1), (a)=R. This happens if and only if a and
1 are associates, i.e. ax = 1 for some x. And we know that this happens
when a is a unit. �

Recall, if an ideal M is maximal in R, then M is prime.

Mmaximal in R ⇐⇒ R/M is a field ⇒ R/M is an integral domain

⇐⇒ M is a prime Ideal in R.

Example. Notice that :

Z[x]/(x) ∼= Z

Which is an integral domain, not a field. Thus, (x) is prime but not maximal
in Z[x].

Theorem 10. If R is a PID, every nonzero prime ideal in R is maximal.

Proof. Let (p) be a prime ideal in R, a principle ideal domain. We
want to show that if (p) ⊆ some ideal (m) ⊆ R, that (m) = (p) or (m) = R.
If (p) ⊆ (m), this means that p ∈ (m), so p = mr for some r ∈ R. Thus,
mr ∈ (p), which is a prime ideal, so either m ∈ (p) or r ∈ (p). If m ∈ (p),
then (m) ⊆ (p) ⇒ (m) = (p). If r ∈ (p), then r = xp, and since p = mr,
p = mxp. Thus mx = 1, so m is a unit, and (m) = R. �

Remark. If F is a field, F[x] is a Euclidean domain and thus a Principle
ideal domain. The Converse is also true, if R[x] is a PID, R is then a field.

Proof.

R[x]/(x) ∼= (R) by the first isomorphism theorem

So thus (x) is prime. But R[x] is a PID, so (x) is maximal, and since
R[x]/(x) ∼= R, R is a field. �

Definition 17. Let R be an integral domain.
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(1) We say that r ∈ R is irreducible if r is not a unit, and whenever
r = a · b a is a unit or b is a unit. Otherwise, we say that r is
reducible.

(2) p ∈ R is called prime if (p) is a prime ideal in R.

Lemma. In any integral domain, every prime element is irreducible.

Proof. Let p be prime, so (p) is a prime ideal. Suppose p = ab, we
need to show that either a or b is a unit. Since ab ∈ (p), this implies that
a ∈ (p) or b ∈ (p). I.e., a=px or b=py.

if a = px = abx, so bx=1, showing that b is a unit

if b = py = aby so ay=1, so a is a unit

Thus, either a or b is a unit. �

Example. Let R = Z[
√
−5] = {a+ b

√
−5|a, b ∈ Z}.

9 = 3 · 3 = (2 +
√
−5)(2−

√
−5)

We can see that 3 divides 3, and thus should divide the right hand side, but
3 does not divide 2±

√
−5)

(3 · (a+ b
√
−5) 6= 2±

√
−5 ∀a, b ∈ Z)

Thus, 3 is not prime, i.e. (3) is not prime.

q = (2 +
√
−5)(2−

√
−5) ∈ (3)

But (2±
√
−5) /∈ (3). However, 3 is irreducible in this ring.

Lemma. Let R be an integral domain. r ∈ R is irreducible ⇐⇒ (r) is
’maximal among all principle ideals’, i.e.: If (r) ⊆ (s) ⊆ R then (r) = (s) or
(s) = R where (s) is principle.

Proof. Suppose whenever (r) ⊆ (s) ⊆ R that either (r) = (s) or (s) =
R.We would r to be irreducible, so let r = ab. Then, a|r so (r) ⊆ (a) ⊆ R.
By our assumption, (r) = (a) or (a) = R, which implies r and s are associates
where b is a unit, or s itself is a unit. This shows that r is irreducible.

Now let r be irreducible, and (r) ⊆ (s) ⊆ R. So, r=st. If s is a unit then
(s)=R. If t is a unit, then r and s are associates, so (r) = (s). �

Corollary. In a PID, r is irreducible if and only if r is maximal. The
proof of this comes directly from the Lemma, since maximal ideals are equiv-
alent to maximal among all principal ideals.

Corollary. In a PID R, for r ∈ R, the following are equivalent:

(1) (r) is prime
(2) r is prime
(3) r is irreducible
(4) (r) is maximal

Definition 18. A unique factorization domain or UFD is an integral
domain R such that:
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(1) For r ∈ R, where r is not a unit and r 6= 0, we can write:

r = p1p2....pn

Where pi is irreducible for all i.
(2) (There is uniqueness up to associates) If

r = p1p2...pn

And

r = q1q2...qm

Where qi, pi are irreducible for all i, then m = n and every pi is an
associate of exactly one qi, and cive versa.

∃r ∈
∑
n

such that pi is an associate of qσ(i)

Example. If F is a field, F is a UFD. Every element is a unit, so every
element has a multiplicative inverse. There is nothing to check here, because
every non-zero element is a unit.

Example.

Z[2i] = {a+ b2i|a, b ∈ Z}
Notice that ’i’ isn’t in this ring. We see that the following is true:

4 = 2 · 2 = (2i) · (−2i)

Are 2,2i, and -2i irreducible? Well:

2 = a · b⇒ a or b = ±1

And

2i = c · d⇒ c or d = ±1

Thus, 2,±2i are irreducible since 1 is a unit. Are 2 and 2i associates? This
would imply that

2 · (x+ i2y) = 21

Where (x+i2y) is a unit. Since the units in this ring are ±1, we see that
this is impossible. Thus we see that we have a nonunique factorization of 4
into a product of irreducibles.

Claim: In a UFD, x is prime if and only if x is irreducible.

Proof. In a UFD, which is an integral domain, prime elements are
always irreducible. Suppose x is irreducible in a UFD. We would like to show
that x is prime, which we can do by showing that (x) is prime. Suppose
ab ∈ (x). We would like to show that either a ∈ (x) or b ∈ (x); i.e., if
a|ab⇒ x|a or x|b. Suppose that x|(a, b). Then,

xc = ab = (a1a2...an)(b1b2...bm)

Because we are working in a unique factorization domain. This shows that:

x · (c1c2...cn) = (a1a2...an)(b1b2...bm)
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and by uniqueness, x is an associate of some ai or bi. If x is an associate
of ai, this implies that x · x = ai for some unit d. This means that x|ai, so
x|(a1a2...an), which in turn means that x|a. Similarly, if x is an associate of
bk then x|b. Thus, x is prime. �

Fact. In a UFD, greatest common divisors always exist. Given:

a = pk1i p2 · ...·
kn
m

and
b = pj1i · ... · p

jn
n

Where pi are distinct primes (irreducibles), the following is true:

gcd(a, b) = p
min(k1,j1)
1 · ... · pmin(kn,jn)

n

Our claim is that:

(1) d|a and d|b
(2) if e|a and e|b then e|d

Consider: the following representation of the element ’e’:

e = cm1
1 cm2

2 · ... · c
mr
r

Where ci are distinct primes for all i. Since e divides both a and b,

e = ps11 p
s2
2 · ... · p

sn
n · u

Where u is a unit. Thus, we see that since e|a and e|b, si ≤ min(ki, ji).
This then implies that e|d. Notice that:

a · b = (gcd(a, b)(lcm(a, b))

Theorem 11. Every principle ideal domain is a unique factorization
domain.

Proof. Let R be a PID, r ∈ R be a non-unit. We would like to show
that r is equal to a product of non-units. If r is not irreducible, then:

r = r1r2

Where r1, r2 are not units. If r1 is reducible, then:

r = (r11r12)r2

If r11 is reducible, then:

r = ((r111r112)r12)r2)

...

We need to check that this process can’t go on forever, that eventually r will
be written as a product of irreducibles. If it were so, that means:

r1|r, r11|r1, r111|r11 . . .
And in terms of ideals, this means:

(r) ⊆ (r1) ⊆ (r11) ⊆ (r111) ⊆ ... ⊆ R
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I1 ⊆ I2 ⊆ I3 ⊆ ... ⊆ R
The claim is that In = In+1 = In+2 = ... = R for some n. The proof of that
is the

I =
⋃
j

Ij

is an ideal, and in a principle ideal domain, every ideal is principal. Thus, I
is principal. So, I=(a), so a ∈ In for some n. This implies that:

(a) ⊆ In ⊆ I = (a)

so

(a) = In = In+1 = In+2 = ...I

In a PID, the ascending chain of ideals is a principle ideal. So, we can factor
irreducibles into finitely many irreducibles. In showing uniqueness, we see
that when

p1p2...pk = q1q2...qn

That we can pick off elements one by one (since given a pi it must divide
q1q2...qn) until we see that the factorization was unique. �

Corollary. Since Z is a Euclidean Domain, and therefor a PID, it is
thus a UFD.

n = p1p2p3...pk

Where pi are prime numbers for all i, and this factorization is unique up to
a reordering of pi’s and multiplication by the units in Z, which are ±1.

Recall: R[x] for any ring R denotes ”polynomials in x with coefficients
in R”.

Definition 19. Let R be a ring. The following is true:

R[x1, x2, ...xn]) = (R[x1, x2, ...xn−1)[xn])

Also recall that R[x] has a norm given by:

N(p(x)) = deg(p(x))

And the units of R[x] are units of R. If R is an integral domain, then so is
R[x].

Proof. If

p(x) · q(x) = 0⇒ N(p((x) · q(x)) = N(p(x)) +N(q(x)) = 0 = N(constant)

So thus, either N(p(x)) = 0 or N(q(x)) = 0. This implies that both p(x)
and q(x) constant, we’ll call them a and b respectively. We then know that:

a · b = 0

And since R is an integral domain, we know that either a = 0 or b = 0.
Thus, p(x) = 0 or q(x) = 0. �
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Let I be an ideal in R. Since I is a subring of R, we can say that
I[x] ⊆subgring R[x]. Given an element (r0 + r1x+ ...rnx

n), we see that when

taking an element (akx
k) ∈ I[x], then when you multiply these elements

you get: (akr0x
K + akr1x

k+1 + ...akrnx
k+n). We see that the coefficients

(akr0, akr1, ...akrn) will live in I, since I is an ideal. From this we can con-
clude that I[x] is an ideal of R[x] if I is an ideal of R (it turns out the
converse is also true; if I[x] is an ideal of R[x], then I is an ideal of R).

Remark.

R[x]/I[x] ∼= (R/I)[x]

Where the isomorphism is in terms of rings.

Proof. Define a homomorphism:

ϕ : R[x] 7→ (R/I)[x]

where

ϕ(
n∑
k=1

rkx
k) =

n∑
k=1

(rk + I)xk

(e.g., let I = 3Z ⊆ Z. The element 4x5 + 3x2 + 1
ϕ7−→ x5 + 1, because

the coefficients would be reduced by modulo 3). The map ϕ is surjective,
because

Ker(ϕ) = {p(x)| the coefficients of p(x) are in I } = I[x]

And by the first isomorphism theorem,

R[x]/I[x] ∼= Im(ϕ) = (R/I)[x]

�

Corollary. If I is prime in R, I[x] is prime in R[x].

Proof.

I prime in R ⇐⇒
(R/I) is an integral domain ⇐⇒

R[x]/I[x] is an integral domain ⇐⇒
I[x] is prime in R[x]

�

Example. nZ ⊆ Z is a prime ideal if and only if n is prime. So, (nZ)[x]
is prime in Z[x] if and only if n is prime.

If F is a field then F [x] is a Euclidean domain, whereN(p(x)) = deg(p(x)).
Given a(x), b(x) ∈ F [x] where b(x) 6= 0 we see that a(x) = b(x)q(x) + r(x)
where r(x) = 0 or N(r(x)) < N(b(x)). So, F [x] is a unique factorization
domain. We’ll show that R[x] is a unique factorization if and only if R is a
unique factorization domain.
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Proof. The one direction of this statement is trivial: if R[x] is a unique
factorization domain, then R must also be a UFD, since R ⊆ R[x]. We’ll
use the ring of fractions F of R to better understand the oppositve direction
of this statement. �

Example. Q[x] is a Euclidean domain, since Q is a field. Notice that
(2, x) is a prime ideal in Q[x], because (2, x) = Q[x]. T

We would like to use the ring of fractions F of R to study factorization
in R[x]. A brief paraphrase of Gauss’s lemma goes as follows: ”Given R (a
UFD) and F (a field of factors of R), if you can factor in F[x] then you can
factor in R[x]”.

Theorem 12. Let p(x) ∈ R[x] and suppose p(x) = A(x) · B(x) where
A(x), B(x) ∈ F [x], then there exists r, s ∈ F such that:

r ·A(x) = a(x) ∈ R[x]

s ·B(x) = b(x) ∈ R[x]

and
p(x) = a(x)b(x)

Example.
x2 ∈ Z ⊆ Q[x]

Factoring x2 in Q[x], we get:

x2 = 2x · 1

2
x

Then, we can do the following:

1

2
(2x) = x and 2(

1

2
x) = x

where 2, 12 ∈ Q.

Proof. Given p(x) = A(x)B(x) where the coefficients of A(x) and
B(x) are elements of F, i.e., are ”fractions” as we think of them. Let
d = product of all denominators of the fractions . Then,

dp(x) = m(x)n(x)

Where m(x), n(x) ∈ R[x]. d ∈ R since R is a unique factorization domain,
and:

d = c1c2...cn

Where ci is irreducible in r. We then conclude that:

c1c2...cnp(x) = m(x)n(x)

We would like to show that for each i, ci|m(x) or ci|n(x). We know that:

R/(ci) is an integral domain ⇒ R/(ci)[x] is an ID

and
(R/(ci))[x] ∼= R[x]/(ci)[x]
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So, when considering

c1c2...cnp(x) = m(x)n(x)

reduce modulus ci term by term, i.e., send the coefficients in R to coefficients
in R/(ci). Let i = 1. Then,

0 ≡ ¯m(x) · ¯n(x)

So, ¯m(x) and ¯n(x) are elements of (R/(ci))[x], which we know to be an
integral domain. Thus, by the definition of an integral domain, either:

¯m(x) = 0 or ¯n(x)] = 0

So, ci must divide the coefficients of either m(x) or n(x). This implies that

m(x)

ci
∈ R[x] or

n(x)

ci
∈ R[x]

Taking this operation for all i, we end up getting p(x) = a(x) · b(x) where
a(x), b(x) ∈ R[x].

�

The Idea is that if you can factor with field coefficients, then you can
factor with ring coefficients. However, we still would like to give a solid
proof that R is a UFD if and only if R[x] is a UFD. To help this along, we
have the following corollary:

Corollary. Let R be a UFD, and suppose that p(x) ∈ R[x]. If The
greatest common divisor of the coefficients of p(x) is 1, then p(x) is reducible
in R[x] if and only if p(x) is reducible in F[x]/

Proof. If p(x) is reducible in F[x], then p(x) is reducible in R[x] by
Gauss’s lemma (recall that p(x) is reducible in F[x] if and only if p(x)=a(x)b(x)
where a(x) and b(x) are not constants). So by Gauss’s lemma, we factor
p(x) into non-units in R[x].

If p(x) is reducible in R[x], then p(x)=a(x)b(x), where a(x), b(x) ∈
R[x] and a(x), b(x) are not units. If coefficients of p(x) have a great-
est common divisor of 1 (bear in mind you can force this condition by
factoring out by the greatest common divisor in R), then a(x) and b(x)
must not be constant polynomials- otherwise, if a(x) = a0 then a0|p(x) ⇒
a0|the greatest common divisor of p(x) and since the gcd(p(x))=1, we know
that a0 = 1, which is a unit. Thus, p(x) = a(x)b(x) where deg(a(x)) ≥
1 and deg(b(x)) ≥ 1.

Then, a(x) and b(x) are not units in F[x], so p(x) = a(x)b(x) is a fac-
torization of p(x) ∈ F [x] into non-units, so we know that p(x) is reducible
in F[x]. �

Example. The following polynomial is irreducible in Z[x] if and only if
it is irreducible in Q[x]:

2x3 + 3x2 + 5x+ 7
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Take an even easier example- is 2x reducible in Z? We know that this is
true if and 2x is reducible in Q[x]. And since:

2x = 2 · x =
2

47
· 47 · x = ...

2x isn’t uniquely factor able in Q, we know that 2x is irreducible in Q[x].
On the other hand though, it turns out that 2x is reducible in Z[x], and this
doesn’t violate our corollary because the greatest common divisor of 2x is
not 1.

Definition 20. A polynomial:

anx
n + an−1x

n−2 + ...+ a1x+ a0

Is called monic if an = 1. Notice that a monic polynomial in R[x] is ir-
reducible in R[x] if and only if it is irreducible in F[x], since the leading
coefficient forces the greatest common divisor of the coefficients to be 1.

Theorem 13. R is a UFD if and only if R[x] is a UFD.

Proof. If R[x] is a UFD, then R is a UFD since R ⊂ R[x] under the
map a 7→ a+ 0x1 + 0x2 + ....

No suppose that R is a UFD and p(x) ∈ R[x]. we can write p(x) as:

p(x) = a gcd of the coefficients of p(x) · q(x)

We want to show that we can factor p(x) uniquely (up to associates) into
irreducibles in R[x]. We know that the following is true from the fact that
R is a UFD:

p(x) = gcd(p(x)) · q(x) = (d1 · d2 . . . dn)q(x) q(x) ∈ R[x], di ∈ R
Focus of the q(x) term- we know that the greatest common divisor of its
coefficients is 1, since we factored out by the greatest common divisor of
p(x). Recall that if(q)x is irreducible in R[x], we’re finished with this proof.
Otherwise, if q(x) is reducible in F[x], then q(x) is reducible in R[x]. We
can claim the following:

q(x) = m(x)n(x)︸ ︷︷ ︸
∈F [x]

= r︸︷︷︸
∈F

m(x) · s︸︷︷︸
∈F

n(x)

︸ ︷︷ ︸
∈R[x]

This follows from Gauss’s lemma. Since the gcd of q(x) was 1, we know that
m(x) and n(x) were not constants, otherwise they would be units.

Think of q(x) as a polynomial with field coefficients, q(x) ∈ F [x], and
since F is a field, F[x] is a Euclidean Domain and thus F [x] is a UFD. So,
we can write:

q(x) = q1(x) · q2(x) . . . qn(x)

Where qi(x) ∈ F [x] are irreducible. By Gauss’s lemma, we can write the
following:

q(x) = r1p1(x) · r2p2(x) . . . rnpn(x)
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Where moreover, ripi(x) ∈ R[x] and ri ∈ F . We know know the following
two things:

(1) We know that the gcd in R of aipi(x) is 1, because we know that
the greatest common divisor of q(x) is 1.

(2) Each aipi(x) is irreducible in F[x], since ai ∈ F is a unit and q(x) ∈
F [x] is irreducible because F [x] is a UFD.

Now, through these facts and our lemma, we know that aipi(x) is irre-
ducible in R[x] for each i. (recall that the lemma said that if p(x) ∈
R[x]andgcd(p(x)) = 1 that p(x) is irreducible in R[x] if and only if p(x)
is irreducible in F [x]. However, we still need to prove that this factorization
of q(x) is unique.

Suppose we have the following factorizations of q(x):

q(x) = q1(x)q2(x) . . . qn(x) = s1(x)s2(x) . . . sm(x)

Where si(x), qi(x) are irreducible in R[x]. We need to prove that each q(x)
is an associate of some s(x).

First, recall that each representation of q(x) is a factorization in F[x]
into irreducibles. Since F [x] is a UFD, we know that n = m and after a
reordering, that:

qi =
ai
bi
s(x)

So
biq(x) = aisi(x) ai, bi ∈ R

We know that ai and bi are associates since the greatest common divisor of
qi(x) and si(x) is 1. This implies that:

ai = ubi and
ai
bi

= u where u is a unit in R

�

Example. Z[x, y] = (Z[x])[y] Is Z[x] a UFD? The answer is yes, since Z
is a UFD, so analogously we know that (Z[x])[y] is also a UFD! The following
corrolary follows from this idea.

Corollary. Z[x1, x2, ...xn] is a UFD

Definition 21. A root of a polynomial p(x) ∈ R[x] is an element r ∈ R
such that p(r) = 0.

Lemma. p(x) ∈ F [x] has a degree 1 factor if and only if p(x) has a root
in F . This is true because:

p(x) = q(x) · (x− α) + r(x) and r(x) = 0 or deg(r(x)) < deg(x− α) = 1

0 = p(α) = q(α) · 0 + r(α)

So we can conclude that r(x)=0. Thus, (x− α)|p(x).

Corollary. If deg(p(x))=2 or deg(p(x)) = 3, p(x) = F [x], p(x) is
irreducible if and only if p(x) has no roots in F. (the reason for 2 or 3 is
because it forces linear factors.)
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Example.

p(x) = x2 + x+ 1 ∈ Z/2Z[x]

The only elements in Z/2Z are 0 and 1, neither of which are roots for this
polynomial. Thus, p(x) is irreducible in Z/2Z.

However, if p(x) ∈ Z/3Z, p(x) is reducible since p(1) = 0. Also notice
that when factoring in this ring, the following is true:

p(x) = (x− 1)(x− 1) under mod 3

We do have other root tests for polynomials of higher degree, take for
example:

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 ∈ R[x]

If p( rs) ∈ F = 0 and (r,s)=1 where R is a UFD and F is a field of fractions,
the following is true

r|a0 and s|an
This can be shown through the following:

0 = p(
r

s
) = an(

r

s
)n + an−1(

r

s
)n−1 + ...a1

r

s
+ a0

−sna0 = anr
n + an−1x

n−1 + ...+ airs
n−1

⇒ r|sna0
And since r and s are relatively prime, we know that r|a0. Similarly we can
show that s|an.

Example. Suppose that p(x) is a monic polynomial, p(x) 6= 0∀r ∈
R such that r|a0 and

p(x) = 1xn + ...+ ao

We can conclude that p(x) has no roots in F, since the monic property of
p(x) forces s = 1.

Example.

p(x) = x3 − 3x− 1 ∈ Z[x]

Since this polynomial is monic, and only ±1|a0 we only have to try ±1 for
r. Since p(1) 6= 0 and p(−1) 6= 0, we can conclude that p(x) has no roots in
Z, and is irreducible.

Property. Let I be a principle ideal of a ring R. We have the following
maps:

R[x]→ R/I[x]

p(x) 7→ ¯p(x)

Where ¯p(x) denotes p(x) reduced with respect to the ideal I.

Let p(x) be monic, and non constant. If there is no factorization of
¯p(x into polynomials of lower degree, then p(x) cannot be factored into

polynomials of strictly lower degree ∈ R[x].
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Proof. Suppose that p(x) is reducible in R[x]. Thus,

p(x) = a(x)b(x), a(x), b(x) 6= constants

Then,
¯p(x) = ¯a(x) · ¯b(x)

Is a factorization of ¯p(x) into polynomials of strictly lower degree, since
deg( ¯p(x)) = deg(p(x) (which follows from p(x) being monic and I being a
proper ideal, which ensures that there are no units in I). �

Example.
x2 + x+ 1 ∈ Z

Reduce this polynomial by the ideal I = 2Z. Since this polynomial has no
roots in Z/2Z[x], it has no factorization in Z[x] and is thus irreducible.

Example.
x2 + 1 ∈ Z[x]

And let I = 3Z. x2 + 1 has no roots in Z/3Z, so x2 + 1 is irreducible in Z[x]
since it is irreducible in Z/3Z[x]. Notice that we should not allow I = 2Z,
because this polynomial does have roots in Z/2Z[x]. However the existence
of roots in the quotient group is not enough to show that p(x) is reducible
in Z[x].



CHAPTER 5

Eisenstein’s Criterion

The following is a theorem refered to as Eisenstein’s Criterion:

Theorem 14. Let R be a ring, P a prime ideal, and

p(x) = xn + cn−1x
n−1 + ...+ c0

Where ci ∈ P and c0 /∈ P 2 = (P · P ). Then, p(x) is irreducible in R[x].

Proof. Suppose that p(x) is reducible in R[x], say

p(x) = a(x)b(x)

Where a(x) and b(x) are nonconstant polynomials. Reducing this equation
modulo P and using the assumptions on the coefficients of p(x) we get the
equation:

xn = ¯a(x)b(x) ∈ (R/P )[x]

Where the bar denotes the polynomials with coefficients reduced with
respect to the prime ideal P. Since P is prime, we know that R/P is an
integral domain, and it follows that the constant terms of both a(x) and
b(x) are elements of P, and thus ¯a(x) and ¯b(x) have 0 as their constant
terms. But if this were true, it would follow that the constant term c0 of
p(x) would be the product of two elements of P, and thus be an element of
P 2, a contraction.

�

This is commonly applied to Z[x], and the result is stated explicitly
below:

Corollary. Let p be a prime in Z and let

p(x) = xn + an−1x
n−1 + ...+ a0 ∈ Z[x], n ≥ 1

Suppose that p divides ai for all i, but that p2 does not divide a0. From this
we can conclude that p(x) is irreducible in both Z[x] and Q[x].

Example. Take the following polynomial:

x6 + 1− x4 + 15x+ 5

Notice that the prime number 5 divides 10,15, and 5, but 52 does not di-
vide 5. Thus, this polynomial is irreducible. The same idea applies to a
polynomial in the following form:

xn − p
37
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Where p is prime, because p2 does not divide p.

Remark. Recall that if F [x] is a ED, it is then also a PID and therefore
a UFD. Given f(x) ∈ F [x], we know that f(x) is irreducible if and only if
the ideal generated by f(x) is maximal; (f(x)) is maximal. This is due to
the fact that if (f(x)) is maximal it would cause F [x]/(f(x)) to be a field,
and we know that f(x) has a root α if and only if x− α|f(x), which would
happen since F [x]/(f(x)) is a field. Through induction, we see that f(x) has
roots α1, α2, ...αn if and only if (x− α1)(x− α2) . . . (x− αn)|f(x).

One consequence of this is that:

n = deg[(x− α1)(x− α2) . . . (x− αn)]

= The number of roots in the set {α1, α2, ..., αn}
= The number of roots of f(x) ≤ than the degree of f.



CHAPTER 6

Modules and Algebras

Definition 22. Let R be a ring. A left R-module is an abelian group
(M,+) with a function from:

R×M →M, (r,m) 7→ r ·m

Such that the following properties hold:

(1) (r · s)m = r(s ·m)
(2) (r + s)m = rm + sm
(3) r · (m + n) = rm + rn

For all r, s ∈ R and m,n ∈M . Also, if 1 ∈ R, we demand that 1 ·m = m.

Definition 23. Suppose that R = (R,+, ·) and that M = Rn = {(v1, v2, ..., vn)|vi ∈
R}. Thus, M is an abelian group under addition, and:

R× Rn → Rn

Under the mapping

(r, (v1, v2, ..., vn)) 7→ (rv1, rv2, ..., rvn)

This defines a left R module.

More generally, left R modules are called R-vector spaces. Even more
generally, if F is a field, left F-modules are the same as right F-modules, or
”vector spaces over F”.

Example. If R is a ring, then R is an abelian group under addition,
and M = R is a left R-module under the mapping

R×R→ R (r,m) 7→ (r ·m)

Which holds by associativity and the distributive law thanks to the ring
structure of R.

Example. A submodule of a left R-module M is a subgroup N ⊆ M
such that:

R×N → R×M →M → N

Where the last arrow really implies that the action of R on the subgroup N
of M has an image back in N, and it’s function defines a left R-module.

We claim that submodules of vector spaces are really what we’ve called
subspaces.

39
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Example. What are the submodules of the R-module R? Well, we need
a subgroup S ⊆ R such that

R× S → R×R→ R→ S

i.e., if r ∈ R, s ∈ S, r · s ∈ S so S is a subring of R and a left ideal of R.

Example. If F is a field, define:

Fn = {a1, a2, ..., an|ai ∈ F}
Fn is then a F-vector space under the following map:

F × Fn → Fn (α, (a1, a2, ..., an)) 7→ (αa1, αa2, ..., αan)

E.g., (Z/pZ)n is a Z/pZ vector space.

Similarly, we can define for any ring R and n ∈ N a left R-module:

Rn = {a1, a2, ..., an|ai ∈ R}
Notice that if n=1, this is the same as the example above in which R is a
left R-module over itself. This module is called a ”free left R-module of rank
n”.

Example. Let R = Z. A natural question to ask is, what are Z-
modules? Our claim is that a Z-module is exactly an abelian group.

Proof. By definition, every Z-module is an abelian group. Conversely,
suppose that (M,+) is an abelian group. We can make (M,+) into a Z-
module in the following way:

Z×M →M (k,m) 7→ m+m+m+ ....+m︸ ︷︷ ︸
k times

This map satisfies the following properties:

(1) j(k ·m) = (jk)m (Follows from the properties of group addition)
(2) (j + k)m = (jm+ km) (Follows from associativity)
(3) m(j + k) = mj + km (Follows from M being an abelian group)

�

Example. Fix an F-vector space V. Consider S, an abelian group under
composition:

S = {T |T : V → V is a linear isomorphism} T (a+b) = T (a)+T (b) and T (cȧ) = c·T (a)

Now consider the ring F[x]. We can define an F[x]-module structure on S in
the following way:

F [x]× S → S

e.x.: (x2 + 3x+ 2, T ) 7→ T ◦T + 3T + 2 · Id (remember that the sum of linear
transforms is still a linear transform). In other words, we’re defining a map
as follows:

(p(x), T ) 7→ p(T )

It needs to be checked that the conditions for a valid module structured are
upheld here, it’s unclear whether or not they are.



6. MODULES AND ALGEBRAS 41

Definition 24. Let R be a ring with 1R. An R-Algebra is a ring A with
1A, together with a ring homomorphism

f : R→ A

Such that:

(1) f(1R) = 1A
(2) f(R) ⊆ the center of A

An alternative definition is as follows: An R-Algebra is a ring A with 1A
that is also an R-module, and for a, b ∈ A, r ∈ R the following is true:

r ? (a · b) = (r ? a) · b
Where · denotes the action in the module A and ? denotes the action in the
ring R. The idea behind an algebra is that it supports a type of compatibility
between the Algebra’s operation and the Module’s operation.

Example. Let R = R, and let A = nxn matrices with coefficients in R.
A is a ring under addition and multiplication, and it has an identity, which
we will denote 1A. A is an R-module,

R×A→ A (r, [aij ])→ [r · aij ]
Notice that:

r([aij ] · [bij ]) = ([r · aij ]) · [bij ]
so, A is also an R-Algebra.

Example. Let R = R, and let A= functions from R → R under mul-
tiplication. The identity for A will be the constant function, f(x)=1. Thus
we have a map:

R×A→ A (r, f) 7→ rf

This defines a module. Moreover, A is an R-algebra because it satisfies the
extra conditions in the definition of an Algebra.

Our claim is now that our first definition implies our second definition.

Proof. Given:
f : R→ A

A ring homomorphism, we want to define an R-module on A such that:

R×A→ A

(r, a) 7→ f(r) · a︸ ︷︷ ︸
the ’·’ represents multiplication in A

=: r ? a︸︷︷︸
where ? is in the module structure

Why does this homomorphism happen to define an R-module? Consider
the following for r, s ∈ R and a ∈ A:

r ? (s ? a) = f(r) · (f(s) · a))

= (f(r) · f(s))a

= f(rs) · a = (rs) ? a
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Where we use the fact that (f) is a ring homomorphism in line 2. From this
we can conclude the following:

(1) 1R · a = f(1R) · a = 1A · a = a
(2) f(r) · a = a · f(r) ∀r ∈ R, a ∈ A
(3) r ? (a · b) = f(r) · (a · b) = (f(r) · a) · b = (r ? a) · b

Using these properties, we can show that the definitions are compatible.
Suppose that we are given a ring R with 1R, an R-module A with 1A, and
let r(ab) = (ra)b. We then define the following map:

f : R→ A so thatf(1R) = 1A

f(r) = f(r · 1R) = f(r) · f(1R) = f(r) · 1A
Now using the map that we’ve defined, we can do the following:

R×A→ A (r, a) 7→ r ? a

Where the operation ? denotes how an element of R acts on an element of
the R-module A. If we also define:

f(r) = r ? 1A

We can show that f is a ring homomorphism in the following way:

f(r · s) = (r · s) ? 1A
Def.2

= r ? (s ? 1A)

= r ? f(s)

= r ? (1A · f(s))

= r ? 1A · f(s)

= f(r) · f(s)

And since f(r) = r ? 1A, we know that:

f(1R) = 1R ? 1A = 1A since 1R · a = a ∀a ∈ A

The last question we need to ask is if f(r) ∈ the Center of A. In other
words, is the following true:

f(r) = (r ? 1A) ∈ CA ⇒ (r ? 1A) · a ?
= a · (r ? 1A)

This can be shown to be true. �

Definition 25. Let M and N be R-modules. An R − module homo-
morphism is a group homomorphism:

f : M → N such that f(r ·m) = r · f(m) ∀r ∈ R,m ∈M

Example. Z-modules are abelian groups, and Z-module homomorphisms
are exactly group homomorphisms as we’re used to them:

K ∈ Z, f(K · g) = f(g + ...+ g)︸ ︷︷ ︸
K times

= f(g) + ...+ f(g)︸ ︷︷ ︸
K times

= Kf(g)
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Example. Let F be a field, and let R = F [x]. Given V, an F-vector
space, if:

T : V → V

is a linear transform and p(x) ∈ F [x] where

p(x) = anx
n + an−1x

n−1 + ...a1x+ a0

Let

p(T ) = anT
n + an−1T

n−1 + ...+ a1T + a0 · Id
Where a linear transform to a power n is equal to the following:

Tn = T ◦ T ◦ T.... ◦ T︸ ︷︷ ︸
n

Notice that if p(x), q(x) ∈ F [x] the following is true:

(p · q)(T ) = p(T ) · q(T )

which makes the set of linear transforms into an F [x]-module. If you fix a
given T once and for all, you see that p(T) is a linear transform,

p(T ) : V → V

which gives us a function

F [x]× V → V (p(x), v) 7→ [p(T )](v) =: p · v

Which makes V into an F [x]-module. To prove this, we have to check the
following:

(1) (p · q) · v = (p · q)(T )v = (p(T ) · q(T )) · v = p(T ) · (q(T )v) = p · (q · v)
(2) (p+ q) · v = (p(T ) + q(T )) · v = p(T )v + q(T )v = p · v + q · v

for p, q ∈ F [x] and v ∈ V . It can similarly be shown that

p · (v1 + v2) = p · v1 + p · v2
So the distributive law holds up under our scrutiny, and V is indeed a F [x]-
module.

Example. Let T=0, then p(T ) = a0 · Id. Then,

F [x]× V → V (p, v) 7→ p(T )(v) = a0Idv = ao · v

Example. Let T=Id. Then, p(T )(v) = (an + an−1 + ...+ a1 + a0)v. We
can then derive the following fact:

{V, an F[x] Module} 1−1←→ { V, an F-vector space and T : V → V , a linear transform}

Definition 26. Let A and B be left R-modules. We define a new set
HomR(A,B) in the following way:

HomR(A,B) = {f |f : A→ B where f is a group homomorphism f(r · a) = r · f(a)}
= {f | f is an R-module homomorphism from A to B}
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It is natural to wonder about the structure of this set HomR(A,B). For
starters, we can show that:

HomR(A,B) is an abelian group

This property comes from the following:

(f [+∈HomR(A,B)]g)(a) = f(a)[+∈B]g(a)

And since we know that the addition of homomorphisms is abelian, putting
that together with the fact that B must be an abelian group under addition,
we see that HomR(A,B) is abelian. Through this we can see that the inverse
of a function f ∈ HomR(A,B) is simple −f . Since it can also be shown
that:

f + g ∈ HomR(A,B) and − f ∈ HomA(A,B)

Looking at HomR(A,B), we see that it’s actually an abelian group.
Another natural question is ”is HomR(A,B) a natural R-module?” We have
the following candidate for a map:

R×HomR(A,B)→ HomR(A,B) (r, f) 7→ r · f
Where

(r · f)(a) = r · f(a)

To show that HomR(A,B) qualifies as a valid R-module, we have to show
the following:

r · (s · f)
?
= (r · s) · f

Which can be shown through the following:

(r · (s · f))(a) =

= r·)(s · f)(a))

= r · (s · f(a))

= (r · s) · f(a)

= ((r · s) · f)(a)

And since the other qualifications are the distributive laws, where:

(r + s) · f = r · f + s · f
And

r · (f + g) = r · f + r · g
We omit their proofs but acknowledge that they hold. Now we check that:

r · f ∈ HomR(A,B)ff ∈ HomR(A,B)

The group homomorphism properties hold, and we have to prove the follow-
ing:

(r · f)(s · a)
?
= s · (r · f)(a) forr, s ∈ R, a ∈ A,

We know the following through the properties of a homomorphism on this
structure:

(r ·f)(s ·a) = f ·f(s ·a) = r · (s ·f(a)) since f is a R-module homomorphism
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= r · (s · f(a))

Which we would like to equal:

= s · (r · f(a))

Which we can see would happen when the ring R is commutative. So, we
see that HomR(A,B) is a natural R-module when R is a commutative ring.
Otherwise, we can’t assume that this works. In summary,

If R is commutative, then HomR(A,B) is a left R-module

Example. If F is a field, then HomR(V,W ) is an F-vector space for any
F-vector spaces V and W. This follows naturally from F being a commutative
ring.

Observe the following:

HomR(A,B)×HomR(A,B)→ HomR(A,C) (f, g) 7→ g ◦ f

And notice that

g ◦ f(r · a) = g(r · f(a)) = r · g(f(a)) = r · (g ◦ f)(a)

Take the special case:

HomR(A,A)×HomR(A,A)→ HomR(A,A) (f, g) 7→ g ◦ f

Which is a associative, non-commutative operation. The R-module homo-
morphism f : A → A given by f(a) = a, i.e. the identity homomorphism,
will be the identity for composition under this operation. From this struc-
ture, we have the following result:

HomR(A,A) is a ring under addition, and composition, or (R,+, ◦)

This is defined as the Endomorphism ring of A.
We know the following:

HomR(A,B) is an R-module if R is commutative.

HomR(A,B) is a ring under addition and function composition.

Notice that both of these are true for HomR(A,A) as a special case of
HomR(A,B). Together, these two statements define an R-algebra:

r · (f ◦ g) = (r · f) ◦ g = f ◦ (r · g)

Example. Take the case where F is a field, and let A=V, a F-vector
space. Thus, HomF (V, V ) is an F-algebra. If V=Rn, HomF (V, V ) = Mn×n
We have the following operations that allow HomF (V, V ) to be an F-algebra:

(1) Normal addition, +
(2) Multiplication of matrices
(3) Scalar multiplication of matrices
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If A is an R-module and B is a submodule, we have the following:

R×A/B → A/B (r, a+B) 7→ r · a+B

Which is a well defined map, and defines an R-module. A/B is then called
’the quotient module’.

Example. Consider the Mn×n modules Rn. We then know the following
about A,B ∈M and v, w ∈ Rn:

(1) A(Bv) = (AB)v
(2) A(v + w) = Av +AW
(3) (A+B)v = Av +Bv

Allow a map A : Rn → Rn to be R− linear. This means that:

A(v + w) = Av +Aw and A(c · v) = c · (Av)

When is A considered and Mn×n module homomorphism? It turns out that
this holds if and only if:

∀x ∈Mn×n A(Xav) = x︸︷︷︸
in Ring

( A︸︷︷︸
a linear Map

v︸︷︷︸
vector

)

So, Ax = xA ∀x ∈Mn×n when x is in the center of Mn×n.

As already mentioned, if N ⊆M and N CM , then we know that M/N
is a quotient module, which implies that we have a map:

R×M/N →M/N (r, a+N) 7→ ra+N

If f : M → N is an R-module homomorphism, where M and N are any
R-modules, we define the following sets, similar to ring theory:

Ker(f) = {m ∈M |f(m) = 0} (is a submodule of M)

Im(f) = {f(m)|m ∈M} (which is a submodule of N )

As in the case of rings and groups, we see that the Ker(f) CM , or it is
an ”ideal”. We then have the following definition for the 1st isomorphism
theorem:

Definition 27. The 1st isomorphism Theorem: If

f : M → N is an R-module isomorphism, then

M/Ker(f)
ϕ−→ Im(f) m+M 7→ f(m)

Is an isomorphism of R-modules.

Example. Given R, a ring, and Rn = {(r1, r2, ..., rn)|ri ∈ R} is an
R-module. We have the following map:

πi : Rn −→ R πi(r1, r2, ..., rn) 7→ ri

Where πi is clearly a surjective R-module homomorphism. We see that:

Ker(πi) = {(r1, r2, .., 0 · ri, ...rn)|ri ∈ R}
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So using the 1st isomorphism theorem, we see that:

Rn/Ker(πi) ∼= Im(πi) = R

e.g., let the ring R=R. Then we have a map:

i : R2 −→ R3 (x, y) 7→ (x, y, 0)

Then considering the map πi on this structure, we have the following:

π3 : R3 −→ R
so from this, we can conclude that:

R3/Ker(πi) = R3/Im(i) ∼= R

Where this is an R-module isomorphism.

Remark. If A is an R-algebra, then we have the following:

a× b = a · b− b · a which is called a lie algebra.

Interestingly, this will always satisfy the Jacobi identity,

(a× b)× c+ (c× a)× b+ (b× c)× a = 0





CHAPTER 7

Operations on R-Modules

Let N1, N2, ...Nk be R-modules. Then, we have the following:

N1 +N2 + ...+Nk = {r1a1 + r2a2 + ...rkak|ri ∈ R, ai ∈ N

which can be thought of as ”all linear combinations” of the elements from
the R-modules. If A is any subset of M, we have the following:

RA = {r1a1 + ...+ rnan|n ∈ N, ri ∈ R, ai ∈ A}

Which we call the ”submodule of M generated by A”, a subset of the R-
module M. If N is a submodule of M, we say that N is ’finitely generated’ if
N=RA, where A is a finite subset of M.

If A = {a}, we’ll write Ra for RA. We say that N is ’cyclic’ if N=Ra for
some a ∈ A.

Example. Let the ring R = Z. We know that Z-modules are abelian
groups. If M=G is an abelian group, we say that:

N = Z · a for some a

= {0,±a,±2a,±3a...}
= a cyclic subgroup generate by a ∈M

Which implies that N is finitely generated for an R-module. We see that
the term ”finitely generated for an R-module” is equal to the term ”finitely
generated for a group”.

Example. Let R be a ring, and let the R-module M be the R-module
R. We now ask, what are the cyclic submodules of R? Recall that an R-
submodule of R is exactly a left ideal I of R. Thus, I is cyclic if and only if
I = R · a for some a ∈ A, or in other words, if I is a principal idea.

Example. Surprisingly, it turns out that a submodule of a finitely gen-
erated module need not be finitely generated. Suppose that a ring R has
some element 1. Thus, R is a cyclic R-module, since R = R · 1. Now let R
be the ring:

Q[x1, x2, x3, ...]

49
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This ring is a cyclic R-module since it’s generated by the element 1. Now
consider the following:

R · x1 is a submodule of R

R · x2 is a submodule of R

R · x3 is a submodule of R

...

Now consider the ’linear combinations’ of the submodules of R, which looks
like the following:

Rx1 +Rx2 +Rx3 + ... = polynomials without a constant term

This is a R = Q[x1, x2, ...]-module! But, the claim is that this module is not
finitely generated. This is because we claim there exists an infinite number
of variables, whereas if you tried to use a finite number of generators, you
would miss out on variables. And naturally, you can’t use any constant
terms, since this combination has no constant terms.

Definition 28. Let M and N be left R-modules. We define the direct
sum in the following way:

M ⊕N = {(m,n)|m ∈M,n ∈ N}
To be an abelian group under the following operation:

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2)

M ⊕N is a left R-module by the following formula:

r · (m,n) = (r ·m, r · n)

r · (s · (m,n)) = (rs) · (m,n)

Which allows for the two distributive laws.

Example. Consider Rn as an R-module, where R2 = R ⊕ R, and
Rn = R⊕ R...⊕ R︸ ︷︷ ︸

n

There turns out to be a fairly obvious isomorphism of

R-modules as follows:

(M ⊕N)⊕ P −→M ⊕ (N ⊕ P ) ((m,n), p) 7−→ (m, (n, p))

Also notice that M ⊕N ∼= N ⊕M under the simple isomorphism:

(m,n) 7→ (n,m)

Also notice that {0} is an R-module, and that:

M ⊕ {0} ∼= {0} ⊕M ∼= M, (m, 0)←→ (0,m)←→ m

Remark. Notice that there aren’t always inverses!

M⊕? ∼= 0

It turns out nothing can really fit in to the ’?’ spot- this isomorphism holds
only when M ∼= {0}, which isn’t really the most interesting example.
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Definition 29. Given {M1,M2, ....} , countably many1 Manifolds, let:

M1 ⊕M2 ⊕ ... :=
∞
⊕
k=1

Mk = ⊕
k≥1

Mk

:= {(m1,m2, ...)|mi ∈M∀ but finitely many mi are zero }
Where we impose the following restrictions on operations:

(1) Addition will be defined entry-wise
(2) A left R-module multiplication on ⊕

k≥1
Mk is defined entry wise

An example of this could be ⊕
k≥1

R.

Definition 30. Letting M and N be left R-modules, we define the direct
product in the following way:

M1 ×
direct product

M2 × ... =:
∞∏
k≥1

Mk =
∏
k≥1

Mk

=: {(m1,m2, ...|mi ∈Mi}
Where addition and left R-module structure operations are defined as they
were for ⊕; entry-wise.

Example. Consider:

(1, 0, 1, 0, 1, 0, ...) ∈
∏
k≥1

R

But, notice that:

(1, 0, 1, 0, 1, 0, ...) /∈ ⊕
k≥1

R

Because infinitely many mi = 0.

Remark. But, the following is true:

⊕
k≥1

Mk ⊆
∏
k≥1

Mk

Example. As we know, Z2 = {0̄, 1̄}. Considering the elements of ⊕
k≥1

Mk

and
∏
k≥1Mk, suppose we try to write out all the elements of

∏
k≥1 Z2:

a1, a2.a3.a4, ...

b1,b2, b3, b4, ...

c1, c2, c3, c4, ...

d1, d2, d3,d4, ...

1In mathematics, a countable set is a set with the same cardinality (number of ele-
ments) as some subset of the set of natural numbers. A set that is not countable is called
uncountable
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Now consider the following new element, x ∈
∏
k≥1 Z:

x = (a1 + 1), (b2 + 1), (c3 + 1), (d4 + 1), ...

However, since we’ve assumed that x ∈
∏
k≥1 Z2, we claim that x wasn’t

in our original list! Thus, we see that
∏
k≥1 Z2 isn’t countable. Clearly,

x /∈
∏
k≥1 Z2, since it (x) may have infinitely many zeros.

Example. If R is a ring, the n-fold direct sums of R with itself: Rn =
R⊕R⊕ ...⊕R︸ ︷︷ ︸

n

are called free R-modules of rank n. The intuitive notion is

that M is free of rank n if there exist n elements e1, e2, ...en in M such that for
any x ∈M there exist unique r1, r2, ...rn ∈ R such that r1e1+r2e2+...rnen =
x. The idea is similar to having a basis on a vector space.

Notice that Rn is free of rank n, since we can let ei = (01, 02, ...1i, ...) for
all i. Then,

x = (x1, x2, x3, ....xn) = (x1 · 1, x2 · 1, x3 · 1, ...xn · 1)

Theorem 15. Let the ring R be a field, called F. Then we have the
following theorem, which we won’t prove:

n-dimensional F-vector spaces
1−1←→ free F-modules of rank n

Example. Notice that ⊕
k≥1

R or
∏
k≥1R are not free of rank n for any

n ≥ 1.

Example. Given Z6 as a Z-module, we see that it is not free of rank n.
This is due to the fact that an element of Z6 can be represented through a
non-unique way through multiplication or addition of other elements. I,e,
for any e1 ∈ Z6, the following is true:

x = r1 · e1 = r2 · e1 where r1 6= r2

No matter how we chose e1 ∈ Z6:

r1 · d1 = (r1 + 6)e1, r1 6= r1 + 6 ∈ Z since it’s a Z-modules

So, Zn is not a free Z module. As seen in the homework, if we took an
abelian group G that has torsion (which means that there exist elements of
finite order, i.e. n · y = 0 ) then G is not free. This argument holds even if
n is prime.

Fact. M is free of rank n if and only if:

M ∼= Rn

M −→ N, x = r1e1 + r2e2 + ...+ rnen 7→ (r1, ...rn)

Example. Consider Q. Since Q is abelian and therefore a Z-module,
we know that Q is not free of any rank. What this implies is that for any
finite collection of primes, the following cannot be done uniquely:

a

b
= c1

1

p1
+ c2

1

p2
+ ...+ ck

1

pk
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Which is true because the denominator ’b’ may just be the next prime,
pk+1. And, if you take an infinite list of primes, you lose the property of
uniqueness, showing that Q is not free.

The motivation for ⊗ is the following:

(−,−) : Rn × Rn → R

Definition 31. Given x,y, their direct product is taken as follows:

(x, y) = x1y1 + x2y2 + ...+ xnyn

This definition admits the following properties:

(1) (αxy) = (x, αy)∀α ∈ R = α(x, y)
(2) (x+ z, y) = (x, y) + (z, y)
(3) (x, y + z) = (x, y) + (x, z)

Also, notice that (x+ z, y + w) 6= (x, y) + (z, w).

Consider the following idea: If M and N are R-modules (where R is a
commutative ring with 1) the elements of M ⊗R N are sums:

m1 ⊗ r1 + ...+mk ⊗ rk
With the following properties:

(1) (r ·m1)⊗ n1 = m1 ⊗ (r · n1) =: r · (m⊗ n)
(2) m1 ⊗ n1 +m2 ⊗ n1 = (m1 +m2)⊗ n1
(3) m1 ⊗ n1 +m1 ⊗ n2 = m1 ⊗ (n1 + n2)

Example. The inner product on vector space is exactly an R-module
homomorphism:

R⊗R R −→ R

Let M be a left R module, where

(r,m) 7→ r ·m ∈M
The question is, given some new operation ?, with the following definition:

m ? r
definition

= r ·m
does this operation make M into a right R module? Well, we know the
following to be true:

(1) (m1 +m2) · r = r · (m1 +m2) = m1 ? r +m2 ? r
(2) m ? (r1 + r − 2) = m ?1 +m ? r2

But is the following true?

(m ? r1) ? r2
?
= m ? (r1 ? r2)

It turns out that generally, this property holds. Unless, R is communative-
in which case, ever left R module is naturally a right R module by defining
this new operation as such.

Definition 32. A (R,S)-bimodule is an abwelian group M such that:
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(1) M is a left R-module
(2) M is a right S-module
(3) (r ·m) · s = r · (m · s)

Example. If R is communative, every left R-module is naturally a
(R,R)-bimodule. Take for example:

Mn×n(C)

Which is a left C-module, and is a right Mn×nR-module. I.e., we ask the
following question:

((a+ bi) ·A) ·B ?
= (a+ bi)(A ·B)

Where A is a matrix with complex entries, and B is a matrix with real
entries. It turns out that this equality holds, which implies that

Mn×n is a (C,Mn×n(R))-bimodule

Example. If A is an R-algebra, we know the following about elements
r ∈ R, a1, a2 ∈ A:

r · (a1 · a2) = (r · a1) · a2
Which impleis to us that A is in fact a (A,A)-bimodule, where we have the
following:

A×A (a1, a2) 7→ a1 · a2
It is clear that thsis map satisfies all necessary properties to qualify as a
bimodule. Also notice that A itself is an (R,A)-bimodule, since

r1(a1 · a2) = (r · a1) · a2
Suppose we have the following two bimodules: M, an (R,S)-bimodule,

and N a (S,T) -bimodule. We then claim that there exists a new (R,T)-
bimodule, called:

M ⊗S N
Which is defined by the following free abelian group:

(M ×N)/{subgroup generated by all:

(m1+m2, n)−(m1, n)−(m2, n), (m,n1+n2)−(m,n1)−(m,n2), (ms, n)−(m, sn)}
The reason for quotienting out by those subgroups is because we want this
new operation ⊗ to satisfy a few nice properties, namely:

(1) ms⊗ n−m⊗ s · n = 0
(2) (m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n = 0
(3) m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2

We will write the representatives for the equivelance classes as:∑
mi ⊗ ni

R acts on M ⊗S N on the left by the following:

(r,
∑

mi ⊗ ni) 7→ (
∑

r ·mi ⊗ ni)
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Similarly, T acts on M ⊗S N on the right by:

(
∑

mi ⊗ ni, t) 7→ (
∑

mi ⊗ ni · t)

Remark. If 0 ∈M , and n ∈ N , then:

0⊗ n ∈M ⊗N

Is equivelant to 0. This follows from:

0⊗ n =

= (0 + 0)⊗N =

= 0⊗N + 0⊗N
⇒ 0 = 0⊗N

Example. Consider Z2 as a (Z,Z) bimodule. We then notice that:

Z2 ⊗Z Z2 = {0⊗ 0, 0⊗ 1, 1⊗ 0,︸ ︷︷ ︸
equal to 0

1⊗ 1︸ ︷︷ ︸
not equal to 0

}

From this, we conclude that the cross product of Z)2 with itself is a simple
group of order 2, and is thus isomorphis to Z2 as a (Z,Z)-bimodule.

It is also worth noticing that one can manipulate the properties of the
tensor product to obtain similar conclusions with the tensors of other mod-
ules.

Example.

Z2 ⊗ Z3

Given a⊗ b ∈ Z2 ⊗ Z3 we see that we have the following problem:

a⊗ b = 3a⊗ b
= a⊗ 3b

= a⊗ 0

= 0

Thus, we can conclude that Z2 ⊗ Z3={0}

Example. Q is a (Z,Z)-bimudle, and let A be a finite abelian group.Thus,
every a ∈ A has finite order, and given:

Z⊗Z A

We notice that we can do the following with elements in this tensor product,
given:

p

a
⊗ a =

pn

qn
⊗ a =

p

qn
· n⊗ a =

p

qn
⊗ na =

p

qn
⊗ 0 = 0

Where n in this case is the element that pushes the element a of finite order
to 0.
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Example. Let V be a R-vector space. Thus,

V︸︷︷︸
a (R,R)-bimodule

⊗R C︸︷︷︸
a (R,R)-bimodule

This is called ”the complexification of a real vector space”, and has some
applications to complex analysis. This leads to the following claim:

Claim.

V ⊗R C
as real vector spaces∼= V ⊕ i · V

With the following map:∑
vj ⊗ (aj + ibj) 7→

∑
(ajvj , i(bjbj))

This is actually an (R,C)-module, that has the following properties:

(1) (M ⊗s N)⊗T P ∼= M ⊗S (N ⊗T P )
(2) M ⊗S (N1 ⊕N2) ∼= (M ⊗S N1)⊕ (M ⊗S N2)
(3) (N1 ⊕N2)⊗S M ∼= (N1 ⊗S M)⊕ (N2 ⊗S M)

Notice that we have the following interesting properties relating to mul-
tiplication as we’re used to it:

Multiplication : R× R→ R

And that

(1) (a+ b) · c) = a · c+ b · c
(2) a(b+ c) = a · b+ a · c
(3) (a · b) · c) = a · (b · c)

These properties imply that multiplication of real numbers is actually
given by a function:

R⊗R R→ R
Recall that R⊗RR = {

∑
ai⊗bi|i ∈ N, ai, bi ∈ R}, which satisfy the following

relations:

(1) a⊗ c+ b⊗ c = (a+ b)⊗ c
(2) a⊗ b+ a⊗ c = a⊗ (b+ c)
(3) ab⊗ c = a⊗ bc

For example, 3⊗ 1 + 4⊗ 1 = (3 + 4)⊗ 1. Let’s now show that multiplication

gives a well defined function from R ⊗ R M→ R. We have the following
candidate:

a⊗ b 7→ a · b ∈ R
More generally,

n∑
i=1

ai ⊗ bi 7→
n∑
i=1

ai · bi

Is it then true that the map M satisfies the following?

M(a⊗ c+ b⊗ c) ?
= M((a+ b)⊗ c)
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From what we know about normal multiplication, we see that this is true.
From this we can even go a little bit further, to say that multiplication in
a ring R, where R is an R-bimodule (or an abelian group) is really just a
function

M : R⊗Z R→ R

Now consider R⊗R R. Which R-module is that? Our claim is that:

R⊗R R ∼= R
And more generally, M ⊗R R ∼= M for any right R-module M, and R with
1. Consider:

M ⊗R R→M ,m⊗ r 7→ m · r
And where

m⊗ r1 + n⊗ r2 7→ r · r1 + n · r2
And all the other analogous natural properties we would like this map to
posess. Is this map onto? We see that the answer is, because

m⊗ 1R 7→ m · 1 = m

And is 1-1, because:

m⊗ r ∈M ⊗R R,⇒ m⊗ r = m⊗ (r · 1) = (m · r)⊗ 1

So if

m⊗ r 7→ m · r = 0 this implies that m⊗ r = m · r ⊗ 1 = 0⇒ m · r = 0


