Math 702

Contents

CHAPTER 1

Rings and their properties

DEFINITION 1. A Ring is a set R with two binary operations, $+$ and \times , such that the following are true:

- (1) $(R,+)$ forms an abelian group
- (2) $(R \{0\}, \times)$ is associative
- (3) The distributive law holds. I.e., $a \times (b + c) = a \times b + a \times c$ and $(b + c) \times a = b \times a + c \times a$

The following statements refer to terminology surrounding types of rings:

- (i) R is a ring with identity if if there exists $1 \in R$ such that $1 \cdot a =$ $a \cdot 1 = a$ for all $a \in R$
- (ii) A ring R with 1 is called a division ring if every nonzero element has a multiplicative inverse
- (iii) If R is a division ring and \times is commutative, R is called a field.

Example.

$$
\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\} (+, \times)
$$

This is a ring, with identity (or, as we call it, "with 1"). However, it is not a division ring (and therefore not a field) -because not every element of $\mathbb Z$ will have a multiplicative inverse that is in the set of integers.

Other examples of fields include \mathbb{Q}, \mathbb{R} , and \mathbb{C} .

Example.

$$
\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots (n-1)\}
$$

this forms a ring under modular multiplication and addition with respect to n. It happens to be a commutative ring with identity, but is not a field in general- but is a field if n is a prime integer.

EXAMPLE. Choosing some $K \in \mathbb{Z}$ we see that $K \cdot \mathbb{Z}$ is a ring without an identity (multiplicative identity, of course)

The following are assorted properties of a ring R, where $a \in R$:

- (1) $0 \cdot a = a \cdot 0 = 0$
- (2) $(-a)(b) = (a)(-b)$
- (3) $(-a)(-b)=(a)(b)$
- (4) If $\exists 1 \in R$, it is unique.

DEFINITION 2. A unit is an element of R with a multiplicative inverse

DEFINITION 3. A zero divisor is a nonzero element $a \in R$ such that when $b \in R$, $a \cdot b = b \cdot a = 0$ for some $b \neq 0$

These properties of elements of a ring are mutually exclusive.

PROOF. Suppose a is a unit. Then,

$$
x\cdot a=1
$$

for some $x \in r$. If $a \cdot b = 0$, then since $b = 1 \cdot b$,

$$
x \cdot a \cdot b = x \cdot 0 = 0
$$

by which we see a contradiction.

EXAMPLE. In $\mathbb Z$, the units are ± 1

EXAMPLE. For $\mathbb{Z}/n\mathbb{Z}$, we claim that each element is either a unit or a zero divisor. The proof of this claim will be excluded.

The result of the would-be proof of the above example would lead us to the conclusion that if n was prime, every nonzero element of $\mathbb{Z}/n\mathbb{Z}$ would be relatively prime to n, and thus would be a unit. If every element is a unit, it then has a multiplicative inverse, and thus $\mathbb{Z}/n\mathbb{Z}$ would be a field.

Example.

 $R[x] =$ polynomials of x with coefficients in R

 $=\{a_0+a_1x+a_2x^2+...+a_nx^n|n\geq 0,a_i\in r\}$

If ring R has an identity, then $R[x]$ must also have an Identity. Also notice that when $R = \mathbb{Z}$ the element x (which is in \mathbb{Z}) is not a unit (because no polynomial can act on x to yield 1) but it is also not a zero divisor. This demonstrates that while the properties of being a unit/zero divisor may be mutually exclusive, an element is not forced to be one or another.

DEFINITION 4. An integral domain is a ring with no zero divisors. For example, $\mathbb Z$ is an integral domain because if $x, y \in \mathbb Z$ and $xy = 0$, we know that either $x = 0$ or $y = 0$ (or both). This is equivalent to the claim that 'there are no zero divisors'.

Notice that if R is an integral domain, and $a, b, c \in R$ and $ac = bc$ then $ac - bc = 0$, so $(a - b)c = 0$, so we know that $a - b = 0$ or 0 or $a = b$ or $c = 0$. This is also helpful in showing that a ring is not an integral domain.

EXAMPLE. Take the modulus group $R = \mathbb{Z}/n\mathbb{Z}$, and let $a, b, c \in R$. Then we know that if R is an integral domain, we can apply the rules above. However, suppose n=6, c=3, a=2 and b=0. We can then see that $a \cdot c = b \cdot c$, but $c \neq 0$ and $a \neq b$, so we see that $\mathbb{Z}/6\mathbb{Z}$ is not an integral domain.

We should notice that we picked a convenient value for n. We should notice the following relation:

 $\mathbb{Z}/n\mathbb{Z}$ is an integral domain $\iff \mathbb{Z}/n\mathbb{Z}$ is a field \iff n is prime

THEOREM 1. Any finite integral domain is always a field. $¹$ </sup>

PROOF. We need to show that if $a \in R$, $a \neq 0$, then a has a multiplicative inverse. Consider the following maps:

$$
R\mapsto r
$$

$$
x\mapsto a\cdot x
$$

This is a one to one function², and since R is finite, this map is a bijection. So, $ax=1$ for some x, so a must have an inverse $x \in R$. This demonstrates that all nonzero elements are unites, so R is a field. \square

We can now understand that a Field is always a Division ring and an integral domain. The reverse relationship isn't always true; A division ring is a field only if every nonzero element is a unit and its operation \times is commutative. Also, a division ring is an integral domain if it has commutativity. The diagram looks something like the following:

Example.

$$
\mathbb{Z}[D] \subseteq \,3 \mathbb{Q}[D] = \{a + b\sqrt{D} | a, b \in \mathbb{Q}\}
$$

Taking the case where $D=-1$, we have:

$$
\mathbb{Z}[D] = \{a + bi | a, b \in \mathbb{Z}\}\
$$

This set is called "The Gaussian Integers", and is a subring of $\mathbb{Z}[-1] \subseteq \mathbb{C}$

DEFINITION 5. The degree of an element $p(x) \in R[x]$ is n if $p(x) =$ $a_n x^n + \ldots + a_1 x + a_0$ where $n > 0$

Let R be an integral domain, and let $p(x), q(x) \in R[x]$. The following are true:

(1) $deg(p(x) \cdot q(x)) = deg(p(x)) \cdot deg(q(x))$

(2) R[x] is an integral domain

(3) The units of $R[x]$ are units of R

The proofs for these properties will be excluded. Also notice that if S is a subring of R, the following is true:

$$
S[x] \subseteq R[x]
$$

¹ an integral domain is always a commutative ring with 1

² a one to one function is a function f from A to B such that $f(a)=f(c)=b$, a=c

³We have started to use the symbol \degree to mean 'subring of'

DEFINITION 6. Let R and S be rings. A ring homomorphism is a function $\varphi: R \to S$ such that $\varphi(x+y) = \varphi(x) + \varphi(y)$ and $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$.

EXAMPLE. Given R, consider a map from $R[x]$ to R:

 $eval: R[x] \rightarrow R$

Where this map takes $p(x) \in R[x]$ and maps its constant term a_0 to R. Since $eval(p(x) \cdot q(x)) = eval(p(x)) \cdot eval(q(x))$ and $eval(p(x)q(x)) = eval(p(x)) \cdot$ $eval(q(x))$ so the map *eval* is a homomorphism.

DEFINITION 7. Given $\varphi: R \to S$, a homomorphism, we define the Kernel and Image of φ to be the following:

$$
Ker(\varphi) = \{a \in R | \varphi(a) = 0\}
$$

$$
Im(\varphi) = \{b \in S | b = \varphi(a), a \in R\}
$$

EXAMPLE. Take the homomorphism $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. We see that the $Ker(\varphi) = n\mathbb{Z}$ and that $Im(\varphi) = \mathbb{Z}/n\mathbb{Z}$

From this example we can now interpret different things about the Kernel and Identity, specifically:

 $Ker(\varphi) = 0 \iff$ The homomorphism φ is injective

 $Im(\varphi) = S \iff$ The homomorphism φ is surjective

Also, the homomorphism φ is bijective if it is both injective and surjective. Another Fact to notice is that:

$$
Ker(\varphi) \subseteq R
$$
 and $Im(\varphi) \subseteq S$

Recall from group theory that if G is a group and N is a normal subgroup, that G/N is a group. We defined $N \leq G$ to be normal if and only if:

$$
gNg^{-1} \subseteq N \,\,\forall g \in G, \text{ or } gN = Ng \,\forall g \in G
$$

The elements of G/N are equivalence classes under $g_1 \sim g_2$ if and only if $g_1g_2^{-1} \in N$. G/N is a group with the well defined operation $(g_1N)(g_2N)$ = $(g_1g_2)N$

CHAPTER 2

Quotient Rings

DEFINITION 8. Let R be a ring. A $[Left]$ right ideal is a subset I such that:

 $a \cdot I \subset I$ (or for a left ideal) $[I \cdot a \subset eqI]$ $\forall a \in R$

If I is a left AND right deal, then we just say that I is an ideal. Notice that if R is commutative, left and ideals are automatically the same.

EXAMPLE. Let a ring $R = \mathbb{Z}, I = 3\mathbb{Z} = \{0, \pm 3, \pm 6, \pm 9, ...\}$ To check that I is a right ideal, we have to check that given $n \in \mathbb{Z}$, $n \cdot I \subseteq I$. This is true, because no matter what integer you multiply a factor of 3 by, you will always end up with another factor of 3.

More generally, $n\mathbb{Z}$ is an ideal of $\mathbb Z$ for all $n \in \mathbb{Z}$.

One remark to notice is that although $3\mathbb{Z}$ is a sub-ring of \mathbb{Q} , $3\mathbb{Z}$ is not an ideal of \mathbb{Q} , because it will not be closed under multiplication of elements in Q.

EXAMPLE. Let $R = \mathbb{Z}[x], I = \text{sub-ring of polynomials with even coeffi$ cients. Since this subset I is closed under multiplication, it is an ideal.

THEOREM 2. Let I be a sub-ring of R . Then,

 $R/I = \{a + I | a \in R\}$ under the equivalence relation:

 $a + I \sim b + I \iff a - b \in I$

Is a ring under the operations:

 $(a+I)+(b+I) = ((a+b)+I)$ and $(a+I)(b+I) = (ab+I)$

If and only if I is an ideal.

The following is a diagram illustrating the concept of how a group R would be split up into a quotient group- the collection of the elements of R are split up into equivalence classes, which will be the elements of the quotient group. The most common and easy to understand example of a quotient group is the modulus group $\mathbb{Z}/n\mathbb{Z}$, where the elements are divided into equivalence classes under modular arithmetic with respect to n.

Notice that if $r \in I$, then $r + I \sim 0 + I$. Then,

$$
(r+I)(s+I) = rs + I
$$
 and $(0+I)(s+I) = 0+I$

So we need $rs + I \sim 0 + I$ for it to be a well defined equivalence relation. So, $rs \in I$ if $r \in I$, $s \in R$, which is always true since we assumed I was an ideal of R.

On the other hand, if I is an ideal:

$$
(r+I)\cdot (s+I) \stackrel{?}{=} (r+i_1+I)\cdot (s+i_2+I) = rs+ri_2+i_1S+i_1i_2+I
$$

for some $i_i, i_2 \in I$? Consider the following:

$$
(rs + I) - (rs + ri2 + i1S + i1i2 + I) = (ri2 + i1s + i1i2)
$$

We know that $i_1i_2 \in I$ since I is a sub-ring, and closed under multiplication. We can say that ri_2 is in I if I is a left ideal, and similarly we can say that i_1s is in I if I is a right ideal. Therefore, to nail down the equivalence relation and to ensure that elements will be closed under actions, we have to assume that I is both a right and left ideal.

FACT. When given a homomorphism $\varphi : R \to S$, where R and S are both rings, the $Ker(\varphi)$ is an ideal

Operations on Ideals: Let I, J be ideals in R.

- (1) $I + J = \{a + b | a \in I, b \in J$. Since I and J are ideals, $r(a + b) =$ $ra + rb \in I + J$ for some $r \in R$.
- (2) $IJ = \{ \sum_{i=1}^{n} a_i b_i | a_i \in I, b_i \in J \}$

Let $A \subseteq R$ be any subset of R. The smallest ideal of R containing A will be:

$$
= \bigcap_{I \leq A, 'I' \text{ an Ideal}} I, sometimes denoted '(A)'
$$

Called the 'ideal generated by A'.

FACT. If R is a commutative ring, then

$$
(A) = \{ ra | r \in R, a \in A \}
$$

is an ideal. Any ideal containing A must contain this, so therefore it is the smallest ideal containing A, or $'(A)$

DEFINITION 9. Let R be a ring. A principal ideal is an ideal that can be generated by a single element, $I = (a)$, for some $a \in R$.

EXAMPLE. Take the ideal $n\mathbb{Z} \in \mathbb{Z}$

 $n\mathbb{Z} = (n) = \{K \cdot n | K \in \mathbb{Z}\} = (-n) = \{K \cdot -n | K \in \mathbb{Z}\}\$

EXAMPLE. Take the ideals (3) and (6) in $\mathbb Z$. For any $m|n$ where $m, n \in \mathbb Z$ $\mathbb{Z}, (n) \subseteq (m)$. Therefore, $(6) \subseteq (3)$

THEOREM 3. The 1^{st} isomorphism theorem:

If $\varphi : R \to S$ is a ring homomorphism, then $R/Ker(\varphi) \cong Im(\varphi)$

PROOF. Suppose there is a map:

$$
r + Ker\varphi \mapsto \varphi(r)
$$

The following is then true:

$$
(r + Ker(\varphi) \cdot (s + Ker(\varphi)) = rs + Ker(\varphi) \mapsto \varphi(rs) =
$$

= $\varphi(r) \cdot \varphi(s) = F(r + Ker\varphi) \cdot F(s + Ker(\varphi))$

For some function F. Thus we see that there exists some relationship between $\varphi(rs)$ and some function F involving what looks like the members of the quotient group $R/Ker(\varphi)$.

If I is an ideal of R, then:

$$
R \xrightarrow{\pi} R/I, r \mapsto r + I
$$

Which is a ring homomorphism. The Kernel of this map is exactly I, since:

$$
\pi(r) = r + I = 0 + I \Rightarrow r \in I
$$

THEOREM 4. The 4^{th} isomorphism theorem: if R is a ring an I is an ideal, then there is a bijection between:

Subrings of R containing $I \longleftrightarrow$ Subrings of R/I

This suggests a map:

$$
A \longmapsto A/I
$$

which implies that if A is an ideal of R, A/I is an ideal of R/I . This correspondence preserves ideals.

FACT. Let I be an ideal of R. If $I \subseteq S \subseteq R$, then $sI \subseteq I \forall s \in S$. So, I is thus an ideal of S.

Let R be a ring with 1. The following are then true:

- (1) Let I be an ideal. Then, I=R \iff I contains a unit.
- (2) If R is a field, then the only ideals are R and $\{0\}$.

PROOF. If I contains a unit, some $a \in I$, then we know that $x \cdot a = 1$ for some $x \in R$. $x \cdot a \in I$, so we know that $1 \in$. Then, since $y = y \cdot 1$ for any $y \in R$, we can see that by taking the actions of all elements in R on the element 1 in I, that $I = R$.

PROOF. If I is an ideal of a field R, and $I \neq 0$, then I contains some $a \in R$, $a \neq 0$, which is a unit-so therefore, using the same reasoning as above, $I = R$.

DEFINITION 10. An ideal M of R is maximal if there is no ideal N of R such that:

$$
M\subsetneq N\subsetneq R
$$

THEOREM 5. Let R be a commutative ring with identity, where M is an ideal of R. M is maximal if and only if R/M is a field..

PROOF. By the fourth isomorphism theorem, we see that:

Ideals A of R containing M¹⁻¹ Ideals of R/M

$$
A \mapsto A/M
$$

If R/M is a field, then the only ideals of R/M are 0 and R/M . This implies the only ideals A of R containing M are $A = M$ and $A = R$, so M must be maximal. In proving the other direction of this statement, assume M is maximal. Note that:

$$
A \mapsto A/M
$$

$$
M \mapsto M/M = 0
$$

$$
R \mapsto R/M
$$

Since M is maximal, then there does not exist some ideal A such that $M \subsetneq$ $A \subseteq R$, so there is no ideal such that $0 \subseteq A/M \subseteq R/M$. Since, 0 must be maximal in R/M . In a result proved in the homework (mainly that if the maximal ideal of a ring is 0, that ring is a field) we see that R/M is a \Box

FACT. If R is a ring, and A is an ideal of R, then there exists some maximal ideal M of R, containing A.

EXAMPLE. Ideals of $\mathbb Z$ are $n\mathbb Z$, for some integer n. All these ideals are principle ideas, since $n\mathbb{Z} = (n) = (-n)$. $n\mathbb{Z}$ is maximal if and only if $\mathbb{Z}/n\mathbb{Z}$ is a field, which we already know happens when n is a prime number.

EXAMPLE. Look at the ideal $(2, x) \in \mathbb{Z}[x]$. This ideal looks like this:

$$
(2, x) = \{2 \cdot p(x) + xq(x)|p(x), q(x) \in \mathbb{Z}[x]\}
$$

This first term $(2 \cdot p(x))$ is any polynomial with all even constant terms. The second term $(xq(x))$ is any polynomial with a zero constant term. Thus, the elements in $\mathbb{Z}[x]$ this set contains are all polynomials with even constant terms. This turns out to not be a principal idea.

Example. Now consider:

$$
\mathbb{Z}[x]/(2,x) \cong \mathbb{Z}/2\mathbb{Z}
$$

Where:

$$
p(x) + (2, x) \mapsto p(0) \text{ mod } 2
$$

 \mathbb{Z}_2 is a field, so therefore $(2, x)$ must be maximal in $\mathbb{Z}[x]$.

EXAMPLE. Let R be the ring of functions from $X \to \mathbb{R}$. Pick some p in X, and let the ideal I be functions $f: X \to \mathbb{R}$ such that $f(p) = 0$. Consider the quotient: $R \to \mathbb{R}$. By definition, $\text{Ker}(f(p))=I$. By the 1st isomorphism theorem,

$$
R/I \cong Im(f) \cong \mathbb{R}
$$

And since $\mathbb R$ is a field, I must be a maximal ideal.

FACT. An ideal P of R where $P \neq R$ is called prime, or 'a prime ideal of R', if it satisfies the following:

Whenever $ab \in P$, where $a, b \in R$, either $a \in P$ or $b \in P$.

EXAMPLE. When $R = \mathbb{Z}$, the ideals are $n\mathbb{Z}$, where $n \in \mathbb{Z}$. For which n is $n\mathbb{Z}$ a prime ideal? Well, if $ab \in n\mathbb{Z}$, then either $a \in n\mathbb{Z}$ or $b \in n\mathbb{Z}$. As the name of the ideal implies, it turns out that this happens when n is a prime number. This is because if ab=nm, we know that either $n|a$ or $n|b$, so either $a \in n\mathbb{Z}$ or $b \in n\mathbb{Z}$. On the other hand if $n\mathbb{Z}$ is a prime ideal than n is a prime number. If $n|ab \Rightarrow n|a$ or $n|b, \forall a, b$ then n is prime.

EXAMPLE. If n=4, $2 \cdot 2 \in 4\mathbb{Z}$, but $2 \notin 4\mathbb{Z}$. So $4\mathbb{Z}$ is not a prime ideal.

THEOREM 6. Let R be a commutative ring with 1. Then P is a prime ideal in R if and only if R/P is an integral domain.

PROOF. P is prime means that $ab \in P \Rightarrow a \in P$ or $b \in P$. (R/P) is commutative with identity: $1+P$ since R is commutative.) R/P not having any zero divisors implies and is implied by:

$$
(a+P)\cdot (b+P) = (0+P) \Rightarrow 0+P
$$

Which means that

$$
a + P = o + P
$$
 or
$$
b + P = 0 + P
$$

$$
ab + P = 0 + P \Rightarrow a + P = 0 + P \text{ or } b + P = 0 + P
$$

Where $(ab \in P)$. This would imply that P is a prime ideal.

EXAMPLE. Let $R = \mathbb{Z}[x]$. Let $I = (x)$, all polynomials without constant terms. The following is then true:

$$
\mathbb{Z}/(x) \cong \mathbb{Z}
$$

Which is an integral domain, which tells us that I is prime. This isomorphism is brought about by the following map:

$$
eval : \mathbb{Z}[x] \mapsto \mathbb{Z}
$$

$$
eval(p(x)) \mapsto p(0)
$$

I.e., the map 'eval' is yeilds the constant term of the polynomial $p(x)$. This is also a ring homomorphism. Notice that:

$$
Ker = (x)
$$

Because (x) will yeild all polynomials without constant terms, we can see that $Ker((x)) = 0$. Thus, by the first isomorphism theorem,

$$
\mathbb{Z}[x]/Ker = \mathbb{Z}/(x) \cong Im(eval) = \mathbb{Z}
$$

However, (x) is not maximal in $\mathbb{Z}[x]$, because:

$$
(x) \subsetneq (x, 2) \subsetneq \mathbb{Z}[x]
$$

FACT. When R is a commutative ring with 1, every maximal ideal is prime.

PROOF. If an ideal I is maximal in R, this implies that R/I is a field, which implies that R/I is an integral domain, which implies that I is prime in R. \Box

1. Understanding Fractions:

Think of the field \mathbb{Q} , a set of what we commonly call 'fractions'. It is an understandable question to ask how this set was constructed. Consider 'elements', called fractions, $\frac{a}{b}$ where $a, b \in \mathbb{Z}$. However, there are immediate problems that arise from this idea, we need a stronger set of definitions to ensure that $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$ $\frac{3}{6}$. It turns out we will admit the following definition:

$$
\frac{a}{b} = \frac{c}{d} \iff ad = bc
$$

The General idea is that given a ring R and some subset D of R, we think of as elements of R that we want to invert (multiplicatively). We have chosen the letter 'd' to represent this subset, because it will intuitively stand for 'denominator'. Consider pairs:

$$
(a, b) \in R \times D
$$

with the equivalence relation:

$$
(a, b) \sim (c, d) \iff x(ad - bc) = 0
$$

For some element $x \in D$. As you can see, this mimics the structure of what we would usually call a 'fraction'. Taking the equivalence classes, call this set:

$$
D^{-1}R
$$

And try to define a ring by the following operations:

$$
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \text{ and } \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}
$$

Now, the following conditions must be upheld:

- (1) We need D to be closed under multiplication in order for addition to be defined and nonempty
- (2) If we want a map $i: R \to D^{-1}R, r \to \frac{r}{1}$ to be 1-1, we need D to have no zero divisors. This is because if we can show that $d \in D$ is a zero divisor, $\frac{d}{1} \sim \frac{0}{1}$ ⁰/₁. Suppose that $d \cdot x = 0$ then $\frac{d}{1} = \frac{dx}{x} = \frac{0}{x} = 0 = \frac{0}{1}$. Thus the map i is not 1-1, since there are elements in the $Ker(i)$ that are not equal to 0.

THEOREM 7. Let R be a commutative ring with 1, and D is a nonempty subset of R closed under multiplication. there then exists a commutative ring with 1 denoted $D^{-1}R$ and a ring homomorphism:

$$
\varphi: R \mapsto D^{-1}R
$$

such that:

- (1) If $d \in D$ is a zero divisor, $\varphi(d) = 0$
- (2) If $d \in D$ is not a zero divisor, $\varphi(d)$ is a unit
- (3) $D^{-1}R$ is the 'smallest such ring'.

For any S with some map $\pi: R \to S$ that satisfies requirements (1) and (2), there exists a unique ring homomorphism $f : D^{-1}R \to R$ such that $f \circ \varphi = \pi$

Restating this theorem more directly, considering the ring homomorphism $I: R \to D^{-1}R$ we have th following 4 properties:

- (1) If $x \in D \subseteq R$ is not a zero divisor, then $i(d) \in D^{-1}R$ has an inverse under multiplication.
- (2) Given any ring S and a homomorphism $\pi : R \to S$ such that $\pi(d)$ is invertible whenever $d \in D$ is not a zero divisor, then there exists a unique ring homomorphism $f : D^{-1}R \to S$ such that $f \circ i = \pi$
- (3) If D has no zero divisors, then $i: R \to D^{-1}R$ is 1-1 (so, we can think of R as sitting inside $D^{-1}R$, and all the elements of D are invertible).
- (4) If D has no zero divisors and $D = R 0$, then $D^{-1}R$ is a field.

PROOF. Construct $D^{-1}R$. Take:

$$
R \times D = \{r, d | r \in R, d \in D\}
$$

And consider the following equivalence relation:

$$
(r_1, d_1) \sim (r_2, d_2)
$$
 or $\frac{r_1}{d_1} \cong \frac{r_2}{d_2} \iff x(r_1d_2 - r_1d_1) = 0$ for some $x \in D^{-1}R$

This definition satisfies the reflexive, symmetric, and transitive properties for a valid equivalence relationship. We then define operations in $D^{-1}R$ as

16 2. QUOTIENT RINGS

follows:

$$
rac{r_1}{d_1} + \frac{r_2}{d_2} = \frac{r_1d_2 + r_2d_1}{d_1d_2}
$$
 and $\frac{r_1}{d_1} \cdot \frac{r_2}{d_2} = \frac{r_1r_2}{d_1d_2}$

We would then like to show that this makes $D^{-1}R$ a commutative ring with $1¹$.

Therefore, $D^{-1}R$ must be well defined, commutative, an abelian group under addition, associative under multiplication, and the distributive law must hold. Define:

$$
i: R \to D^{-1}R
$$
 as $i(r) = \frac{rd}{d}, d \in D$

Notice that:

$$
rac{rd}{d} \sim \frac{re}{e}
$$
, and that $i(r_1 + r_2) = \frac{(r_1 + r_2)d}{d} = \frac{r_1d}{d} + \frac{r_2d}{d} = i(r_1) + i(r_2)$

Now suppose that $d \in D$ and d isn't a zero divisor. Then, $i(d) = \frac{de}{e}$. Does this have an inverse? Under our definitions of multiplication, we can see that it will have an inverse as follows:

$$
\frac{de}{e} \cdot \frac{e}{de} = \frac{de^2}{de^2} \sim 1 \in D^{-1}R
$$

To prove out second requirement, that there exists a unique ring homomorphism $f: D^{-1}R \to S$, we offer the following diagram: (3)

$$
r \longrightarrow i(r) = \frac{rd}{d} = r)d_d^{-1}
$$

Look at the Kernal of $I: R \to D^{-1}R$. $I(r) = \frac{rd}{d} \sim \frac{0}{d} \iff x(rd^2 - d \cdot$ $(0) = 0, x \in D$. This implies that $rxd^2 = 0$, so, $x \in D, \overline{d} \in D \Rightarrow xd^2 \in D$, since D is closed under multiplication. Since we assumed that D had no zero divisors, we know that r must then be zero.

¹To really understand $D^{-1}R$, we need to have a good understanding of some concept of '1'. A good candidate will be $\frac{d}{d}$, for all $d \in D$.

To prove the 4th claim, let $D = R - \{0\}$, and let D have no zero divisors. Then, $i : R \to D^{-1}R$ is 1-1 and every nonzero element of $D^{-1}R$ is invertible, so $D^{-1}R$ is a field.

This leads us to an interesting result:

FACT. Every integral domain sits inside some 'field', called 'the field of fractions' of an integral domain.

We now need to address why $0 \notin D$. Since we know the following:

$$
(a, b) \sim (c, d) \iff x(ad - bc) = 0
$$
 for some $x \in D$

We can always let $x = 0$, and we then see that any elements $(a, b), (b, c)$ are equivalent under this relation. Thus, every element reduces down to zero; the restriction is made on D to avoid the trivial case.

EXAMPLE. Let $R = \mathbb{Z}, D = \mathbb{Z} - \{0\}$. Then, $D^{-1}R \cong \mathbb{Q}$ since $0 \notin D$, so $x(ad - bc) = 0$ is really just the same as $ad - bc = 0$.

EXAMPLE. Let $R = \mathbb{Z}, D = 2\mathbb{Z} - \{0\}.$ Then, $D^{-1}R = \{a/2b|a, b \in \mathbb{Z}, b \neq 0\}$ 0}. Since the following is true:

$$
\frac{x}{y} = \frac{2x}{2y} = \frac{z}{2y}, \ z \in \mathbb{Z}, z = 2x
$$

We realize that we can assign the following relationship between Q and $D^{-1}R$:

$$
\mathbb{Q} \stackrel{f}{\to} D^{-1}R \qquad D^{-1}R \stackrel{g}{\to} \mathbb{Q}
$$

$$
\frac{x}{y} \to \frac{2x}{2y} \qquad \frac{a}{2b} \to \frac{a}{2b}
$$

$$
f \circ g = Id, \text{ since } \frac{a}{2b} \sim \frac{2a}{2(2b)} \text{ And, } g \circ f = Id, \text{ since } \frac{2x}{2y} \sim \frac{x}{y}. \text{ Thus:}
$$

$$
D^{-1}R \cong \mathbb{Q}
$$

DEFINITION 11. A Ring of formal power series:

$$
\sum_{n\geq 0} a_n x^n, \ n \in \mathbb{Z} = a +_0 + a + 1x + a_2 x^2 + \dots
$$

CHAPTER 3

The Chinese Remainder Theorem

An arithmetic problem: suppose we are given $m_1, \ldots, m_n \in \mathbb{Z}^+$ and $b_1, \ldots, b_n \in \mathbb{Z}$, with $g.c.d.(m_i, m_j) = 1 \ \forall i \neq j$. Can we find an $x \in \mathbb{Z}$ such that $x \equiv b_i \mod m_i \; \forall 1 \leq i \leq n$? The answer is yes, and we find out that if x works, then so does $x + (m_1m_2 \cdots m_n)$; there is a unique solution up to a multiple of $m = m_1 m_2 \cdots m_n$.

1. Construction

Consider $R = \mathbb{Z}$. For each i, let $I_i = (m_i)$ be an ideal of \mathbb{Z} (recall: $m\mathbb{Z} + n\mathbb{Z} = g.c.d.(m, n)\mathbb{Z}$. Since $g.c.d.(m_i, m_j) = 1$ for $i \neq j$, we get that $I_i + I_j = \mathbb{Z} \ \forall i \neq j$ (In such a case that $I_i + I_j = R$, we call I_i and I_j $co-maximal$).

We want $x - b_i \in I_i = m_i \mathbb{Z} = (m_i) \forall 1 \leq i \leq n$, and we write this: $x_i \equiv b_i$ (mod I_i). Then the question becomes: Is there a function f such that:

$$
f:\mathbb{Z}\to\mathbb{Z}/I_i\times\ldots\times\mathbb{Z}/I_n
$$

Or equivalently,

$$
f:\mathbb{Z}\to\mathbb{Z}/m_1\mathbb{Z}\times\ldots\times\mathbb{Z}/m_n\mathbb{Z}
$$

Under such a function, we would get

$$
x \mapsto (b_1, \ldots, b_n)
$$

All that would be left to show is surjection (which is clear), and we know that the kernel of such a function is exactly $m\mathbb{Z}$, where $m = m_1 \cdots m_n$.

THEOREM 8 (Chinese Remainder Theorem). Let R be a ring with identity and A_1, \ldots, A_n be ideals. Suppose that for all $i \neq j$ we have $A_i + A_j = R$ $(A_i, A_j$ are comaximal). Then,

$$
\pi: R \to R/A_1 \times R/A_2 \times \ldots \times R/A_n
$$

Where $\pi(r) = (r \mod A_1, \ldots, r \mod A_n) = (r + A_1, \ldots, r + A_n)$ is surjective and the kernel is $\bigcap_{k=1}^n A_k$.

COROLLARY. $R/\bigcap_{k=1}^n A_k \cong R/A_1 \times \ldots \times R/A_n$.

REMARK. In $\mathbb{Z}, m\mathbb{Z} \cap n\mathbb{Z} = mn\mathbb{Z}$ for $g.c.d.(m, n) = 1$. So, $\bigcap_i m_i\mathbb{Z} =$ $(m_1 \cdots m_n) \mathbb{Z}$ for $g.c.d.(m_i, m_j) = 1$.

Proof: $r \in Ker(\pi)$ implies $\pi(r) = (0, \ldots, 0) = (0 + A_1, \ldots, 0 + A_n).$ But, $\pi(r) = (r + A_1, \ldots, r + A_n)$ so $r \in A_i$ $\forall i$, so $r \in A_1 \cap \ldots \cap A_n$ $A_1 \cdots A_n \Rightarrow Ker(\pi) \subset A_1 \cap \ldots \cap A_n$. Similarly, $A_1 \cap \ldots \cap A_n \subseteq Ker(\pi)$. Hence, $Ker(\pi) = A_1 \cap \ldots \cap A_n = A_1 A_2 \cdots A_n$.

PROOF. Consider $n=2$ (rest follows from induction). Since they are comaximal, $A_1 + A_2 = R$. That means, we can choose $x \in A_1$, $y \in A_2$ such that $x + y = 1$. This gives us a couple of congruences, namely $y \equiv 1$ mod A_1 and $x \equiv 1 \mod A_2$. So given $(b_1 \mod A_1, b_2 \mod A_2) \in R/A_1 \times R/A_2$, we get the following:

$$
(b_1 mod A_1, b_2 mod A_2) = (b_1 mod A_1, 0) + (0, b_2 mod A_2)
$$

= $(b_1 mod A_1, b_1 mod A_1)(1, 0) + (b_2 mod A_2, b_2 mod A_2)(0, 1)$
= $\pi(b_1)\pi(y) + \pi(b_2)\pi(x)$
= $\pi(b_1y + b_2x)$

So π is surjective.

All that's left to show is $A_1 \cap ... \cap A_n = A_1 A_2 ... A_n$.

FACT.
$$
A_1 \cap A_2 \cap \ldots \cap A_n = A_1 \cdots A_n
$$
 when R is commutative.

CLAIM.
$$
A_1 \cap A_2 = A_1 \cdot A_2 = \{\sum_{i=1}^n a_i b_i | a_i \in A_1, b_i \in A_2\}.
$$

[Subclaim: $M \cdot N \subseteq M \cap N$ is always true for ideals in a ring. By definition of ideals, $\sum a_i \cdot b_i \in M \cap N$ since $m_i \cdot n_i \in M$ and $m_i \cdot n_i \in N \forall i$.]

Proof of claim: We need to check that $A_1 \cap A_2 \subseteq A_1 \cdot A_2$. Write $1 = x + y$ where $x \in A_1, y \in A_2$. Given $a \in A_1 \cap A_2$ implies:

$$
a = 1a = (x + y)a = xa + ya \in A_1 \cdot A_2
$$

 \Box

In this case, $x, a \in A_1$ and $y, a \in A_2$, and this sum $xa + ya \in A_1 \cdot A_2$.

EXAMPLE. Let $m, n \in \mathbb{Z}$, g.c.d. $(m, n) = 1$. Let $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. By the theorem, this is surjective with kernel $m\mathbb{Z} \cap n\mathbb{Z} = (mn)\mathbb{Z}$. So,

$$
\mathbb{Z}/mn\mathbb{Z} \stackrel{as \text{ rings}}{\cong} \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \text{ for } g.c.d.(m, n) = 1
$$

COROLLARY. Let $n = p_1^{k_1} \cdots p_j^{k_j}$ $j_j^{k_j}$ for $n \in \mathbb{Z}$ where each p_i are distinct primes $\forall 1 \leq i \leq j$ $(k_1, \ldots k_n \geq 1 \in \mathbb{Z})$. Then,

$$
\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/p_1^{k_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_j^{k_j}\mathbb{Z}
$$

CHAPTER 4

Domains

One should note that generally speaking, when considering a ring R in this section, it will be an Integral Domain.

The following will be stated as true now, but will eventually be proven:

Fields ⊆ Euclidean Domains ⊆ Principal Ideal Domains ⊆

Unique Factorization Rings ⊆ Integral Domains

DEFINITION 12. A Norm on a ring R is a function

 $N: R \to \mathbb{Z}^+ \cup \{0\}$

Such that $N(0) = 0$. If $N(r) \neq 0$ for $r \neq 0$, we say that N is a positive norm.

EXAMPLE. Let $R = \mathbb{Z}$. The candidate for a norm would be as follows:

 $N(k) = |k|, k \in \mathbb{Z}$

This happens to be an example of a positive norm.

EXAMPLE. Let R be a polynomial ring, say $S[x]$ where S is any ring. Let:

$$
N(p(x)) = deg(p(x))
$$

If $s \in S$, $s \neq 0$, then $N(s) = 0$.

DEFINITION 13. An integral domain R is a Euclidean domain if there is a norm such that for any two elements $a, b \in R$, $b \neq 0$, there are $q, r \in R$ such that:

$$
a = qb + r
$$
 Where $r=0$ or $N(r) < N(b)$

EXAMPLE. Let $R = \mathbb{Z}$, with $N(K) = |K|$. Given $a, b \in \mathbb{Z}, b \neq 0$, we see that:

 $a = qb + r$ where $r = 0$ or $|r| < |b|$

This shows that $\mathbb Z$ is a Euclidean domain.

EXAMPLE. Extending the example of a norm on a polynomial ring $S[x]$, we see that if $S = R$ that the given definition of a norm would also qualify $S[x]$ as a Euclidean domain.

This form in a Euclidean Domain allows an algorithm called the division algorithm, which is as follows: In a domain R, given $a, b \in R$, $b \neq 0$, we can write:

$$
a = q_0b + r_0 \text{ where } r_0 = 0 \text{ or } N(r_0) < N(b)
$$
\n
$$
\text{assuming } r_0 \neq 0 \text{ we see that:}
$$
\n
$$
b = q_1r_0 + r_1 \text{ where } r_1 = 0 \text{ or } N(r_1) < N(r_0)
$$
\n
$$
r_0 = q_2r_1 + r_2 \text{ where } r_2 = 0 \text{ or } N(r_2) < N(r_1)
$$
\n
$$
r_1 = q_3r_2 + r_3 \text{ where } r_3 = 0 \text{ or } N(r_3) < N(r_2)
$$
\n
$$
\vdots
$$

this process continues until $r_n = 0$.

Example. If F is a field, then F is a Euclidean domain with the norm:

 $N: F \to \mathbb{Z}^+$ | $\{0\}$ where $N(x) = 0$

Given $a, b \in F$, $b \neq 0$ we see that:

 $a = ab^{-1} + 0$ where ab^{-1} will be the "q" term and 0 will be the r term Since F is a field, $ab^{-1} \in F$, so this norm holds.

EXAMPLE. Let $R = \mathbb{Z}$, and $N(x) = 0$. Then:

 $a = ab + 0$

But since not every element of $\mathbb Z$ has an inverse, we will not always find a good candidate for 'q'. Take for example:

 $2 = a3 + 0$

Since $\frac{2}{3}$ is not a member of \mathbb{Z} , this will not be a valid Euclidean domain under this Norm.

DEFINITION 14. An integral domain R is called a principle ideal domain (PID) if every ideal in R is principle, i.e., it is generated by a single element.

EXAMPLE. Let $R = \mathbb{Z}$. The ideals of R are then $n\mathbb{Z}$, for $n \in \mathbb{Z}$ and since $n\mathbb{Z} = (n) = (-n)$, so $\mathbb Z$ is a principle ideal domain.

EXAMPLE. Take $R = \mathbb{Z}[x]$. Then consider the ideal $(2, x)$. This ideal cannot be generated by a single element, so thus $\mathbb{Z}[x]$ is not a PID.

THEOREM 9. Every Euclidean domain is a Principle ideal domain.

PROOF. Let R be a Euclidean Domain under some norm N. Let I be an ideal of R. We have to show that I is principle. Chose $a \in I, a \neq 0$, and $N(a)$ to be smallest in that ideal. Since $a \in I$ we know that $(a) \in I$, which shows that $(a) \subseteq I$. We then have to show the reverse inclusion to prove that $(a) = I$. We know that for any $b \in I$, we can make the following

4. DOMAINS 23

representation: $b = a \cdot x, x \in I$. Let's assume that $b \neq 0, a \neq 0$. Since R is a Euclidean domain, we know that there exist $q, r \in R$ such that:

$$
b = qc + r
$$
 where r=0 or $N(r) < N(a)$

Since we assumed that the norm of the element a was the smallest in the ideal I, we know that r must then be zero. So then, we conclude that $b = q \cdot a$, so b in(a), and since b is any arbitrary element in I, we know that $I \subseteq (a)$. This shows that $I = (a)$, which tells us that R is a Principle ideal domain.

DEFINITION 15. A greatest common divisor of 2 elements $a, b \in R$ (denoted 'qcd') is an element $d \in R$ such that:

(1)
$$
d|a
$$
 and $d|b$ (i.e., $d = dx, b = dy, x, y \in R$)

(2) If $e|a$ and $e|b$, thene|d.

REMARK. Taking this definition of a common divisor of elements are putting it in terms of ideals, we have:

$$
d|a \iff a = dx, \text{ for some } x \iff a \in (x) \iff (a) \subseteq (d)
$$

And

$$
d|b \iff b = dy \text{ for some } y \iff b \in (d) \iff (b) \subseteq (d)
$$

So then, we have the following two requirements in terms of ideals:

(1) $d|a$ and $d|b \iff (a, b) \subseteq (d)$ Where $(a, b) = \sum$ \sum $c \cdot a + f \cdot b =$ $c \cdot dx + f \cdot dy = d \sum (cx + fy)$ (2) If $(a, b) \subseteq (e)$, then $(d) \subseteq (e)$.

So, the gcd of a and b is d, if (d) is the smallest principle ideal containing $(a, b).$

EXAMPLE. In \mathbb{Z} , let $a, b \in \mathbb{Z}$, $a = 12$, $b = 16$. Since $(4) = (-4)$ are the smallest principle ideals containing $(12, 16)$, we know that the greatest common divisors of a and b are ± 4 .

FACT. The following are true:

- (1) If (a,b) is principle, then $(a,b)=(x)$ and x is the greatest common divisor of a and b.
- (2) If R is a PID, for any two elements $a, b \in R$, the greatest common divisor of a and b exists.

EXAMPLE. $\mathbb{Z}[x]$ is not a PID, because $(2, x)$ is not principle. But, we know that the greatest common divisor of 2 and x does exist. In finding the gcd, (let's call it 'p') we need to find an element such that the following is true:

$p|2$ and $p|x$

Since the only candidate for p is ± 1 , we know that the greatest common divisor of 2 and x is ± 1 .

LEMMA. If $(d) = (d')$, where both ideals are non zero in a ring R, $d' = ud$ for some unit $u \in R$. So, any two greatest common divisors (d, d') differ by some unit u.

PROOF. If $(d) = (d')$, then $d \in (d')$, so $d = xd'$. Similarly, $d' \in (d)$ so $d' = yd$. Thus, $d = xyd$, which implies that $x(1 - xy) = 0$. So, $xy = 1$ since we know that these ideals are nonzero in R, displaying that x and y are units. Thus, d and d' differ only by a unit. \square

REMARK. If $(a, b) \subseteq (d), (a, b) \subseteq (d')$ then d and d' are gcds of a and b if and only if $(d) = (d')$.

DEFINITION 16. x and y are called 'associates' if $x = uy$ for some unit u .

Recall that if R is a Euclidean Domain and $a, b \in R$, $a, b \neq 0$ that

$$
a = q_0 b + r_0, N(r_0) < N(b) \text{ or } r_0 = 0
$$

. . .

And that we can continue this process until we get some r_n , where $r_{n+1} = 0$. Our Claim is now that this r_n is a¹ greatest common divisor of a, b.

PROOF. We need to show that $r_n|a$ and $r_n|b$. This is easy to do. We know that:

```
r_n|r_{n-1}
```
And by working up, that

$$
r_n | r_{n-2}
$$

$$
\vdots
$$

$$
r_n | a, r_n | b
$$

Then we need to show that $r_n = xa + yb$, for some x, y. Then, if $e|a$ and $e|b$, then we know that $e|r_n$, which will show that r_n is a greatest common divisor. Again, this comes from working upwards:

$$
r_n = r_{n-2} - q_n r_{n-1} = r_{n-2} - q_n (r_{n-2} - q_{n-1} r_{n-2})
$$

$$
\vdots
$$

$$
r_n = \neg \neg a + \neg \neg b
$$

 \Box

¹we say 'a' greatest common divisor because as we've seen, the gcd of two elements does not have to be unique.

4. DOMAINS 25

FACT. $(a|b, b|a) \iff ((b) \subseteq (a) \text{ and } (a) \subseteq (b)) \iff$ a and b are associates. If a and b are associates, then $a = bu, u^{-1}a = b$. Conversely, if $(a)=(b)$ then

$$
(a) \subseteq (b) \Rightarrow a = bx
$$

And

$$
(b) \subseteq (a) \Rightarrow b = ay
$$

Thus,

$$
a = bx = axy \Rightarrow a(1 - xy) = 0
$$

Thus, $xy = 1$ so x and y are units. Since $a = bx$, where x is a unit, we know that a and b are associates.

Corollary.

 $(a) = R$ if and only if a is a unit.

PROOF. $R=(1)$, so if $(a)=(1)$, $(a)=R$. This happens if and only if a and 1 are associates, i.e. $ax = 1$ for some x. And we know that this happens when a is a unit. \Box

Recall, if an ideal M is maximal in R, then M is prime.

Mmaximal in R $\iff R/M$ is a field $\Rightarrow R/M$ is an integral domain

 $\iff M$ is a prime Ideal in R.

Example. Notice that :

 $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$

Which is an integral domain, not a field. Thus, (x) is prime but not maximal in $\mathbb{Z}[x]$.

THEOREM 10. If R is a PID, every nonzero prime ideal in R is maximal.

PROOF. Let (p) be a prime ideal in R, a principle ideal domain. We want to show that if $(p) \subseteq$ some ideal $(m) \subseteq R$, that $(m) = (p)$ or $(m) = R$. If $(p) \subseteq (m)$, this means that $p \in (m)$, so $p = mr$ for some $r \in R$. Thus, $mr \in (p)$, which is a prime ideal, so either $m \in (p)$ or $r \in (p)$. If $m \in (p)$, then $(m) \subseteq (p) \Rightarrow (m) = (p)$. If $r \in (p)$, then $r = xp$, and since $p = mr$, $p = mxp$. Thus $mx = 1$, so m is a unit, and $(m) = R$.

REMARK. If F is a field, $F[x]$ is a Euclidean domain and thus a Principle ideal domain. The Converse is also true, if $R[x]$ is a PID, R is then a field.

PROOF.

 $R[x]/(x) \cong (R)$ by the first isomorphism theorem

So thus (x) is prime. But $R[x]$ is a PID, so (x) is maximal, and since $R[x]/(x) \cong R$, R is a field.

DEFINITION 17. Let R be an integral domain.

26 4. DOMAINS

- (1) We say that $r \in R$ is irreducible if r is not a unit, and whenever $r = a \cdot b$ a is a unit or b is a unit. Otherwise, we say that r is reducible.
- (2) $p \in R$ is called prime if (p) is a prime ideal in R.

Lemma. In any integral domain, every prime element is irreducible.

PROOF. Let p be prime, so (p) is a prime ideal. Suppose $p = ab$, we need to show that either a or b is a unit. Since $ab \in (p)$, this implies that $a \in (p)$ or $b \in (p)$. I.e., a=px or b=py.

if
$$
a = px = abx
$$
, so $bx=1$, showing that b is a unit

if
$$
b = py = aby
$$
 so ay=1, so a is a unit

Thus, either a or b is a unit.

EXAMPLE. Let
$$
R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}|a, b \in \mathbb{Z}\}.
$$

$$
9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 - \sqrt{-5})
$$

We can see that 3 divides 3, and thus should divide the right hand side, but 3 does not divide $2 \pm \sqrt{-5}$

$$
(3 \cdot (a + b\sqrt{-5}) \neq 2 \pm \sqrt{-5} \quad \forall a, b \in \mathbb{Z})
$$

Thus, 3 is not prime, i.e. (3) is not prime.

$$
q = (2 + \sqrt{-5})(2 - \sqrt{-5}) \in (3)
$$

But $(2 \pm$ √ $(–5) \notin (3)$. However, 3 is irreducible in this ring.

LEMMA. Let R be an integral domain. $r \in R$ is irreducible \iff (r) is 'maximal among all principle ideals', i.e.: If $(r) \subseteq (s) \subseteq R$ then $(r) = (s)$ or $(s) = R$ where (s) is principle.

PROOF. Suppose whenever $(r) \subseteq (s) \subseteq R$ that either $(r) = (s)$ or $(s) =$ R.We would r to be irreducible, so let $r = ab$. Then, $a|r$ so $(r) \subseteq (a) \subseteq R$. By our assumption, $(r) = (a)$ or $(a) = R$, which implies r and s are associates where b is a unit, or s itself is a unit. This shows that r is irreducible.

Now let r be irreducible, and $(r) \subseteq (s) \subseteq R$. So, r=st. If s is a unit then (s)=R. If t is a unit, then r and s are associates, so $(r) = (s)$.

Corollary. In a PID, r is irreducible if and only if r is maximal. The proof of this comes directly from the Lemma, since maximal ideals are equivalent to maximal among all principal ideals.

COROLLARY. In a PID R, for $r \in R$, the following are equivalent:

- (1) (r) is prime
- (2) r is prime
- (3) r is irreducible
- (4) (r) is maximal

DEFINITION 18. A unique factorization domain or UFD is an integral domain R such that:

(1) For $r \in R$, where r is not a unit and $r \neq 0$, we can write:

$$
r = p_1 p_2 \dots p_n
$$

Where p_i is irreducible for all i.

(2) (There is uniqueness up to associates) If

 $r = p_1 p_2 ... p_n$

And

$$
r = q_1 q_2 ... q_m
$$

Where q_i, p_i are irreducible for all i, then $m = n$ and every p_i is an associate of exactly one q_i , and cive versa.

$$
\exists r \in \sum_{n} \text{ such that } p_i \text{ is an associative of } q_{\sigma(i)}
$$

Example. If F is a field, F is a UFD. Every element is a unit, so every element has a multiplicative inverse. There is nothing to check here, because every non-zero element is a unit.

Example.

$$
\mathbb{Z}[2i] = \{a + b2i | a, b \in \mathbb{Z}\}\
$$

Notice that 'i' isn't in this ring. We see that the following is true:

$$
4 = 2 \cdot 2 = (2i) \cdot (-2i)
$$

Are 2,2i, and -2i irreducible? Well:

$$
2 = a \cdot b \Rightarrow \text{ a or } b = \pm 1
$$

And

$$
2i = c \cdot d \Rightarrow c \text{ or } d = \pm 1
$$

Thus, $2, \pm 2i$ are irreducible since 1 is a unit. Are 2 and 2i associates? This would imply that

$$
2 \cdot (x + i2y) = 21
$$

Where $(x+i2y)$ is a unit. Since the units in this ring are ± 1 , we see that this is impossible. Thus we see that we have a nonunique factorization of 4 into a product of irreducibles.

Claim: In a UFD, x is prime if and only if x is irreducible.

PROOF. In a UFD, which is an integral domain, prime elements are always irreducible. Suppose x is irreducible in a UFD. We would like to show that x is prime, which we can do by showing that (x) is prime. Suppose $ab \in (x)$. We would like to show that either $a \in (x)$ or $b \in (x)$; i.e., if $a|ab \Rightarrow x|a$ or $x|b$. Suppose that $x|(a, b)$. Then,

$$
xc = ab = (a_1a_2...a_n)(b_1b_2...b_m)
$$

Because we are working in a unique factorization domain. This shows that:

$$
x \cdot (c_1c_2...c_n) = (a_1a_2...a_n)(b_1b_2...b_m)
$$

and by uniqueness, x is an associate of some a_i or b_i . If x is an associate of a_i , this implies that $x \cdot x = a_i$ for some unit d. This means that $x|a_i$, so $x|(a_1a_2...a_n)$, which in turn means that $x|a$. Similarly, if x is an associate of b_k then $x|b$. Thus, x is prime.

FACT. In a UFD, greatest common divisors always exist. Given:

$$
a = p_i^{k_1} p_2 \cdot \dots \cdot n^{k_n}
$$

and

$$
b=p_i^{j_1}\cdot\ldots\cdot p_n^{j_n}
$$

Where p_i are distinct primes (irreducibles), the following is true:

$$
gcd(a, b) = p_1^{min(k_1, j_1)} \cdot \ldots \cdot p_n^{min(k_n, j_n)}
$$

Our claim is that:

 (1) d|a and d|b

(2) if $e|a$ and $e|b$ then $e|d$

Consider: the following representation of the element 'e':

$$
e = c_1^{m_1} c_2^{m_2} \cdot \ldots \cdot c_r^{m_r}
$$

Where c_i are distinct primes for all i. Since e divides both a and b,

$$
e = p_1^{s_1} p_2^{s_2} \cdot \ldots \cdot p_n^{s_n} \cdot u
$$

Where u is a unit. Thus, we see that since $e|a$ and $e|b, s_i \leq min(k_i, j_i)$. This then implies that $e|d$. Notice that:

$$
a \cdot b = (gcd(a, b)(lcm(a, b))
$$

THEOREM 11. Every principle ideal domain is a unique factorization domain.

PROOF. Let R be a PID, $r \in R$ be a non-unit. We would like to show that r is equal to a product of non-units. If r is not irreducible, then:

$$
r=r_1r_2
$$

Where r_1 , r_2 are not units. If r_1 is reducible, then:

$$
r = (r_{11}r_{12})r_2
$$

If r_1 1 is reducible, then:

$$
r = ((r_{111}r_{112})r_{12})r_2)
$$

. . .

We need to check that this process can't go on forever, that eventually r will be written as a product of irreducibles. If it were so, that means:

$$
r_1|r, r_{11}|r_1, r_{111}|r_{11}...
$$

And in terms of ideals, this means:

$$
(r) \subseteq (r_1) \subseteq (r_{11}) \subseteq (r_{111}) \subseteq \dots \subseteq R
$$

$$
I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots \subseteq R
$$

The claim is that $I_n = I_{n+1} = I_{n+2} = ... = R$ for some n. The proof of that is the

$$
I = \bigcup_j I_j
$$

is an ideal, and in a principle ideal domain, every ideal is principal. Thus, I is principal. So, I=(a), so $a \in I_n$ for some n. This implies that:

$$
(a) \subseteq I_n \subseteq I = (a)
$$

so

$$
(a) = I_n = I_{n+1} = I_{n+2} = ...I
$$

In a PID, the ascending chain of ideals is a principle ideal. So, we can factor irreducibles into finitely many irreducibles. In showing uniqueness, we see that when

$$
p_1p_2...p_k = q_1q_2...q_n
$$

That we can pick off elements one by one (since given a p_i it must divide $q_1q_2...q_n$ until we see that the factorization was unique.

COROLLARY. Since $\mathbb Z$ is a Euclidean Domain, and therefor a PID, it is thus a UFD.

$n = p_1 p_2 p_3 ... p_k$

Where p_i are prime numbers for all i, and this factorization is unique up to a reordering of p_i 's and multiplication by the units in \mathbb{Z} , which are ± 1 .

Recall: $R[x]$ for any ring R denotes "polynomials in x with coefficients in R".

DEFINITION 19. Let R be a ring. The following is true:

$$
R[x_1, x_2, ... x_n]) = (R[x_1, x_2, ... x_{n-1})[x_n])
$$

Also recall that $R[x]$ has a norm given by:

$$
N(p(x)) = deg(p(x))
$$

And the units of $R[x]$ are units of R. If R is an integral domain, then so is $R[x]$.

PROOF. If

 $p(x) \cdot q(x) = 0 \Rightarrow N(p((x) \cdot q(x)) = N(p(x)) + N(q(x)) = 0 = N(constant)$ So thus, either $N(p(x)) = 0$ or $N(q(x)) = 0$. This implies that both $p(x)$ and $q(x)$ constant, we'll call them a and b respectively. We then know that:

$$
a\cdot b=0
$$

And since R is an integral domain, we know that either $a = 0$ or $b = 0$. Thus, $p(x) = 0$ or $q(x) = 0$.

Let I be an ideal in R. Since I is a subring of R, we can say that $I[x] \subseteq_{subgring} R[x]$. Given an element $(r_0 + r_1x + ...r_nx^n)$, we see that when taking an element $(a_k x^k) \in I[x]$, then when you multiply these elements you get: $(a_k r_0 x^K + a_k r_1 x^{k+1} + ... a_k r_n x^{k+n})$. We see that the coefficients $(a_kr_0, a_kr_1, ... a_kr_n)$ will live in I, since I is an ideal. From this we can conclude that $I[x]$ is an ideal of $R[x]$ if I is an ideal of R (it turns out the converse is also true; if $I[x]$ is an ideal of $R[x]$, then I is an ideal of R).

REMARK.

$$
R[x]/I[x] \cong (R/I)[x]
$$

Where the isomorphism is in terms of rings.

PROOF. Define a homomorphism:

$$
\varphi:R[x]\mapsto (R/I)[x]
$$

where

$$
\varphi(\sum_{k=1}^{n} r_k x^k) = \sum_{k=1}^{n} (r_k + I)x^k
$$

(e.g., let $I = 3\mathbb{Z} \subseteq \mathbb{Z}$. The element $4x^5 + 3x^2 + 1 \xrightarrow{\varphi} x^5 + 1$, because the coefficients would be reduced by modulo 3). The map φ is surjective, because

 $Ker(\varphi) = \{p(x)|$ the coefficients of $p(x)$ are in I $\} = I[x]$

And by the first isomorphism theorem,

$$
R[x]/I[x] \cong Im(\varphi) = (R/I)[x]
$$

 \Box

COROLLARY. If I is prime in R, $I[x]$ is prime in $R[x]$.

PROOF.

I prime in R
$$
\iff
$$

\n (R/I) is an integral domain \iff
\n $R[x]/I[x]$ is an integral domain \iff
\n $I[x]$ is prime in $R[x]$

 \Box

EXAMPLE. $n\mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal if and only if n is prime. So, $(n\mathbb{Z})[x]$ is prime in $\mathbb{Z}[x]$ if and only if n is prime.

If F is a field then $F[x]$ is a Euclidean domain, where $N(p(x)) = deg(p(x))$. Given $a(x)$, $b(x) \in F[x]$ where $b(x) \neq 0$ we see that $a(x) = b(x)q(x) + r(x)$ where $r(x) = 0$ or $N(r(x)) < N(b(x))$. So, $F[x]$ is a unique factorization domain. We'll show that $R[x]$ is a unique factorization if and only if R is a unique factorization domain.

4. DOMAINS 31

PROOF. The one direction of this statement is trivial: if $R[x]$ is a unique factorization domain, then R must also be a UFD, since $R \subseteq R[x]$. We'll use the ring of fractions F of R to better understand the oppositve direction of this statement.

EXAMPLE. $\mathbb{Q}[x]$ is a Euclidean domain, since $\mathbb Q$ is a field. Notice that $(2, x)$ is a prime ideal in $\mathbb{Q}[x]$, because $(2, x) = \mathbb{Q}[x]$. T

We would like to use the ring of fractions F of R to study factorization in $R[x]$. A brief paraphrase of Gauss's lemma goes as follows: "Given R (a UFD) and F (a field of factors of R), if you can factor in $F[x]$ then you can factor in $R[x]$ ".

THEOREM 12. Let $p(x) \in R[x]$ and suppose $p(x) = A(x) \cdot B(x)$ where $A(x), B(x) \in F[x]$, then there exists $r, s \in F$ such that:

$$
r \cdot A(x) = a(x) \in R[x]
$$

$$
s \cdot B(x) = b(x) \in R[x]
$$

and

$$
p(x) = a(x)b(x)
$$

Example.

$$
x^2 \in \mathbb{Z} \subseteq \mathbb{Q}[x]
$$

Factoring x^2 in $\mathbb{Q}[x]$, we get:

$$
x^2 = 2x \cdot \frac{1}{2}x
$$

Then, we can do the following:

$$
\frac{1}{2}(2x) = x
$$
 and $2(\frac{1}{2}x) = x$

where $2, \frac{1}{2}$ $\frac{1}{2} \in \mathbb{Q}$.

PROOF. Given $p(x) = A(x)B(x)$ where the coefficients of $A(x)$ and $B(x)$ are elements of F, i.e., are "fractions" as we think of them. Let $d =$ product of all denominators of the fractions. Then,

$$
dp(x) = m(x)n(x)
$$

Where $m(x), n(x) \in R[x]$. $d \in R$ since R is a unique factorization domain, and:

$$
d = c_1 c_2 ... c_n
$$

Where c_i is irreducible in r. We then conclude that:

$$
c_1c_2...c_np(x) = m(x)n(x)
$$

We would like to show that for each i, $c_i | m(x)$ or $c_i | n(x)$. We know that:

 $R/(c_i)$ is an integral domain $\Rightarrow R/(c_i)[x]$ is an ID

and

$$
(R/(c_i))[x] \cong R[x]/(c_i)[x]
$$

So, when considering

$$
c_1c_2...c_np(x) = m(x)n(x)
$$

reduce modulus c_i term by term, i.e., send the coefficients in R to coefficients in $R/(c_i)$. Let $i = 1$. Then,

$$
0 \equiv m\bar(x) \cdot n\bar(x)
$$

So, $m(x)$ and $n(x)$ are elements of $(R/(c_i))[x]$, which we know to be an integral domain. Thus, by the definition of an integral domain, either:

$$
m(x) = 0 \text{ or } n(x) = 0
$$

So, c_i must divide the coefficients of either m(x) or n(x). This implies that

$$
\frac{m(x)}{c_i} \in R[x] \text{ or } \frac{n(x)}{c_i} \in R[x]
$$

Taking this operation for all i, we end up getting $p(x) = a(x) \cdot b(x)$ where $a(x), b(x) \in R[x]$.

 \Box

The Idea is that if you can factor with field coefficients, then you can factor with ring coefficients. However, we still would like to give a solid proof that R is a UFD if and only if $R[x]$ is a UFD. To help this along, we have the following corollary:

COROLLARY. Let R be a UFD, and suppose that $p(x) \in R[x]$. If The greatest common divisor of the coefficients of $p(x)$ is 1, then $p(x)$ is reducible in R[x] if and only if $p(x)$ is reducible in $F[x]$

PROOF. If $p(x)$ is reducible in $F[x]$, then $p(x)$ is reducible in $R[x]$ by Gauss's lemma (recall that $p(x)$ is reducible in $F[x]$ if and only if $p(x)=a(x)b(x)$ where $a(x)$ and $b(x)$ are not constants). So by Gauss's lemma, we factor $p(x)$ into non-units in R[x].

If p(x) is reducible in R[x], then p(x)=a(x)b(x), where $a(x), b(x) \in$ $R[x]$ and $a(x)$, $b(x)$ are not units. If coefficients of $p(x)$ have a greatest common divisor of 1 (bear in mind you can force this condition by factoring out by the greatest common divisor in R), then $a(x)$ and $b(x)$ must not be constant polynomials- otherwise, if $a(x) = a_0$ then $a_0|p(x) \Rightarrow$ a_0 |the greatest common divisor of $p(x)$ and since the $gcd(p(x))=1$, we know that $a_0 = 1$, which is a unit. Thus, $p(x) = a(x)b(x)$ where $deg(a(x)) \ge$ 1 and $deg(b(x)) \geq 1$.

Then, $a(x)$ and $b(x)$ are not units in $F[x]$, so $p(x) = a(x)b(x)$ is a factorization of $p(x) \in F[x]$ into non-units, so we know that $p(x)$ is reducible in F[x]. \square

EXAMPLE. The following polynomial is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$:

$$
2x^3 + 3x^2 + 5x + 7
$$

4. DOMAINS 33

Take an even easier example- is 2x reducible in Z? We know that this is true if and $2x$ is reducible in $\mathbb{Q}[x]$. And since:

$$
2x = 2 \cdot x = \frac{2}{47} \cdot 47 \cdot x = \dots
$$

2x isn't uniquely factor able in \mathbb{Q} , we know that 2x is irreducible in $\mathbb{Q}[x]$. On the other hand though, it turns out that $2x$ is reducible in $\mathbb{Z}[x]$, and this doesn't violate our corollary because the greatest common divisor of 2x is not 1.

DEFINITION 20. A polynomial:

$$
a_n x^n + a_{n-1} x^{n-2} + \dots + a_1 x + a_0
$$

Is called monic if $a_n = 1$. Notice that a monic polynomial in R[x] is irreducible in $R[x]$ if and only if it is irreducible in $F[x]$, since the leading coefficient forces the greatest common divisor of the coefficients to be 1.

THEOREM 13. R is a UFD if and only if $R[x]$ is a UFD.

PROOF. If R[x] is a UFD, then R is a UFD since $R \subset R[x]$ under the map $a \mapsto a + 0x^1 + 0x^2 + \dots$

No suppose that R is a UFD and $p(x) \in R[x]$. we can write $p(x)$ as:

 $p(x) = a \text{ gcd of the coefficients of } p(x) \cdot q(x)$

We want to show that we can factor $p(x)$ uniquely (up to associates) into irreducibles in $R[x]$. We know that the following is true from the fact that R is a UFD:

$$
p(x) = gcd(p(x)) \cdot q(x) = (d_1 \cdot d_2 \dots d_n)q(x) \qquad q(x) \in R[x], d_i \in R
$$

Focus of the $q(x)$ term- we know that the greatest common divisor of its coefficients is 1, since we factored out by the greatest common divisor of p(x). Recall that if(q)x is irreducible in $R[x]$, we're finished with this proof. Otherwise, if $q(x)$ is reducible in F[x], then $q(x)$ is reducible in R[x]. We can claim the following:

$$
q(x) = \underbrace{m(x)n(x)}_{\in F[x]} = \underbrace{r}_{\in F} m(x) \cdot \underbrace{s}_{\in F} n(x)
$$
\n
$$
= \underbrace{r}_{\in F[x]}
$$

This follows from Gauss's lemma. Since the gcd of $q(x)$ was 1, we know that $m(x)$ and $n(x)$ were not constants, otherwise they would be units.

Think of $q(x)$ as a polynomial with field coefficients, $q(x) \in F[x]$, and since F is a field, $F[x]$ is a Euclidean Domain and thus $F[x]$ is a UFD. So, we can write:

$$
q(x) = q_1(x) \cdot q_2(x) \dots q_n(x)
$$

Where $q_i(x) \in F[x]$ are irreducible. By Gauss's lemma, we can write the following:

$$
q(x) = r_1p_1(x) \cdot r_2p_2(x) \dots r_np_n(x)
$$

34 4. DOMAINS

Where moreover, $r_i p_i(x) \in R[x]$ and $r_i \in F$. We know know the following two things:

- (1) We know that the gcd in R of $a_i p_i(x)$ is 1, because we know that the greatest common divisor of $q(x)$ is 1.
- (2) Each $a_i p_i(x)$ is irreducible in F[x], since $a_i \in F$ is a unit and $q(x) \in$ $F[x]$ is irreducible because $F[x]$ is a UFD.

Now, through these facts and our lemma, we know that $a_i p_i(x)$ is irreducible in $R[x]$ for each i. (recall that the lemma said that if $p(x) \in$ $R[x]$ andgcd $(p(x)) = 1$ that $p(x)$ is irreducible in $R[x]$ if and only if $p(x)$ is irreducible in $F[x]$. However, we still need to prove that this factorization of $q(x)$ is unique.

Suppose we have the following factorizations of $q(x)$:

$$
q(x) = q_1(x)q_2(x)...q_n(x) = s_1(x)s_2(x)...s_m(x)
$$

Where $s_i(x)$, $q_i(x)$ are irreducible in $R[x]$. We need to prove that each $q(x)$ is an associate of some $s(x)$.

First, recall that each representation of $q(x)$ is a factorization in $F[x]$ into irreducibles. Since $F[x]$ is a UFD, we know that $n = m$ and after a reordering, that:

$$
q_i = \frac{a_i}{b_i} s(x)
$$

So

$$
b_i q(x) = a_i s_i(x) \quad a_i, b_i \in R
$$

We know that a_i and b_i are associates since the greatest common divisor of $q_i(x)$ and $s_i(x)$ is 1. This implies that:

$$
a_i = ub_i
$$
 and $\frac{a_i}{b_i} = u$ where u is a unit in R

EXAMPLE. $\mathbb{Z}[x, y] = (\mathbb{Z}[x])[y]$ Is $\mathbb{Z}[x]$ a UFD? The answer is yes, since \mathbb{Z} is a UFD, so analogously we know that $(\mathbb{Z}[x])[y]$ is also a UFD! The following corrolary follows from this idea.

COROLLARY. $\mathbb{Z}[x_1, x_2, ... x_n]$ is a UFD

DEFINITION 21. A root of a polynomial $p(x) \in R[x]$ is an element $r \in R$ such that $p(r) = 0$.

LEMMA. $p(x) \in F[x]$ has a degree 1 factor if and only if $p(x)$ has a root in F . This is true because:

$$
p(x) = q(x) \cdot (x - \alpha) + r(x)
$$
 and $r(x) = 0$ or $deg(r(x)) < deg(x - \alpha) = 1$
$$
0 = p(\alpha) = q(\alpha) \cdot 0 + r(\alpha)
$$

So we can conclude that $r(x)=0$. Thus, $(x - \alpha)|p(x)$.

COROLLARY. If $deg(p(x))=2$ or $deg(p(x)) = 3$, $p(x) = F[x]$, $p(x)$ is irreducible if and only if $p(x)$ has no roots in F. (the reason for 2 or 3 is because it forces linear factors.)

4. DOMAINS 35

Example.

$$
p(x) = x^2 + x + 1 \in \mathbb{Z}/2\mathbb{Z}[x]
$$

The only elements in $\mathbb{Z}/2\mathbb{Z}$ are 0 and 1, neither of which are roots for this polynomial. Thus, $p(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$.

However, if $p(x) \in \mathbb{Z}/3\mathbb{Z}$, $p(x)$ is reducible since $p(1) = 0$. Also notice that when factoring in this ring, the following is true:

$$
p(x) = (x-1)(x-1)
$$
 under mod 3

We do have other root tests for polynomials of higher degree, take for example:

$$
p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in R[x]
$$

If $p(\frac{r}{s})$ $s(\frac{r}{s}) \in F = 0$ and $(r,s)=1$ where R is a UFD and F is a field of fractions, the following is true

$$
r|a_0
$$
 and $s|a_n$

This can be shown through the following:

$$
0 = p(\frac{r}{s}) = a_n(\frac{r}{s})^n + a_{n-1}(\frac{r}{s})^{n-1} + ... + a_1(\frac{r}{s})^n + a_0
$$

$$
-s^n a_0 = a_n r^n + a_{n-1} x^{n-1} + ... + a_i r s^{n-1}
$$

$$
\Rightarrow r|s^n a_0
$$

And since r and s are relatively prime, we know that $r|a_0$. Similarly we can show that $s|a_n$.

EXAMPLE. Suppose that $p(x)$ is a monic polynomial, $p(x) \neq 0 \forall r \in$ R such that $r|a_0$ and

$$
p(x) = 1x^n + \dots + a_o
$$

We can conclude that $p(x)$ has no roots in F, since the monic property of $p(x)$ forces $s = 1$.

Example.

$$
p(x) = x^3 - 3x - 1 \in \mathbb{Z}[x]
$$

Since this polynomial is monic, and only $\pm 1|a_0$ we only have to try ± 1 for r. Since $p(1) \neq 0$ and $p(-1) \neq 0$, we can conclude that $p(x)$ has no roots in Z, and is irreducible.

PROPERTY. Let I be a principle ideal of a ring R. We have the following maps:

$$
R[x] \to R/I[x]
$$

$$
p(x) \mapsto p(x)
$$

Where $p(x)$ denotes $p(x)$ reduced with respect to the ideal I.

Let $p(x)$ be monic, and non constant. If there is no factorization of $p(x)$ into polynomials of lower degree, then $p(x)$ cannot be factored into polynomials of strictly lower degree $\in R[x]$.

PROOF. Suppose that $p(x)$ is reducible in $R[x]$. Thus,

$$
p(x) = a(x)b(x), a(x), b(x) \neq
$$
 constants

Then,

$$
p(x) = a(x) \cdot b(x)
$$

Is a factorization of $p(x)$ into polynomials of strictly lower degree, since $deg(p(x)) = deg(p(x))$ (which follows from p(x) being monic and I being a proper ideal, which ensures that there are no units in I). \Box

Example.

$$
x^2 + x + 1 \in \mathbb{Z}
$$

Reduce this polynomial by the ideal $I = 2\mathbb{Z}$. Since this polynomial has no roots in $\mathbb{Z}/2\mathbb{Z}[x]$, it has no factorization in $\mathbb{Z}[x]$ and is thus irreducible.

Example.

$$
x^2 + 1 \in \mathbb{Z}[x]
$$

And let $I = 3\mathbb{Z}$. $x^2 + 1$ has no roots in $\mathbb{Z}/3\mathbb{Z}$, so $x^2 + 1$ is irreducible in $\mathbb{Z}[x]$ since it is irreducible in $\mathbb{Z}/3\mathbb{Z}[x]$. Notice that we should not allow $I = 2\mathbb{Z}$, because this polynomial does have roots in $\mathbb{Z}/2\mathbb{Z}[x]$. However the existence of roots in the quotient group is not enough to show that $p(x)$ is reducible in $\mathbb{Z}[x]$.

CHAPTER 5

Eisenstein's Criterion

The following is a theorem refered to as Eisenstein's Criterion:

THEOREM 14. Let R be a ring, P a prime ideal, and

$$
p(x) = x^{n} + c_{n-1}x^{n-1} + \dots + c_{0}
$$

Where $c_i \in P$ and $c_0 \notin P^2 = (P \cdot P)$. Then, $p(x)$ is irreducible in R[x].

PROOF. Suppose that $p(x)$ is reducible in $R[x]$, say

$$
p(x) = a(x)b(x)
$$

Where $a(x)$ and $b(x)$ are nonconstant polynomials. Reducing this equation modulo P and using the assumptions on the coefficients of $p(x)$ we get the equation:

$$
x^n = a(x)\overline{b}(x) \in (R/P)[x]
$$

Where the bar denotes the polynomials with coefficients reduced with respect to the prime ideal P. Since P is prime, we know that R/P is an integral domain, and it follows that the constant terms of both $a(x)$ and $b(x)$ are elements of P, and thus $a(x)$ and $b(x)$ have 0 as their constant terms. But if this were true, it would follow that the constant term c_0 of $p(x)$ would be the product of two elements of P, and thus be an element of P^2 , a contraction.

 \Box

This is commonly applied to $\mathbb{Z}[x]$, and the result is stated explicitly below:

COROLLARY. Let p be a prime in $\mathbb Z$ and let

$$
p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_0 \in \mathbb{Z}[x], n \ge 1
$$

Suppose that p divides a_i for all i, but that p^2 does not divide a_0 . From this we can conclude that $p(x)$ is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.

Example. Take the following polynomial:

$$
x^6 + 1 - x^4 + 15x + 5
$$

Notice that the prime number 5 divides 10,15, and 5, but 5^2 does not divide 5. Thus, this polynomial is irreducible. The same idea applies to a polynomial in the following form:

$$
x^n-p
$$

Where p is prime, because p^2 does not divide p.

REMARK. Recall that if $F[x]$ is a ED, it is then also a PID and therefore a UFD. Given $f(x) \in F[x]$, we know that $f(x)$ is irreducible if and only if the ideal generated by $f(x)$ is maximal; $(f(x))$ is maximal. This is due to the fact that if $(f(x))$ is maximal it would cause $F[x]/(f(x))$ to be a field, and we know that $f(x)$ has a root α if and only if $x - \alpha | f(x)$, which would happen since $F[x]/(f(x))$ is a field. Through induction, we see that $f(x)$ has roots $\alpha_1, \alpha_2, ... \alpha_n$ if and only if $(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)|f(x)$.

One consequence of this is that:

$$
n = deg[(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)]
$$

- = The number of roots in the set $\{\alpha_1, \alpha_2, ..., \alpha_n\}$
- $=$ The number of roots of $f(x) \le$ than the degree of f.

CHAPTER 6

Modules and Algebras

DEFINITION 22. Let R be a ring. A left R-module is an abelian group $(M, +)$ with a function from:

$$
R \times M \to M, \quad (r, m) \mapsto r \cdot m
$$

Such that the following properties hold:

(1) $(r \cdot s)$ **m** = $r(s \cdot \mathbf{m})$

(2) $(r + s)$ **m** = r **m** + s **m**

(3) $r \cdot (\mathbf{m} + \mathbf{n}) = r\mathbf{m} + r\mathbf{n}$

For all $r, s \in R$ and $\mathbf{m}, \mathbf{n} \in M$. Also, if $1 \in R$, we demand that $1 \cdot m = m$.

DEFINITION 23. Suppose that $R = (\mathbb{R}, +, \cdot)$ and that $M = \mathbb{R}^n = \{(v_1, v_2, ..., v_n) | v_i \in$ \mathbb{R} . Thus, M is an abelian group under addition, and:

$$
\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
$$

Under the mapping

$$
(r, (v_1, v_2, ..., v_n)) \mapsto (rv_1, rv_2, ..., rv_n)
$$

This defines a left R module.

More generally, left $\mathbb R$ modules are called $\mathbb R$ -vector spaces. Even more generally, if F is a field, left F-modules are the same as right F-modules, or "vector spaces over F".

EXAMPLE. If R is a ring, then R is an abelian group under addition, and $M = R$ is a left R-module under the mapping

$$
R \times R \to R \quad (r, m) \mapsto (r \cdot m)
$$

Which holds by associativity and the distributive law thanks to the ring structure of R.

EXAMPLE. A submodule of a left R-module M is a subgroup $N \subseteq M$ such that:

$$
R \times N \to R \times M \to M \to N
$$

Where the last arrow really implies that the action of R on the subgroup N of M has an image back in N, and it's function defines a left R-module.

We claim that submodules of vector spaces are really what we've called subspaces.

Example. What are the submodules of the R-module R? Well, we need a subgroup $S \subseteq R$ such that

$$
R \times S \to R \times R \to R \to S
$$

i.e., if $r \in R$, $s \in S$, $r \cdot s \in S$ so S is a subring of R and a left ideal of R.

Example. If F is a field, define:

$$
F^n = \{a_1, a_2, ..., a_n | a_i \in F\}
$$

 $Fⁿ$ is then a F-vector space under the following map:

$$
F \times F^n \to F^n \quad (\alpha, (a_1, a_2, ..., a_n)) \mapsto (\alpha a_1, \alpha a_2, ..., \alpha a_n)
$$

E.g., $(\mathbb{Z}/p\mathbb{Z})^n$ is a $\mathbb{Z}/p\mathbb{Z}$ vector space.

Similarly, we can define for any ring R and $n \in \mathbb{N}$ a left R-module:

$$
R^n = \{a_1, a_2, ..., a_n | a_i \in R\}
$$

Notice that if $n=1$, this is the same as the example above in which R is a left R-module over itself. This module is called a "free left R-module of rank n ".

EXAMPLE. Let $R = \mathbb{Z}$. A natural question to ask is, what are \mathbb{Z} modules? Our claim is that a \mathbb{Z} -module is exactly an abelian group.

PROOF. By definition, every Z-module is an abelian group. Conversely, suppose that $(M, +)$ is an abelian group. We can make $(M, +)$ into a \mathbb{Z} module in the following way:

$$
\mathbb{Z} \times M \to M \quad (k, m) \mapsto \underbrace{m + m + m + \dots + m}_{k \text{ times}}
$$

This map satisfies the following properties:

(1) $j(k \cdot m) = (jk)m$ (Follows from the properties of group addition)

(2) $(j + k)m = (jm + km)$ (Follows from associativity)

(3) $m(j + k) = mj + km$ (Follows from M being an abelian group)

 \Box

Example. Fix an F-vector space V. Consider S, an abelian group under composition:

 $S = \{T|T: V \to V \text{ is a linear isomorphism}\}\$ $T(a+b) = T(a)+T(b)$ and $T(c\dot{a}) = c \cdot T(a)$ Now consider the ring $F[x]$. We can define an $F[x]$ -module structure on S in the following way:

$$
F[x] \times S \to S
$$

e.x.: $(x^2+3x+2, T) \mapsto T \circ T + 3T + 2 \cdot Id$ (remember that the sum of linear transforms is still a linear transform). In other words, we're defining a map as follows:

$$
(p(x), T) \mapsto p(T)
$$

It needs to be checked that the conditions for a valid module structured are upheld here, it's unclear whether or not they are.

DEFINITION 24. Let R be a ring with 1_R . An R-Algebra is a ring A with 1_A , together with a ring homomorphism

$$
f: R \to A
$$

Such that:

 $(1) f(1_R) = 1_A$ (2) $f(R) \subseteq$ the center of A

An alternative definition is as follows: An R-Algebra is a ring A with 1_A that is also an R-module, and for $a, b \in A, r \in R$ the following is true:

$$
r \star (a \cdot b) = (r \star a) \cdot b
$$

Where \cdot denotes the action in the module A and \star denotes the action in the ring R. The idea behind an algebra is that it supports a type of compatibility between the Algebra's operation and the Module's operation.

EXAMPLE. Let $R = \mathbb{R}$, and let $A = n x n$ matrices with coefficients in \mathbb{R} . A is a ring under addition and multiplication, and it has an identity, which we will denote 1_A . A is an R-module,

$$
\mathbb{R} \times A \to A \quad (r, [a_{ij}]) \to [r \cdot a_{ij}]
$$

Notice that:

$$
r([a_{ij}]\cdot [b_{ij}]) = ([r \cdot a_{ij}])\cdot [b_{ij}]
$$

so, A is also an R-Algebra.

EXAMPLE. Let $R = \mathbb{R}$, and let A= functions from $\mathbb{R} \to \mathbb{R}$ under multiplication. The identity for A will be the constant function, $f(x)=1$. Thus we have a map:

$$
\mathbb{R} \times A \to A \quad (r, f) \mapsto rf
$$

This defines a module. Moreover, A is an R-algebra because it satisfies the extra conditions in the definition of an Algebra.

Our claim is now that our first definition implies our second definition.

PROOF. Given:

$$
f: R \to A
$$

A ring homomorphism, we want to define an R-module on A such that:

$$
R \times A \to A
$$

(r, a) \mapsto $f(r) \cdot a$ =: $r \star a$
the *l* represents multiplication in A where \star is in the modul

the '·' represents multiplication in A le structure

Why does this homomorphism happen to define an R-module? Consider the following for $r, s \in R$ and $a \in A$:

$$
r \star (s \star a) = f(r) \cdot (f(s) \cdot a))
$$

= $(f(r) \cdot f(s))a$
= $f(rs) \cdot a = (rs) \star a$

Where we use the fact that (f) is a ring homomorphism in line 2. From this we can conclude the following:

- (1) $1_R \cdot a = f(1_R) \cdot a = 1_A \cdot a = a$
- (2) $f(r) \cdot a = a \cdot f(r) \quad \forall r \in R, a \in A$
- (3) $r \star (a \cdot b) = f(r) \cdot (a \cdot b) = (f(r) \cdot a) \cdot b = (r \star a) \cdot b$

Using these properties, we can show that the definitions are compatible. Suppose that we are given a ring R with 1_R , an R-module A with 1_A , and let $r(ab) = (ra)b$. We then define the following map:

$$
f: R \to A \quad \text{so that} f(1_R) = 1_A
$$

$$
f(r) = f(r \cdot 1_R) = f(r) \cdot f(1_R) = f(r) \cdot 1_A
$$

Now using the map that we've defined, we can do the following:

$$
R \times A \to A \quad (r, a) \mapsto r \star a
$$

Where the operation \star denotes how an element of R acts on an element of the R-module A. If we also define:

$$
f(r) = r \star 1_A
$$

We can show that f is a ring homomorphism in the following way:

$$
f(r \cdot s) = (r \cdot s) \star 1_A \stackrel{Def.2}{=} r \star (s \star 1_A)
$$

$$
= r \star f(s)
$$

$$
= r \star (1_A \cdot f(s))
$$

$$
= r \star 1_A \cdot f(s)
$$

$$
= f(r) \cdot f(s)
$$

And since $f(r) = r \star 1_A$, we know that:

$$
f(1_R) = 1_R \star 1_A = 1_A \quad \text{since } 1_R \cdot a = a \quad \forall a \in A
$$

The last question we need to ask is if $f(r) \in \mathcal{F}$ the Center of A. In other words, is the following true:

$$
f(r) = (r \star 1_A) \in C_A \Rightarrow (r \star 1_A) \cdot a = a \cdot (r \star 1_A)
$$

This can be shown to be true.

DEFINITION 25. Let M and N be R-modules. An R – module homomorphism is a group homomorphism:

$$
f: M \to N
$$
 such that $f(r \cdot m) = r \cdot f(m)$ $\forall r \in R, m \in M$

Example. Z-modules are abelian groups, and Z-module homomorphisms are exactly group homomorphisms as we're used to them:

$$
K \in \mathbb{Z}, \quad f(K \cdot g) = \underbrace{f(g + \dots + g)}_{\text{K times}} = \underbrace{f(g) + \dots + f(g)}_{\text{K times}} = Kf(g)
$$

$$
\overline{a}
$$

EXAMPLE. Let F be a field, and let $R = F[x]$. Given V, an F-vector space, if:

$$
T: V \to V
$$

is a linear transform and $p(x) \in F[x]$ where

$$
p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0
$$

Let

$$
p(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 \cdot Id
$$

Where a linear transform to a power n is equal to the following:

$$
T^n = \underbrace{T \circ T \circ T \dots \circ T}_{n}
$$

Notice that if $p(x), q(x) \in F[x]$ the following is true:

$$
(p \cdot q)(T) = p(T) \cdot q(T)
$$

which makes the set of linear transforms into an $F[x]$ -module. If you fix a given T once and for all, you see that $p(T)$ is a linear transform,

$$
p(T): V \to V
$$

which gives us a function

$$
F[x] \times V \to V \quad (p(x), v) \mapsto [p(T)](v) =: p \cdot v
$$

Which makes V into an $F[x]$ -module. To prove this, we have to check the following:

$$
(1) (p \cdot q) \cdot v = (p \cdot q)(T)v = (p(T) \cdot q(T)) \cdot v = p(T) \cdot (q(T)v) = p \cdot (q \cdot v)
$$

(2) $(p+q) \cdot v = (p(T) + q(T)) \cdot v = p(T)v + q(T)v = p \cdot v + q \cdot v$

for $p, q \in F[x]$ and $v \in V$. It can similarly be shown that

$$
p \cdot (v_1 + v_2) = p \cdot v_1 + p \cdot v_2
$$

So the distributive law holds up under our scrutiny, and V is indeed a $F[x]$ module.

EXAMPLE. Let T=0, then $p(T) = a_0 \cdot Id$. Then,

$$
F[x] \times V \to V \quad (p, v) \mapsto p(T)(v) = a_0 I dv = a_0 \cdot v
$$

EXAMPLE. Let T=Id. Then, $p(T)(v) = (a_n + a_{n-1} + ... + a_1 + a_0)v$. We can then derive the following fact:

 ${V, \text{ an } F[x] \text{ Module}} \leftrightarrow {V, \text{ an } F\text{-vector space and } T: V \to V, \text{ a linear transform}}$

DEFINITION 26. Let A and B be left R -modules. We define a new set $Hom_R(A, B)$ in the following way:

$$
Hom_R(A, B) = \{f | f : A \to B \text{ where } f \text{ is a group homomorphism } f(r \cdot a) = r \cdot f(a)\}
$$

$$
= \{f | f \text{ is an } R\text{-module homomorphism from } A \text{ to } B\}
$$

It is natural to wonder about the structure of this set $Hom_R(A, B)$. For starters, we can show that:

 $Hom_R(A, B)$ is an abelian group

This property comes from the following:

 $(f[+_{\in Hom_R(A,B)}]g)(a) = f(a)[+_{\in B}]g(a)$

And since we know that the addition of homomorphisms is abelian, putting that together with the fact that B must be an abelian group under addition, we see that $Hom_R(A, B)$ is abelian. Through this we can see that the inverse of a function $f \in Hom_R(A, B)$ is simple $-f$. Since it can also be shown that:

$$
f+g \in Hom_R(A, B)
$$
 and $-f \in Hom_A(A, B)$

Looking at $Hom_R(A, B)$, we see that it's actually an abelian group. Another natural question is "is $Hom_R(A, B)$ a natural R-module?" We have the following candidate for a map:

$$
R \times Hom_R(A, B) \to Hom_R(A, B) \quad (r, f) \mapsto r \cdot f
$$

Where

$$
(r \cdot f)(a) = r \cdot f(a)
$$

To show that $Hom_R(A, B)$ qualifies as a valid R-module, we have to show the following:

$$
r \cdot (s \cdot f) \stackrel{?}{=} (r \cdot s) \cdot f
$$

Which can be shown through the following:

$$
(r \cdot (s \cdot f))(a) =
$$

= $r \cdot (s \cdot f)(a)$
= $r \cdot (s \cdot f(a))$
= $(r \cdot s) \cdot f(a)$
= $((r \cdot s) \cdot f)(a)$

And since the other qualifications are the distributive laws, where:

$$
(r+s)\cdot f = r\cdot f + s\cdot f
$$

And

$$
r \cdot (f + g) = r \cdot f + r \cdot g
$$

We omit their proofs but acknowledge that they hold. Now we check that:

$$
r \cdot f \in Hom_R(A, B) \text{f} f \in Hom_R(A, B)
$$

The group homomorphism properties hold, and we have to prove the following:

$$
(r \cdot f)(s \cdot a) \stackrel{?}{=} s \cdot (r \cdot f)(a) \text{ for } r, s \in R, a \in A,
$$

We know the following through the properties of a homomorphism on this structure:

 $(r \cdot f)(s \cdot a) = f \cdot f(s \cdot a) = r \cdot (s \cdot f(a))$ since f is a R-module homomorphism

$$
= r \cdot (s \cdot f(a))
$$

Which we would like to equal:

 $= s \cdot (r \cdot f(a))$

Which we can see would happen when the ring R is commutative. So, we see that $Hom_R(A, B)$ is a natural R-module when R is a commutative ring. Otherwise, we can't assume that this works. In summary,

If R is commutative, then $Hom_R(A, B)$ is a left R-module

EXAMPLE. If F is a field, then $Hom_R(V, W)$ is an F-vector space for any F-vector spaces V and W. This follows naturally from F being a commutative ring.

Observe the following:

$$
Hom_R(A, B) \times Hom_R(A, B) \to Hom_R(A, C) \quad (f, g) \mapsto g \circ f
$$

And notice that

$$
g \circ f(r \cdot a) = g(r \cdot f(a)) = r \cdot g(f(a)) = r \cdot (g \circ f)(a)
$$

Take the special case:

$$
Hom_R(A, A) \times Hom_R(A, A) \to Hom_R(A, A) \quad (f, g) \mapsto g \circ f
$$

Which is a associative, non-commutative operation. The R-module homomorphism $f : A \to A$ given by $f(a) = a$, i.e. the identity homomorphism, will be the identity for composition under this operation. From this structure, we have the following result:

 $Hom_R(A, A)$ is a ring under addition, and composition, or $(R, +, \circ)$

This is defined as the Endomorphism ring of A.

We know the following:

 $Hom_R(A, B)$ is an R-module if R is commutative.

 $Hom_R(A, B)$ is a ring under addition and function composition.

Notice that both of these are true for $Hom_R(A, A)$ as a special case of $Hom_R(A, B)$. Together, these two statements define an R-algebra:

$$
r \cdot (f \circ g) = (r \cdot f) \circ g = f \circ (r \cdot g)
$$

EXAMPLE. Take the case where F is a field, and let $A=V$, a F -vector space. Thus, $Hom_F(V, V)$ is an F-algebra. If $V = \mathbb{R}^n$, $Hom_F(V, V) = M_{n \times n}$ We have the following operations that allow $Hom_F(V, V)$ to be an F-algebra:

- (1) Normal addition, +
- (2) Multiplication of matrices
- (3) Scalar multiplication of matrices

If A is an R-module and B is a submodule, we have the following:

$$
R \times A/B \to A/B \quad (r, a+B) \mapsto r \cdot a + B
$$

Which is a well defined map, and defines an R-module. A/B is then called 'the quotient module'.

EXAMPLE. Consider the $M_{n \times n}$ modules \mathbb{R}^n . We then know the following about $A, B \in M$ and $v, w \in \mathbb{R}^n$:

(1)
$$
A(Bv) = (AB)v
$$

(2)
$$
A(v + w) = Av + AW
$$

(3)
$$
(A + B)v = Av + Bv
$$

Allow a map $A : \mathbb{R}^n \to \mathbb{R}^n$ to be \mathbb{R} – *linear*. This means that:

$$
A(v + w) = Av + Aw
$$
 and
$$
A(c \cdot v) = c \cdot (Av)
$$

When is A considered and $M_{n\times n}$ module homomorphism? It turns out that this holds if and only if:

$$
\forall x \in M_{n \times n} \quad A(Xav) = \underbrace{x}_{\text{in Ring a linear Map vector}} (\underbrace{A}_{\text{wey}} v_{\text{in Ham}})
$$

So, $Ax = xA$ $\forall x \in M_{n \times n}$ when x is in the center of $M_{n \times n}$.

As already mentioned, if $N \subseteq M$ and $N \triangleleft M$, then we know that M/N is a quotient module, which implies that we have a map:

$$
R \times M/N \to M/N \quad (r, a+N) \mapsto ra+N
$$

If $f : M \to N$ is an R-module homomorphism, where M and N are any R-modules, we define the following sets, similar to ring theory:

$$
Ker(f) = \{ m \in M | f(m) = 0 \} \quad \text{(is a submodule of M)}
$$

$$
Im(f) = \{f(m)|m \in M\}
$$
 (which is a submodule of N)

As in the case of rings and groups, we see that the $Ker(f) \lhd M$, or it is an "ideal". We then have the following definition for the 1^{st} isomorphism theorem:

DEFINITION 27. The 1^{st} isomorphism Theorem: If

 $f: M \to N$ is an R-module isomorphism, then

$$
M/Ker(f) \xrightarrow{\varphi} Im(f) \quad m + M \mapsto f(m)
$$

Is an isomorphism of R-modules.

EXAMPLE. Given R, a ring, and $R^n = \{(r_1, r_2, ..., r_n)|r_i \in R\}$ is an R-module. We have the following map:

$$
\pi_i: R^n \longrightarrow R \quad \pi_i(r_1, r_2, ..., r_n) \mapsto r_i
$$

Where π_i is clearly a surjective R-module homomorphism. We see that:

$$
Ker(\pi_i) = \{(r_1, r_2, ..., 0 \cdot r_i, ... r_n)| r_i \in R\}
$$

So using the 1^{st} isomorphism theorem, we see that:

$$
R^n/Ker(\pi_i)\cong Im(\pi_i)=R
$$

e.g., let the ring $R=\mathbb{R}$. Then we have a map:

$$
i: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \quad (x, y) \mapsto (x, y, 0)
$$

Then considering the map π_i on this structure, we have the following:

$$
\pi_3:\mathbb{R}^3\longrightarrow\mathbb{R}
$$

so from this, we can conclude that:

$$
R^3/Ker(\pi_i) = R^3/Im(i) \cong R
$$

Where this is an R-module isomorphism.

REMARK. If A is an R-algebra, then we have the following:

 $a \times b = a \cdot b - b \cdot a$ which is called a lie algebra.

Interestingly, this will always satisfy the Jacobi identity,

$$
(a \times b) \times c + (c \times a) \times b + (b \times c) \times a = 0
$$

CHAPTER 7

Operations on R-Modules

Let $N_1, N_2, \ldots N_k$ be R-modules. Then, we have the following:

$$
N_1 + N_2 + \dots + N_k = \{r_1a_1 + r_2a_2 + \dots r_ka_k | r_i \in R, a_i \in N\}
$$

which can be thought of as "all linear combinations" of the elements from the R-modules. If A is any subset of M, we have the following:

$$
RA = \{r_1a_1 + \dots + r_na_n | n \in \mathbb{N}, r_i \in R, a_i \in A\}
$$

Which we call the "submodule of M generated by A", a subset of the Rmodule M. If N is a submodule of M, we say that N is 'finitely generated' if N=RA, where A is a finite subset of M.

If $A = \{a\}$, we'll write Ra for RA. We say that N is 'cyclic' if N=Ra for some $a \in A$.

EXAMPLE. Let the ring $R = \mathbb{Z}$. We know that \mathbb{Z} -modules are abelian groups. If M=G is an abelian group, we say that:

$$
N = \mathbb{Z} \cdot a \quad \text{for some a}
$$

= {0, ±a, ±2a, ±3a...}
= a cyclic subgroup generate by $a \in M$

Which implies that N is finitely generated for an R-module. We see that the term "finitely generated for an R-module" is equal to the term "finitely generated for a group".

Example. Let R be a ring, and let the R-module M be the R-module R. We now ask, what are the cyclic submodules of R? Recall that an Rsubmodule of R is exactly a left ideal I of R. Thus, I is cyclic if and only if $I = R \cdot a$ for some $a \in A$, or in other words, if I is a principal idea.

EXAMPLE. Surprisingly, it turns out that a submodule of a finitely generated module need not be finitely generated. Suppose that a ring R has some element 1. Thus, R is a cyclic R-module, since $R = R \cdot 1$. Now let R be the ring:

$$
\mathbb{Q}[x_1, x_2, x_3, \ldots]
$$

This ring is a cyclic R-module since it's generated by the element 1. Now consider the following:

$$
R \cdot x_1
$$
 is a submodule of R
\n $R \cdot x_2$ is a submodule of R
\n $R \cdot x_3$ is a submodule of R
\n \vdots

Now consider the 'linear combinations' of the submodules of R, which looks like the following:

 $Rx_1 + Rx_2 + Rx_3 + \ldots =$ polynomials without a constant term

This is a $R = \mathbb{Q}[x_1, x_2, \ldots]$ -module! But, the claim is that this module is not finitely generated. This is because we claim there exists an infinite number of variables, whereas if you tried to use a finite number of generators, you would miss out on variables. And naturally, you can't use any constant terms, since this combination has no constant terms.

DEFINITION $28.$ Let M and N be left R-modules. We define the direct sum in the following way:

$$
M \oplus N = \{(m, n) | m \in M, n \in N\}
$$

To be an abelian group under the following operation:

$$
(m_1, n_1) + (m_2, n_2) = (m_1 + m_2, n_1 + n_2)
$$

 $M \oplus N$ is a left R-module by the following formula:

$$
r \cdot (m, n) = (r \cdot m, r \cdot n)
$$

$$
r \cdot (s \cdot (m, n)) = (rs) \cdot (m, n)
$$

Which allows for the two distributive laws.

EXAMPLE. Consider \mathbb{R}^n as an R-module, where $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R}$, and $\mathbb{R}^n = \mathbb{R} \oplus \mathbb{R} \dots \oplus \mathbb{R}$ There turns out to be a fairly obvious isomorphism of \overbrace{n} n

R-modules as follows:

$$
(M \oplus N) \oplus P \longrightarrow M \oplus (N \oplus P) \quad ((m, n), p) \longmapsto (m, (n, p))
$$

Also notice that $M \oplus N \cong N \oplus M$ under the simple isomorphism:

$$
(m, n) \mapsto (n, m)
$$

Also notice that {0} is an R-module, and that:

$$
M \oplus \{0\} \cong \{0\} \oplus M \cong M, \quad (m,0) \longleftrightarrow (0,m) \longleftrightarrow m
$$

REMARK. Notice that there aren't always inverses!

$$
M\oplus ?\cong 0
$$

It turns out nothing can really fit in to the '?' spot- this isomorphism holds only when $M \cong \{0\}$, which isn't really the most interesting example.

DEFINITION 29. Given $\{M_1, M_2, ...\}$, countably many¹ Manifolds, let:

$$
M_1 \oplus M_2 \oplus \ldots := \underset{k=1}{\overset{\infty}{\oplus}} M_k = \underset{k \ge 1}{\oplus} M_k
$$

:= $\{(m_1, m_2, ...) \mid m_i \in M \forall \text{ but finitely many } m_i \text{ are zero }\}$

Where we impose the following restrictions on operations:

- (1) Addition will be defined entry-wise
- (2) A left R-module multiplication on $\bigoplus_{k\geq 1} M_k$ is defined entry wise

An example of this could be $\bigoplus_{k\geq 1} \mathbb{R}$.

DEFINITION 30. Letting M and N be left R-modules, we define the direct product in the following way:

$$
M_1 \underset{direct\ product}{\times} M_2 \times ... =: \prod_{k \ge 1}^{\infty} M_k = \prod_{k \ge 1} M_k
$$

$$
=:\{(m_1,m_2,...|m_i\in M_i\}
$$

Where addition and left R-module structure operations are defined as they were for \oplus ; entry-wise.

Example. Consider:

$$
(1,0,1,0,1,0,...) \in \prod_{k \ge 1} \mathbb{R}
$$

But, notice that:

$$
(1,0,1,0,1,0,\ldots)\notin\underset{k\geq 1}{\oplus}\mathbb{R}
$$

Because infinitely many $m_i = 0$.

REMARK. But, the following is true:

$$
\bigoplus_{k\geq 1} M_k \subseteq \prod_{k\geq 1} M_k
$$

EXAMPLE. As we know, $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}\$. Considering the elements of $\bigoplus_{k \geq 1} M_k$ and $\prod_{k\geq 1} M_k$, suppose we try to write out all the elements of $\prod_{k\geq 1} \overline{\mathbb{Z}_2}$:

$$
\begin{aligned} &\mathbf{a_1}, a_2.a_3.a_4, \dots \\ &b_1, \mathbf{b_2}, b_3, b_4, \dots \\ &c_1, c_2, \mathbf{c_3}, c_4, \dots \\ &d_1, d_2, d_3, \mathbf{d_4}, \dots \end{aligned}
$$

¹In mathematics, a countable set is a set with the same cardinality (number of elements) as some subset of the set of natural numbers. A set that is not countable is called uncountable

Now consider the following new element, $x \in \prod_{k \geq 1} \mathbb{Z}$:

$$
x = (a_1 + 1), (b_2 + 1), (c_3 + 1), (d_4 + 1), \dots
$$

However, since we've assumed that $x \in \prod_{k\geq 1} \mathbb{Z}_2$, we claim that x wasn't in our original list! Thus, we see that $\prod_{k\geq 1}^{\infty} \mathbb{Z}_2$ isn't countable. Clearly, $x \notin \prod_{k\geq 1} \mathbb{Z}_2$, since it (x) may have infinitely many zeros.

EXAMPLE. If R is a ring, the n-fold direct sums of R with itself: $R^n =$ $R \oplus R \oplus ... \oplus R$ are called free R-modules of rank n. The intuitive notion is \overbrace{n}

that M is free of rank n if there exist n elements $e_1, e_2, ...e_n$ in M such that for any $x \in M$ there exist unique $r_1, r_2, ... r_n \in R$ such that $r_1e_1+r_2e_2+...r_ne_n =$ x. The idea is similar to having a basis on a vector space.

Notice that R^n is free of rank n, since we can let $e_i = (0_1, 0_2, \ldots, 1_i, \ldots)$ for all i. Then,

$$
x = (x_1, x_2, x_3, \dots, x_n) = (x_1 \cdot 1, x_2 \cdot 1, x_3 \cdot 1, \dots, x_n \cdot 1)
$$

THEOREM 15. Let the ring R be a field, called F . Then we have the following theorem, which we won't prove:

n-dimensional F-vector spaces $\xleftrightarrow{1-1}$ free F-modules of rank n

EXAMPLE. Notice that $\bigoplus_{k\geq 1} R$ or $\prod_{k\geq 1} R$ are not free of rank n for any $n \geq 1$.

EXAMPLE. Given \mathbb{Z}_6 as a \mathbb{Z} -module, we see that it is not free of rank n. This is due to the fact that an element of \mathbb{Z}_6 can be represented through a non-unique way through multiplication or addition of other elements. I,e, for any $e_1 \in \mathbb{Z}_6$, the following is true:

$$
x = r_1 \cdot e_1 = r_2 \cdot e_1 \quad \text{where } r_1 \neq r_2
$$

No matter how we chose $e_1 \in \mathbb{Z}_6$:

 $r_1 \cdot d_1 = (r_1 + 6)e_1$, $r_1 \neq r_1 + 6 \in \mathbb{Z}$ since it's a \mathbb{Z} -modules

So, \mathbb{Z}_n is not a free $\mathbb Z$ module. As seen in the homework, if we took an abelian group G that has torsion (which means that there exist elements of finite order, i.e. $n \cdot y = 0$) then G is not free. This argument holds even if n is prime.

FACT. M is free of rank n if and only if:

$$
M \cong R^n
$$

$$
M \longrightarrow N, \quad x = r_1 e_1 + r_2 e_2 + \dots + r_n e_n \mapsto (r_1, \dots r_n)
$$

EXAMPLE. Consider $\mathbb Q$. Since $\mathbb Q$ is abelian and therefore a Z-module, we know that $\mathbb Q$ is not free of any rank. What this implies is that for any finite collection of primes, the following cannot be done uniquely:

$$
\frac{a}{b}=c_1 \frac{1}{p_1} + c_2 \frac{1}{p_2} + \ldots + c_k \frac{1}{p_k}
$$

Which is true because the denominator 'b' may just be the next prime, p_{k+1} . And, if you take an infinite list of primes, you lose the property of uniqueness, showing that $\mathbb Q$ is not free.

The motivation for ⊗ is the following:

 $(-,-): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

DEFINITION 31. Given x,y , their direct product is taken as follows:

 $(x, y) = x_1y_1 + x_2y_2 + \ldots + x_ny_n$

This definition admits the following properties:

(1) $(\alpha xy) = (x, \alpha y) \forall \alpha \in \mathbb{R} = \alpha(x, y)$ (2) $(x + z, y) = (x, y) + (z, y)$ (3) $(x, y + z) = (x, y) + (x, z)$

Also, notice that $(x + z, y + w) \neq (x, y) + (z, w)$.

Consider the following idea: If M and N are R-modules (where R is a commutative ring with 1) the elements of $M \otimes_R N$ are sums:

$$
m_1\otimes r_1+\ldots+m_k\otimes r_k
$$

With the following properties:

- (1) $(r \cdot m_1) \otimes n_1 = m_1 \otimes (r \cdot n_1) =: r \cdot (m \otimes n)$
- (2) $m_1 \otimes n_1 + m_2 \otimes n_1 = (m_1 + m_2) \otimes n_1$
- (3) $m_1 \otimes n_1 + m_1 \otimes n_2 = m_1 \otimes (n_1 + n_2)$

Example. The inner product on vector space is exactly an R-module homomorphism:

$$
\mathbb{R} \otimes_\mathbb{R} \mathbb{R} \longrightarrow \mathbb{R}
$$

Let M be a left R module, where

$$
(r, m) \mapsto r \cdot m \in M
$$

The question is, given some new operation \star , with the following definition:

$$
m \star r \stackrel{definition}{=} r \cdot m
$$

does this operation make M into a right R module? Well, we know the following to be true:

(1) $(m_1 + m_2) \cdot r = r \cdot (m_1 + m_2) = m_1 \star r + m_2 \star r$ (2) $m \star (r_1 + r - 2) = m \star_1 + m \star r_2$

But is the following true?

$$
(m \star r_1) \star r_2 \stackrel{?}{=} m \star (r_1 \star r_2)
$$

It turns out that generally, this property holds. Unless, R is communativein which case, ever left R module is naturally a right R module by defining this new operation as such.

DEFINITION 32. A (R, S) -bimodule is an abwelian group M such that:

- (1) M is a left R-module
- (2) M is a right S-module
- (3) $(r \cdot m) \cdot s = r \cdot (m \cdot s)$

Example. If R is communative, every left R-module is naturally a (R,R)-bimodule. Take for example:

$$
M_{n\times n}(\mathbb{C})
$$

Which is a left C-module, and is a right $M_{n\times n}$ R-module. I.e., we ask the following question:

$$
((a+bi)\cdot A)\cdot B\stackrel{?}{=} (a+bi)(A\cdot B)
$$

Where A is a matrix with complex entries, and B is a matrix with real entries. It turns out that this equality holds, which implies that

$$
M_{n\times n}
$$
 is a $(\mathbb{C}, M_{n\times n}(\mathbb{R}))$ -bimodule

Example. If A is an R-algebra, we know the following about elements $r \in R, a_1, a_2 \in A$:

$$
r \cdot (a_1 \cdot a_2) = (r \cdot a_1) \cdot a_2
$$

Which impleis to us that A is in fact a (A, A) -bimodule, where we have the following:

$$
A \times A \quad (a_1, a_2) \mapsto a_1 \cdot a_2
$$

It is clear that thsis map satisfies all necessary properties to qualify as a bimodule. Also notice that A itself is an (R,A)-bimodule, since

$$
r_1(a_1 \cdot a_2) = (r \cdot a_1) \cdot a_2
$$

Suppose we have the following two bimodules: M, an (R,S)-bimodule, and N a (S,T) -bimodule. We then claim that there exists a new (R,T) bimodule, called:

$$
M\otimes_S N
$$

Which is defined by the following free abelian group:

 $(M \times N)/$ {subgroup generated by all:

 $(m_1+m_2, n)-(m_1, n)-(m_2, n), (m, n_1+n_2)-(m, n_1)-(m, n_2), (ms, n)-(m, sn)\}$ The reason for quotienting out by those subgroups is because we want this new operation ⊗ to satisfy a few nice properties, namely:

- (1) $ms \otimes n m \otimes s \cdot n = 0$
- (2) $(m_1 + m_2) \otimes n m_1 \otimes n m_2 \otimes n = 0$
- (3) $m \otimes (n_1 + n_2) m \otimes n_1 m \otimes n_2$

We will write the representatives for the equivelance classes as:

$$
\sum m_i\otimes n_i
$$

R acts on $M \otimes_S N$ on the left by the following:

$$
(r,\sum m_i\otimes n_i)\mapsto(\sum r\cdot m_i\otimes n_i)
$$

Similarly, T acts on $M \otimes_S N$ on the right by:

$$
(\sum m_i\otimes n_i,t)\mapsto (\sum m_i\otimes n_i\cdot t)
$$

REMARK. If $0 \in M$, and $n \in N$, then:

$$
0\otimes n\in M\otimes N
$$

Is equivelant to 0. This follows from:

$$
0 \otimes n =
$$

= $(0+0) \otimes N =$
= $0 \otimes N + 0 \otimes N$
 $\Rightarrow 0 = 0 \otimes N$

EXAMPLE. Consider \mathbb{Z}_2 as a (\mathbb{Z}, \mathbb{Z}) bimodule. We then notice that:

$$
\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 = \{ \underbrace{0 \otimes 0, 0 \otimes 1, 1 \otimes 0,}_{\text{equal to 0}}, \underbrace{1 \otimes 1}_{\text{not equal to 0}} \}
$$

From this, we conclude that the cross product of $\mathbb{Z}/2$ with itself is a simple group of order 2, and is thus isomorphis to \mathbb{Z}_2 as a (\mathbb{Z}, \mathbb{Z}) -bimodule.

It is also worth noticing that one can manipulate the properties of the tensor product to obtain similar conclusions with the tensors of other modules.

Example.

$$
\mathbb{Z}_2\otimes\mathbb{Z}_3
$$

Given $a \otimes b \in \mathbb{Z}_2 \otimes \mathbb{Z}_3$ we see that we have the following problem:

$$
a \otimes b = 3a \otimes b
$$

$$
= a \otimes 3b
$$

$$
= a \otimes 0
$$

$$
= 0
$$

Thus, we can conclude that $\mathbb{Z}_2 \otimes \mathbb{Z}_3 = \{0\}$

EXAMPLE. $\mathbb Q$ is a $(\mathbb Z, \mathbb Z)$ -bimudle, and let A be a finite abelian group. Thus, every $a \in A$ has finite order, and given:

```
\mathbb{Z} \otimes_{\mathbb{Z}} A
```
We notice that we can do the following with elements in this tensor product, given:

$$
\frac{p}{a} \otimes a = \frac{pn}{qn} \otimes a = \frac{p}{qn} \cdot n \otimes a = \frac{p}{qn} \otimes na = \frac{p}{qn} \otimes 0 = 0
$$

Where n in this case is the element that pushes the element a of finite order to 0.

Example. Let V be a R-vector space. Thus,

$$
\underbrace{V}_{a\ (\mathbb{R},\ \mathbb{R})\text{-bimodule}}\otimes_{\mathbb{R}}\ \underbrace{\mathbb{C}}_{a\ (\mathbb{R},\ \mathbb{R})\text{-bimodule}}
$$

This is called "the complexification of a real vector space", and has some applications to complex analysis. This leads to the following claim:

CLAIM.

$$
V\otimes_{\mathbb R}{\mathbb C} \stackrel{\mathop{\rm as\;real\; vector\; spaces}}{\cong} V\oplus i\cdot V
$$

With the following map:

$$
\sum v_j \otimes (a_j + ib_j) \mapsto \sum (a_j v_j, i(b_j b_j))
$$

This is actually an (\mathbb{R}, \mathbb{C}) -module, that has the following properties:

(1) $(M \otimes_s N) \otimes_T P \cong M \otimes_S (N \otimes_T P)$ $(2) M \otimes_S (N_1 \oplus N_2) \cong (M \otimes_S N_1) \oplus (M \otimes_S N_2)$ (3) $(N_1 \oplus N_2) \otimes_S M \cong (N_1 \otimes_S M) \oplus (N_2 \otimes_S M)$

Notice that we have the following interesting properties relating to multiplication as we're used to it:

$$
Multiplication : \mathbb{R} \times \mathbb{R} \to \mathbb{R}
$$

And that

- (1) $(a + b) \cdot c = a \cdot c + b \cdot c$
- (2) $a(b + c) = a \cdot b + a \cdot c$
- (3) $(a \cdot b) \cdot c$ = $a \cdot (b \cdot c)$

These properties imply that multiplication of real numbers is actually given by a function:

$$
\mathbb{R} \otimes_\mathbb{R} \mathbb{R} \to \mathbb{R}
$$

Recall that $\mathbb{R} \otimes_{\mathbb{R}} \mathbb{R} = \{ \sum a_i \otimes b_i | i \in \mathbb{N}, a_i, b_i \in \mathbb{R} \}$, which satisfy the following relations:

$$
(1) \ a \otimes c + b \otimes c = (a+b) \otimes c
$$

- (2) $a \otimes b + a \otimes c = a \otimes (b + c)$
- (3) $ab \otimes c = a \otimes bc$

For example, $3 \otimes 1 + 4 \otimes 1 = (3 + 4) \otimes 1$. Let's now show that multiplication gives a well defined function from $\mathbb{R} \otimes \mathbb{R} \stackrel{M}{\to} \mathbb{R}$. We have the following candidate:

$$
a\otimes b\mapsto a\cdot b\in\mathbb{R}
$$

More generally,

$$
\sum_{i=1}^n a_i \otimes b_i \mapsto \sum_{i=1}^n a_i \cdot b_i
$$

Is it then true that the map M satisfies the following?

$$
M(a\otimes c+b\otimes c)\stackrel{?}{=}M((a+b)\otimes c)
$$

From what we know about normal multiplication, we see that this is true. From this we can even go a little bit further, to say that multiplication in a ring R, where R is an R-bimodule (or an abelian group) is really just a function

$$
M: R \otimes_{\mathbb{Z}} R \to R
$$

Now consider $\mathbb{R} \otimes_\mathbb{R} \mathbb{R}$. Which $\mathbb{R}\text{-module}$ is that? Our claim is that:

$$
\mathbb{R} \otimes_\mathbb{R} \mathbb{R} \cong \mathbb{R}
$$

And more generally, $M \otimes_R R \cong M$ for any right R-module M, and R with 1. Consider:

$$
M\otimes_R R \to M \quad , m\otimes r \mapsto m\cdot r
$$

And where

$$
m \otimes r_1 + n \otimes r_2 \mapsto r \cdot r_1 + n \cdot r_2
$$

And all the other analogous natural properties we would like this map to posess. Is this map onto? We see that the answer is, because

$$
m\otimes 1_R\mapsto m\cdot 1=m
$$

And is 1-1, because:

$$
m \otimes r \in M \otimes_R R, \Rightarrow m \otimes r = m \otimes (r \cdot 1) = (m \cdot r) \otimes 1
$$

So if

 $m\otimes r\mapsto m\cdot r=0$ this implies that $m\otimes r=m\cdot r\otimes 1=0\Rightarrow m\cdot r=0$