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CHAPTER

ONE

STATIC GAMES OF COMPLETE INFORMATION

In this chapter, we aim to look at games of the following simple form:

1. First the players of the game simultaneously chose actions.

2. Second, the players receive payo�s that depend on the combination of actions just
selected.

We will restrict our attention to games that involve complete information, whose de�nition
will appear momentarily.

1.1 Basic Theory, Normal-Form Games and Nash Equi-

librium

In what we call a normal-form representation of a game, each player in our game choses
a strategy simultaneously, and the combination of strategies determines what payo� each
player receives.

We can illustrate the normal-form representation with the famous example of a game: the
Prisoner's Dilemma.
Example. Two suspects are arrested and charged with a crime. The police lack su�cient
evidence to convict the suspects, unless at least one confesses. The police hold the suspects
in separate cells, and explain the consequences that will follow from the actions they could
take. If neither confesses, then both will be convicted of a minor o�ense and sentenced to one
month in jail. If both confess, both will be sentenced to jail for six months. If one confesses
and the other doesn't, then the confessor will be released immediately and the other will be
sentenced to nine months in jail. We can represent this dilemma with the following bi-matrix:
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CHAPTER 1. STATIC GAMES OF COMPLETE INFORMATION

Mum Fink

Mum

Fink

-1, -1

0, -9 -6,-6

-9.0

Where each tuple (x1, x2) represents the outcome of prisoner 1 in x1 and prisoner 2 in x2.

We now turn to the general case of a normal-form game.

Definition

The normal-form representation of a game speci�es:

1. The players in the game

2. The strategies available to each player

3. The payo� received by each player for each combination of strategies that could be
chosen by the players

These notes have many examples in which we have an n-player game in which the players
are labeled 1, ...n and am arbitrary player is labeled i. Let Si represent the set of strategies
available to player i (called i's strategy space) and let si be an arbitrary member such that
si ∈ Si. Let (s1, ...sn) denote a combination of strategies, one for each player, and let ui
denote player i's payo� function: ui(s1, ..sn) is the payo� to player i if the players choose the
strategies (s1, ...sn).

We end up with the following de�nition: The normal-form representation of an n-player
game speci�es the player's strategy space S1, ..Sn and their payo� functions u1, ...un. We
denote this game by G = {S1, ..., Sn;u1, ...un}.

Notice that although each player picks a strategy simultaneously, it doesn't imply that the
players need to act simultaneously: it's enough that each chose an action on their own
without the knowledge of the other's choices, as would be the case with the prisoners if
they reached decisions at arbitrary times while in their separate cells. We will eventually
see examples of games in which players move sequentially, and that the normal-form games
can be transfered to extensive-form representations, which is also an often more convenient
framework for analyzing real world and dynamic issues.
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1.2. ITERATED ELIMINATION OF STRICTLY DOMINATED STRATEGIES

1.2 Iterated Elimination of Strictly Dominated Strate-

gies

Since we have now �gured out a way to formally describe games, it would be a natural
transition to describe how to solve game-theoretic problems. Let us start with the pris-
oner's dilemma, using the idea that a rational player will not play a strictly dominated
strategy.

Notice that in the prisoner's dilemma, if one suspect is going to confess, then the other would
prefer to confess as well and so be in jail for six months as opposed to staying quiet (being
`Mum') and having to go to jail for nine months. Similarly, if one suspect is going to play
Mum, then the other would rather confess as to be released immediately rather than being
sent to jail for one month. So, for prisoner i, playing Mum is dominated by playing Fink
(confessing)- for each strategy that player j could chose, the payo� to prisoner i from playing
Mum is less than the payo� to i from playing Fink.

This can also be represented in any bi-matrix in which the payo�s 0,−1,−6,−9 were replaced
with payo�s T,R, P and S respectively, provided that T > R > P > S so as to capture the
idea of 'temptation, reward, punishment, and sucker' payo�s. More generally,

Definition

In the normal form game G = {S1, ...Sn;u1, ...un}, let s′i and s′′i be feasible strategies for
player i. Strategy s′i is strictly dominated by strategy s′′i if for each feasible combination
of the other player's strategies, i's payo� from playing s′i is strictly less than i's payo� from
playing s′′i :

ui(s1, ...si−1, s
′
i, si+1, ..sn) < u(s1, ..., si−1s

′′
i , si+1, ...sn)

For each (s1, ..si−1si, si+1, ...sn) that can be constructed from the other player's strategy
spaces S1, ..., Si−1Si, Si+1, ...Sn.

We claim that rational players do not play strictly dominated strategies, because there is
no belief that a player could hold about the strategies that the other player will choose
such that it would be optimal to play such a strategy. Thus, in the Prisoner's Dilemma,
a rational player would confess, so (Fink, F ink) would be the outcome reached by two
rational players, even though (Fink, F ink) results in worse payo�s for both players than
would (Mum,Mum).
Example. Consider the game described in �gure 1.1. Player 1 has two strategies, and player
2 has three:

S1 = { Up, Down} S2 =} Left, Middle, Right }
For player 1, neither Up nor Down is strictly dominated: Up is better than down if 2 plays
left (because naturally, 1 > 0) but Down is better than Up if 2 plays Right (because 2 > 0).

7



CHAPTER 1. STATIC GAMES OF COMPLETE INFORMATION

For player 2 however, Right is strictly dominated by Middle (because 2 > 1 and 1 > 0), so
a rational player 2 will not play Right. So, if player 1 knows that player 2 is rational then
player 1 can eliminate from player 2's strategy space. In other words, we have the following:

Left Middle Right

Up

Down

1,0 1,2 0,1

0,3 0,1 2,0

Up

Down

1,0 1,2

0,3 0,1

Left Middle

Figure 1.1: Right is dominated by Middle

But now, notice that Down is strictly dominated by Up for player 1, so if player 1 is rational
(and player 1 knows that player 2 is rational, so that our new game applies) then player 1
will not play down. thus, we have the following new diagram, represented in Figure 1.2. But
now notice that left is strictly dominated by Middle for player 2, leaving (Up, Middle) as the
outcome of this game.

Up

Down

1,0 1,2

0,3 0,1

Left Middle

Up 1,0 1,2

Left Middle

Figure 1.2: Down is Dominated by Up
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1.2. ITERATED ELIMINATION OF STRICTLY DOMINATED STRATEGIES

This process is called iterated elimination of strictly dominated strategies. Although it is
based on the nice idea that rational players do not play strictly dominated strategies, the
process has two drawbacks.

1. Each step requires a further assumption about what the players know about each other's
rationality. If we want to be able to apply the process for an arbitrary number of steps,
we need to assume that it is common knowledge that the players are rational. That
is, we need to assume not only that all the players are rational, but also that the players
know that all the players are rational, and that all the players know that all the players
know that all the players are rational, and so on ad in�nitum.

2. The process often produces a very imprecise prediction about the play of the game.
Consider the game below, for example.

In this game, there are no strictly dominated strategies to be eliminated. Since all the
strategies in the game survive the iterated elimination of strictly dominated strategies,
the process produces no prediction whatsoever about the play of the game.

0,4 5,34,0

3,5 3,5 6,6

0,4 4,0 5,3

L RC

T

M

B

Figure 1.3:

It turns out we can turn to the concept of Nash equilibrium to help us analyze some of the
normal-form games.

1.2.1 Motivation and De�nition of Nash Equilibrium

One can aruge that if game theory is to provide a unique solution to a game theoretic problem,
then the solution must be a Nash equilibrium, in the following sense: Suppose that game
theory makes a unique prediction about the strategy each player will choose. in order for
this prediction to be correct, it is necessary that each player be willing to choose the strategy
predicted by the theory. Thus, each player's predicted strategy must be that player's best
response to the predicted strategies of the other players. Such a prediction could be called
strategically stable or bdself-enforcing, because no single player wants to deviate from his
or her predicted strategy. This leads us to the following de�nition:
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CHAPTER 1. STATIC GAMES OF COMPLETE INFORMATION

Definition

In the n-player normal-form game G = {S1, ...Sn;u1, ...un}, the strategies (s∗1, ..., s
∗
n) are a

Nash Equilibrium if, for each player i, s∗i is (at least tied for) player i's best response to
the strategies speci�ed for the n− 1 other players, (s∗1, ...s

∗
i−1, s

∗
i+1, ...s

∗
n):

ui(s
∗
1, ...s

∗
i−1, s

∗
i s
∗
i+1, ...sn) ≥ ui(s

∗
1, ...s

∗
i−1, si, s

∗
i+1, ...sn)

for every feasible strategy si ∈ Si, that is s∗i solves:

maxsi∈Si
ui(s

∗
1, ...s

∗
i−1, si, s

∗
i+1, ...s

∗
n)

Alternatively, saying that (s′1, ..., s
′
n) is not a Nash equilibrium of G is equivalent to saying

that there exists some player i such that s′i is not a best response to s
′
1, ...s

′
i−1, s

′
i+1, ..., s

′
n). So,

if our theory o�ers the strategies (s′1, ...s
′
n) as the solution to our game, but these strategies

are not a Nash equilibrium, then at least one player will have an incentive to deviate from
the theory's prediction, so the theory will be falsi�ed by the actual play of the game.

A closely related motivation for Nash equilibrium involves the idea of convention: if a con-
vention is to the develop about how to play a given game, then the strategies prescribed by
the convention must b e a Nash equilibrium, else at lease one player will not abide by the
convention.
Example. One can go and look at our previous solutions to games, and will notice that our
solutions satisfy a Nash equilibrium. In �gure 1.3, one can notice that (6,6) satis�es a Nash
equilibrium, and is the only pair to do so.

Recall that our solutions to the Prisoner's dilemma and the Bi-Matrix shown in Figure 1.1
were found by iterated elimination of strictly dominated strategies. We found strategies that
were the only ones that survived iterated elimination- this result can be generalized: if iterated
elimination of strictly dominated strategies eliminates all but the strategies (s∗1, ..., s

∗
n), then

these strategies are the unique Nash equilibrium of the game.

If the strategies (s∗1, ..., s
∗
n) are a Nash equilibrium then they survive iterated elimination of

strictly dominated strategies, but there can be strategies that survive iterated elimination of
strictly dominated strategies that are not part of any Nash equilibrium.

Having shown that Nash equilibrium is a stronger solution concept than iterated elimination
of strictly dominated strategies, we must now ask whether Nash equilibrium is too strong a
solution concept. That is, can we be sure that a Nash equilibrium exists? It was shown by
Nash in 1950 that in any �nite game there exists at least one Nash equilibrium. In some
of the future sections, we will simply rely on Nash's Theorem (or its analog for stronger
equilibrium concepts) and will simply assume that an equilibrium exists.
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1.2. ITERATED ELIMINATION OF STRICTLY DOMINATED STRATEGIES

Example. This problem is called The Battle of the Sexes. This problem shows that a
game can have multiple Nash equilibria, and also will be useful in the discussions of mixed
strategies. In the traditional exposition of the game, a man and a woman are trying to decide
on an evening's entertainment, but to avoid sexism we'll remove gender from this example.
While at separate workplaces, Pat and Chris must choose to attend either the opera or a
prize �ght. Both players would rather spend the evening together than apart, but Pat would
rather be together at the prize �ght while Chris would rather be together at the opera. We
have the following bi-matrix:

Chris

Pat

Opera

Opera

Fight

Fight

2,1

0,0

0,0

1,2

Figure 1.4: The Battle of the Sexes

Before, we argued that if game theory is to provide a unique solution to a game then the
solution must be a Nash equilibrium. This argument ignores the possibility of games in which
game theory does not provide a unique solution. We also argued that if a convention is to
develop about how to play a basic game, then the strategies prescribed by the convention
must be a Nash equilibrium, but this argument ignores the possibility of games for which a
convention will not develop. In some games with multiple Nash equilibria one equilibrium
stands out as the compelling solution to the game. Thus, the existence of multiple Nash
equilibria is not a problem in and of itself. In the battle of the sexes, however, (Opera, Opera)
and (Fight, F ight) seem equally compelling, which suggests that there may be games from
which game theory does not provide a unique solution and no convention will develop. In
such games, Nash equilibrium loses much of its appeal as a prediction of play.

At this point, we have the following propositions, whose proofs will be ommited since they
follow pretty easily from de�nitions and a proofs by contradiction:
Proposition 1. In the n-player normal form game G = {S1, ..., Sn;u1, .., , un}, if iterated
elimination of strictly dominated strategies eliminates all but the strategies (s∗1, ..., s

∗
n), then

these strategies are the unique Nash equilibrium of the game.
Proposition 2. In the n-player game G = {S1, ..., Sn;u1, .., , un}, if the strategies (s∗1, ..., s

∗
n)

are a Nash equilibrium, then they survive iterated elimination of strictly dominated strategies.
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CHAPTER 1. STATIC GAMES OF COMPLETE INFORMATION

1.3 Applications

1.3.1 Cournot Model of Duopoly

It turns out that actually, Cournot(1838) had anticipated Nash's de�nition of equilibrium by
over a century. Naturally it follows that some of Cournot's work is some of the classics of
game theory, and is also one of the cornerstones of the theory of industrial organization. WE
consider a very simple version of Cournot's model, and return to variations on the model
later. We want to illustrate the following:

1. The translation of an informal statement of a problem into a normal-form representation
of a game

2. The computations involved in solving for the game's Nash equilibrium

3. Iterated elimination of strictly dominated strategies.

Let q1 and q2 be the quantities of a homogeneous product produced by �rms 1 and 2, re-
spectively. Let P (Q) = a − Q be the market-clearing price when the aggregate quantity on
the market is Q = q1 + q2. Assume that the total cost to �rm i of producing quantity qi is
Ci(qi) = cqi. In other words, there are no �xed costs and the marginal cost is constant at c,
where we assume c < a. Following Cournot, suppose that the �rms choose their quantities
simultaneously.

In order to �nd the Nash equilibrium of the Cournot game, we �rst change the problem into
a normal-form game. recall that the normal form-representation speci�es:

1. The players in the game

2. The strategies available to each player

3. The payo� received by each player for each combination of strategies that could be
chosen by the players

There are of course two players in any doupoly game, the two �rms. In the Cournot model,
the strategies available to each �rm are the di�erent quantities it might produce. We assume
that output is continuously divisible. Naturally, negative outputs aren't feasible, so each
�rm's strategy space can be represented as S=[0,∞), where each si represents a quantity
choice qi ≥ 0. Because P (Q) = 0 for Q ≥ a, neither �rm will produce a quantity qi > a.
It remains to specify the payo� to �rm i as a function of the strategies chosen by it and by
the other �rm, and to de�ne and solve for equilibrium. We assume that the �rm's payo� is
simply its pro�t. Thus, the payo� ui(si, sj) in a general two-player game in normal form can
be written here as:

πi(qi, qj) = qi[P (qi + qj)− c] = qi[a− (qi + qj)− c]

Recall that in a two player game in normal form, the strategy pair (s∗i , s
∗
j) is a Nash equilib-

rium if for each player i:

ui(s
∗
i , s
∗
j) ≥ ui(si, s

∗
j)

12



1.3. APPLICATIONS

for every feasible strategy si in Si. Equivalently, for each player i, s∗i must solve the opti-
mization problem:

maxsi∈Si
ui(si, s

∗
j)

In the Cournot doupoly model, the analogous statement is that the quantity pair (q∗1, q
∗
2) is

a Nash equilibrium if for each �rm i q∗i solves:

max0≤qi<∞ πi(qi, q
∗
j ) = max0≤qi<∞qi[a− (qi + q∗j )− c]

Assuming that q∗j < a− c, the �rst order condition for �rm i's optimization problem is both
necessary and su�cient; it yields:

qi =
1

2
(a− q∗j − c) (1.3.1)

So, if the quantity pair (q∗1, q
∗
2) is to be a Nash equilibrium, the �rm's quantity choices must

satisfy:

q∗1 =
1

2
(a− q∗2 − c)

and

q∗2 =
1

2
(a− q∗1 − c)

Solving this pair of equations yields:

q∗1 = q∗2 =
a− c
3

which it turns out is clearly less than a− c, which is something we assumed.

The intuitive idea behind this equilibrium is pretty simple. Naturally each �rm aims to be
a monopolist in the market, in which case it would chose qi to maximize qi(q1, 0- it would
produce the monopoly quantity (a−c)/2 and earn the monopoly pro�t πi(qm, 0) = (a−c)2/4.
Given that there are two �rms, aggregate pro�ts for the duopoly would be maximized by
setting the aggregate quantity q1 + q2 equal to the monopoly quantity qm, as would occur if
qi = qm/2 for each i, for example. The problem with this arrangement is that each �rm has
an incentive to deviate, because the monopoly quantity is low, the associated price P (qm)
is high, and at this price each �rm would like to increase its quantity in spite of the fact
that such an increase in production drives down the market-clearing price. In the Cournot
equilibrium, in contrast, the aggregate quantity is higher, so the associated price is lower,
so the temptation to increase output is reduced- reduced by just enough that each �rm is
just deterred from increasing its output by the realization that the market clearing price will
fall.

We could have solved this question graphically. Equation (1.3.1) gives �rm i's best response
to �rm j's equilibrium strategy q∗j . Analogous reasoning leads to �rm 2's best response to
an arbitrary strategy by �rm 1, and �rm 1's best response to an arbitrary strategy by �rm
2. Assuming that �rm 1's strategy satis�es q1 < a− c, �rm 2's best response is:

R2(q1) =
1

2
(a− 1c − c)

13



CHAPTER 1. STATIC GAMES OF COMPLETE INFORMATION

And likewise,

R1(q2) =
1

2
(a− q2 − c)

This can e shown through the following diagram:

q2

q1

(0, a− c)

(0, (a− c)/2)

((a− c)/2, 0) (a− c, 0)

R2(q1)

R1(q2)

(q∗1, q
∗
2)

You also could have approached this question through iterated eliminations of strictly domi-
nated strategies. First, notice that the monopoly quantity qm dominates any higher quantity.
Then, notice that the quantity (a−c)/4 strictly dominates any lower quantity. After proving
this, one notices that the remaining quantities in each �rm's strategy space lie in the interval
between (a − c)/4 and (a − c)/2. Repeating these argument,s you can make this interval
even smaller- repeating it in�nitely many times, the intervals converge to the single point
q∗i = (a− c)/2.

1.3.2 Bertrand Model of Duopoly

We can now introduce a model of how two duopolists might interact, based on Bertrand's
suggestion that �rms actually choose prices, rather than quantities as in Cournot's model.
It is important to notice that Bertrand's model is actually a di�erent game than Cournot's
model; the strategy spaces are di�erent, the payo�s are di�erent, and the behavior in the
Nash equilibria of the two models are di�erent. In both games however, the equilibrium
concept used is the Nash equilibrium de�ned as previous.

We consider the case of di�erentiated products. If �rms 1 and 2 choose prices p1, p2 respec-
tively, the quantity that consumers demand from �rm i is

qi(pi, pj) = a− p1 + bpj

where b > 0 re�ects the extent to which �rm i's product is a substitute for �rm j's product.
We assume that there are no �xed costs of production and that marginal costs are constant
at c, where c < a, ad that the �rms act simultaneously.

14



1.3. APPLICATIONS

As before, our �rst step is to translate this real world question into a normal-form game.
There are again two players, but this time the strategies available to each �rm are the
di�erent prices it might charge as opposed to the di�erent quantities it might produce. Each
�rms strategy space can again be represented as Si = [0,∞), and a typical strategy si is now
a price choice, p1 ≥ 0.

The pro�t to �rm i when it choses price pi and its rival chooses price pj is as follows:

πi(pi, pj) = qi(pi, pj)[pi − c] = [a− pi + bpj][pi − c]

So, the price pair (p∗1, p
∗
2) is a Nash equilibrium if for each �rm i, p∗i solves:

max0≤pi<∞πi(pi, p
∗
j) = max0≤pi<∞[a− pi + bp∗j ][pi − c]

So, the solution to �rm i's optimization problem is:

p∗i =
1

2
(a+ bp∗j + c)

From which it follows that if the price pair (p∗1, p
∗
2) is a Nash equilibrium, then

p∗1 =
1

2
(a+ bp∗2 + c)

p∗2 =
1

2
(a+ bp∗1 + c)

Solving this pair of equations again, we get:

p∗1 = p∗2 =
a+ c

2− b

1.3.3 Final-O�er Arbitration

Many public sector workers are forbidden to strike, and instead wage disputes are settled by
binding arbitration. Many other disputes also involve arbitration. The two major forms of
arbitration are conventional and �nal-o�er arbitration. In �nal-o�er arbitration, the two
sides make wage o�ers and then the arbitrator picks one of the o�ers as the settlement. In
conventional arbitration, the arbitrator is free to impose any wage as the settlement. We
now derive the Nash equilibrium wage o�ers in a model of �nal-o�er arbitration developed
by Farber (1980).

Suppose that the two parties in dispute are a �rm and a union� and the dispute concerns
wages. First, the �rm and the union simultaneously make o�ers, denoted by wf , wu respec-
tively. Then, the arbitrator chooses one of the two o�ers as the settlement. Assume that
the arbitrator has an ideal settlement she would like to impose, denoted by x. Assume that
further that, after observing the parties' o�ers, the arbitrator simply chooses the o�er that is
closer to x; provided that wf < wu, the arbitrator chooses wf if x < (wf +wu)/2 and choses
wu if x > (wf + wu)/2. The arbitrator knows x, but the parties do not. The parties beleive
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that x is randomly distributed according to a cumulative probability distribution F (x) with
density f(x). Given our speci�cation of the arbitrator's behavior, if the o�ers are wf , wu,
then the parties believe that the probabilities P{wf chosen } and P{wu chosen } can be
expressed as follows:

P{wf chosen } = P

{
x <

wf + wu
2

}
= F

(
wf + wu

2

)
and thus,

P{wu chosen } = 1− F
(
wf + wu

2

)
So, based on what we know about probability and their expected values, the expected wage
settlement is:

wf · P{wf chosen }+ wu · P{wu chosen } = wf · F
(
wf + wu

2

)
+ wu ·

[
1− F

(
wf + wu

2

)]
We assume that the �rm wants to minimize the expected wage settlement, and the union
wants to maximize it. If the pair of o�ers (w∗f , w

∗
u) is a Nash equilibrium, then w∗f and w∗u

must solve:

minwf
wf · F

(
wf + w∗u

2

)
+ w∗u ·

[
1− F

(
wf + w∗u

2

)]
and

maxwf
w∗f · F

(
w∗f + wu

2

)
+ wu ·

[
1− F

(
w∗f + wu

2

)]
So, the wage pair must solve the �rst-order conditions for these optimization problems:

(w∗u − w∗f ) ·
1

2
f

(
w∗f + w∗u

2

)
= F

(
w∗f + w∗u

2

)
and:

(w∗u − w∗f ) ·
1

2
f

(
w∗f + w∗u

2

)
= 1− F

(
w∗f + w∗u

2

)
Since the right hands of these �rst order conditions are equal, the right hands sides are also
equal, which implies that:

F

(
w∗f + w∗u

2

)
=

1

2

Substituting this into either one of the �rst-order conditions yields:

w∗u − w∗f =
1

f
(
w∗f+w

∗
u

2

)
Which can be interpreted by saying: �the gap between the o�ers must equal the reciprocal
of the value of the density function f at the median of the arbitrator's preferred settle-
ment.�
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1.3. APPLICATIONS

1.3.4 The Problem of the Commons

Consider n farmers in a village. Each summer, all the farmers graze their goats on the village
green. Denote the number of goats the ith farmer owns by gi and the total number of goats
in the village by G = g1+ ...+ gn. The cost of buying and caring for a goat is c, independent
of how many goats a farmer owns. The value to a farmer of grazing a goat on the green when
a total of G goats are grazing is v(G) per goat.

Since a goat needs at least a certain amount of grass to survive, there is a maximum number
of goats that can be grazed on the green,

Gmax : v(g) > 0 for G < Gmax but v(G) = 0 for G ≥ Gmax

Also, since the �rst few goats have plenty of room to graze, adding one more does little harm
to those already grazing- but when so many goats are grazing, then they are all just barely
surviving, so adding one more drastically harms the rest.

During the spring, the farmers simultaneously choose how many goats to own. Assume
goats are continuously divisible. A strategy for farmer i is the choice of a number of goats
to graze on the village green gi. Assuming that the strategy space is [0,∞) covers all the
choices that could be of interest to the farmer; [0, Gmax) would also su�ce. The payo� to
farmer i from grazing gi goats when the numbers of goats grazed by the other farmers are
(g1, ..., gi−1, gi, gi+1, ..., gn) is

giv(g1, ..., gi−1, gi, gi+1, ..., gn)− cgi

So, if (g∗1, ..., g
∗
n) is to be a Nash equilibrium, then for each i, g∗i must maximize the above

equation given that the other farmers choose (g∗1, ...g
∗
i−1, g

∗
i+1, ..., g

∗
n). The �rst order-condition

for this optimization problem is:

v(gi + g∗−i) + giv
′(gi + g∗−i)− c = 0

Where g∗−i denotes g
∗
1 + ... + g∗i−1 + g∗i+1 + ... + g∗n. Substituting g∗i into our above equation

and summing over all n farmers �rst order conditions, and then dividing by n gives us the
following:

v(G∗) +
1

n
G∗v′(G∗)− c = 0

Where G∗ denotes g∗1 + ... + g∗n. In contrast, the social optimum denoted by G∗∗ solves the
following:

max0≤G<∞ Gv(G)−Gc

The �rst order condition for which is:

v(G∗∗) +G∗∗v′(G∗∗)− c = 0

Comparing our two answers shows that G∗ > G∗∗: too many goats are grazed in the Nash
equilibrium compared to the social optimum. The �rst order condition re�ects the incentives
faced by a farmer who is already grazing gi goats, but is considering adding one more. The
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value of the additional goat is v(gi + g∗−i) and its cost is c. The harm to the farmers existing
goats is v′(gi + g−i) per goat, or giv

′(gi + g∗−i) in total. The common resource is over utilized
because each farmer considers only his or her own incentives, not the e�ect of his or her
actions on the other farmers- hence the presence of G∗v′(G∗)/n in one of our conditions but
G∗∗v′(G∗∗) in the other.

1.4 Advanced Theory: Mixed Strategies and Existence of

Equilibrium

1.4.1 Mixed Strategies

In previous sections, we de�ned Si to be the set of strategies available to some player i, and
the combination of strategies (s∗1, ..., s

∗
n) to be a Nash equilibrium if for each player i, s∗i is

player i's best response to the strategies of the n− 1 other players:

ui(s
∗
1, ..., s

∗
i−1, s

∗
i , s
∗
i+1, ..., s

∗
n) ≥ ui(s

∗
1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n)

for every strategy si in Si. By this de�nition, there is no Nash equilibrium in the following
game, which is known as Matching Pennies :

Player 2

Player 1

Heads

Tails

Heads Tails

-1,1 1,-1

-1, 11,-1

In this game, each players strategy space is {Heads, Tails}. Suppose that each player has
a penny and must choose whether to display it heads or tails up. If the two pennies match,
then player 2 wins player 1's penny, if the pennies don't match then player 1 wins player 2's
penny. No pair of strategies can satisfy a Nash equilibrium, since if the players strategies
match (H,H), (T, T ), then player 1 prefers to switch strategies, while if the pairs don't match,
then player 2 prefers to switch strategies.

The most distinguishing feature of Matching Pennies is that each player would like to outguess
the other. Versions of this game appear in all kinds of every-day competitions, poker, baseball,
war, and other games. In poker, the analogous question to this game is how often to blu�:
if player i is known never to blu� then i's opponents will fold whenever i bids aggressively,
and blu�ng too often can be a losing strategy.
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EQUILIBRIUM

In any game where each player would like to outguess the other(s), there is no Nash equi-
librium because the solution to such a game necessarily involves uncertainty about what the
players will do. We now introduce the notion of a mixed strategy which we will interpret
in terms of one player's uncertainty about what another player will do. Formally, a mixed
strategy for player i is a probability distribution over the strategies in Si. We will from here
on in refer to the strategies in Si as player i's pure strategies.

More generally, suppose that player i has K pure strategies, Si = {si1, si2, ..., siK}. Then
a mixed strategy for player i is a probability distribution (pi1, pi2, ..., piK) where pik is the
probability that player i will play strategy sik for k = 1, 2, ...K. We have the following
de�nition:

Definition

In the normal form game G = {S1, ..., Sn;u1, ..., un}, suppose that Si = {si1, ..., siK}. Then a
mixed strategy for player i is a probability distribution pi = (pi1, ..., piK), where 0 ≤ pik ≤ 1
for k = 1, ..., K and pi1 + . . . piK = 1.

Recall that if a strategy si is strictly dominated, then there is no belief that a rational player i
would �nd it optimal to play si. The converse is true, provided we allow for mixed strategies:
if there is no belief that player i could hold such that it would be optimal to play the strategy
si, then there exists a strategy that strictly dominates si.

3, � 0, �

0,� 3,�

1,� 1,�

T

M

B

L R

Player 2

Player 1

Figure 1.5:

Figure 1.5 shows that a given pure strategy may be strictly dominated by a mixed strategy,
even if the pure strategy is not strictly dominated by any other pure strategy. In this game,
for any belief (q, 1−q) that player 1 could hold about player 2's play, player 1's best response
is either T (if q ≥ 1/2) or M (if g ≤ 1/2), but never B. Yet, B is not strictly dominated by
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either T or M . The key to notice here is that B is strictly dominated by a mixed strategy, if
player 1 expects T with probability 1/2 and M with probability 1/2 then 1's expected payo�
is 3/2 no matter what (pure or mixed) strategy 2 plays, and 3/2 exceeds the payo� of 1 that
playing B surely produces.

There exist examples of bi-matrices that show that a given pure strategy can be a best
response to a mixed strategy, even if the pure strategy is not a best response to any other
pure strategy.

3, � 0, �

0,� 3,�

T

M

B

L R

Player 2

Player 1

2,� 2,�

Figure 1.6:

Figure 1.6 demonstrates this. In this game, B is not a best response for player 1 to either L
or R by player 2, but B is the best response for player 1 to the mixed strategy (q, 1− q) by
player 2, provided that 1/3 < q < 2/3. This example illustrates the role of mixed strategies
in the �belief that player i could hold�.

1.4.2 Existence of Nash Equilibrium

Recall that the de�nition of Nash equilibrium given in an earlier section guarantees that
each player's pure strategy is a best response to the other player's pure strategies. It would
be nice if we could extend this de�nition to mixed strategies, and we can do so simply be
requiring that each player's mixed strategy be a best response to the other player's mixed
strategies. Since any pure strategy can be represented as the mixed strategy that puts zero
probability on all of the players other pure strategies, this extended de�nition also satis�es
the older one.

Computing player i's best response to a mixed strategy by player j illustrates the interpre-
tation of player j's mixed strategy as representing player i's uncertainty about what player
j will do. We begin with Matching Pennies as an example. Suppose that player 1 believes
that player 2 will play Heads with probability q, and will play Tails with probability 1 − q.
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EQUILIBRIUM

Given this belief, player 1's expected payo�s are q(−1) + (1 − q)(1) = 1 − 2q from playing
Heads and q · 1+ (1− q) · (−1) = 2q− 1 from playing Tails. Since 1− 2q > 2q− 1 if and only
if q < 1/2, player 1's best pure strategy response is Heads if q < 1/2 and Tails if q > 1/2,
and indi�erent between Heads and Tails if q = 1/2.

Let (r, 1 − r) denote the mixed strategy in which player 1 plays Heads with probability r.
For each value of q between zero and one, we now compute the values of r, denoted r∗(q)
such that (r, 1− r) is a best response for player 1 to (q, 1− q) by player 2. This is illustrated
by the following diagram:

r

q

1
r∗(q)

1
2

1

(Heads)(Heads)

(Heads)(Heads)(Tails)

(Tails)

Figure 1.7:

Player 1's expected payo� from playing (r, 1− r) when player 2 plays (q, 1− q) is:

rq · (−1) + r(1− q) · 1 + (1− r)q · 1 + (1− r)(1− q) · (−1) = (2q − 1) + r(2− 4q) (1.4.1)

where rq is the probability of (Heads,Heads), r(q − 1) is the probability of (Heads, Tails),
and so on. Since player 1's payo� is increasing in r if 2 − 4q > 0 and decreasing in r if
2− 4q < 0, player 1's best response is r = 1( Heads) if q < 1/2 and r = 0 (Tails) if q > 1/2
as indicated by the horizontal segments of r∗(q) in Figure 1.7.

The nature of player 1's best response to (q, 1 − q) changes when q = 1/2. As we noted,
when q = 1/2, player 1 is completely indi�erent. Furthermore, because player 1's expected
payo� (1.4.1) is independent of r when q = 1/2, player 1 is also indi�erent among all mixed
strategies (r, 1− r). That is, when q = 1/2 the mixed strategy (r, 1− r) is a best response to
(q, 1 − q) for any value of r between zero and one. Thus r∗(1/2) is the entire interval [0, 1]
as indicated by the vertical segment in �gure 1.7 at q = 1/2.

To now derive player i's best response to player j's mixed strategy more generally, and to give
a formal statement of the extended de�nition of Nash equilibrium, we restrict our attention
to the two player case. let J denote the number of pure strategies in S1 and K the number
in S2. We will write:

S1 = {s11, ..., s1J} S2 = {s21, ..., s2K}
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and we will use s1j and s2k to denote arbitrary strategies from S1 and S2. If player 1 believes
that player 2 will play the strategies (s21, ..., s2K) with the probabilities (p21, .., p2K) then
player 1's expected payo� from playing the pure strategy s1j is as follows:

K∑
k=1

p2ku1(s1j, s2k)

and player 1's expected payo� from playing the mixed strategy p1 = (p11, ..., p1K) is:

v1(p1, p2) =
J∑
j=1

p1j

[
K∑
k=1

p2ku1(s1j, s2k)

]
=

J∑
j=1

K∑
k=1

p1j · p2ku1(s1j, s2k)

where p1j · p2k is the probability that 1 plays s1j and 2 plays s2k. Player 1's expected payo�
from the mixed strategy p1, is the weighted sum of all the expected payo�s for each of the
pure strategies {s11, ..., s1J} where the weights are the probabilities (p11, ..., p1J). So, for the
mixed strategy (p11, ..., p1J) to be a best response for player 1 to player 2's mixed strategy
p2, it must be that p1j > 0 only if:

K∑
k=1

p2ku1(s1j, s2k) ≥
K∑
k=1

p2ku1(s1j′ , s2k)

for every sij′ ∈ S1. Giving a formal statement of the extended de�nitino of Nash equilibrium
requires computing player 2's expected payo� when players 1 and 2 play the mixed strategies
p1, p2 respectively. If player 2 believes that player 1 will play the strategies (s11, ..., s1J)
with probabilities (p11, ..., p1J) then player 2's expected payo� from playing the strategies
(s21, ..., s2K) with probabilities (p21, ..., p2K) is:

v2(p1, p2) =
K∑
k=1

p2k

[
J∑
j=1

p1ju2(s1j, s2k)

]
=

J∑
j=1

K∑
k=1

p1j · p2ku2(s1j, s2k)

So, given v1(p1, p2) and v2(p1, p2) we can restate the requirement of Nash equilibrium that
each players mixed strategy be a best response to the other player's mixed strategy: for the
pair of mixed strategies (p∗1, p

∗
2) to be a Nash equilibrium, p∗1 must satisfy:

v1(p
∗
1, p
∗
2) ≥ v1(p1, p

∗
2) (1.4.2)

for all p1 over S1, and p
∗
2 must satisfy:

v2(p
∗
1, p
∗
2) ≥ v2(p

∗
1, p2) (1.4.3)

for every probability distribution p2 over S2.

Definition

In the two player normal-form game G = {S1, S1;u1, u2}, the mixed strategies (p∗1, p
∗
2) are a

Nash equilibrium if each player's mixed strategy is a best response to the other player's
mixed strategy, and the above equations (1.4.2) and (1.4.3) must hold.
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We can apply this de�nition to lots of games we've already seen, like Matching Pennies and
the Battle of the Sexes using the graphical representation of player i's best response to player
j's mixed strategy. We have already seen one example of such a representation in �gure 1.7,
let us now show that q∗(r) should look like for the same game:

1

1
2

1

(Heads)(Heads)

(Heads)(Heads)(Tails)

(Tails)

q∗(r)

r

q

Figure 1.8:

Flipping this diagram, we get:

1

1
2

1

(Heads)(Heads)

(Heads)(Heads)(Tails)

(Tails)

q∗(r)

q

r

Figure 1.9:

Which isn't really the most helpful diagram, but combining it with �gure 1.7 we get �gure
1.10.

This particular �gure is analogous to what we arrived at from the Cournot analysis in a prior
section. Just as the intersection of the best-response functions R1(q2) and R2(q1) gave us the
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1

1
2

1

(Heads)(Heads)

(Heads)(Heads)(Tails)

(Tails)

q∗(r)

q

r

1
2

r∗(q)

Figure 1.10:

Nash equilibrium of the Cournot game, the intersections of r∗(q) and q∗(r) give us the Nash
equilibrium in Matching Pennies.

Another example of a mixed-strategy Nash equilibrium is the Battles of the Sexes. Let
(q, 1−q) be the mixed strategy in which Pat plays Opera with probability q, and let (r, 1−r)
be the mixed strategy in which Chris plays Opera with probability r. If Pat plays (q, 10q),
then Chris's expected payo�s are

q · 2 + (1− q) · 0 = 2q

from playing Opera and

q · 0 + (1− q) · 1 = 1− q

from playing Fight. So, if q > 1/3 then Chris's best response is Opera (i.e., r = 0), if q < 1/3
then Chris's best response is Fight (i.e., r = 0) and if q = 1/3 then any value of r is a best
response. We have the following diagram:

(Fight)

(Fight) (Opera)

(Opera) 1

2
3

r∗(q)

q∗(r)

1
3 1 q

r

Figure 1.11:
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Notice that unlike in our other diagrams, there are actually three intersections of r∗(q) and
q∗(r). They are (q = 0, r = 0), (q = 1, r = 1), (q = 1/3, r = 2/3). The other two intersections
represent the pure-strategy Nash equilibria (Fight, Fight) and (Opera, Opera).

In any game, a Nash Equilibrium (involving pure or mixed strategies) appears as an inter-
section of the players' best response correspondences, even when there are more than two
players, and even when some of the players have more than two pure strategies. Unfor-
tunately, the only games in which the players best-response correspondences have simple
graphical representations are two-player games in which each player only has two strategies.
We turn next to a graphical argument that any such game has a Nash equilibrium.

Consider the following payo�s for player 1:

Left Right

Up

Down

x, � y, �

z, � w, �

Player 1

There are two important comparisons: x versus z, and y versus w. Based on these compar-
isons, we can de�ne four main cases:

1. x > z and y > w

2. x < z and y < w

3. x > zand y < w

4. x < z and y > w

We �rst discuss these four main cases, then turn to the remaining cases involving x = z or
y = w.
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(Up)

(Down)

(Left) (Right)
1 q

Case(i)

1

r

(Up)

(Down)

(Left) (Right)
1 q

Case(i)

1

r

(Up)

(Down)

(Left) (Right)
1 q

Case(i)

1

r

(Up)

(Down)

(Left) (Right)
1 q

Case(ii)

1

r

(Up)

(Down)

(Left) (Right)
1 q

Case(iii)

1

r

(Up)

(Down)

(Left) (Right)
1 q

Case(iv)

1

r

r∗(q)

r∗(q)

r∗(q) r∗(q)

q′ q′

• In case (i), Up strictly dominates Down for player 1, and in case (ii), Down Strictly
Dominates Up for player 1

Notice that now that if (q, 1 − q) is a mixed strategy for player 2, where q is the
probability that player 2 will play left, then in case (i) there is no value of q such that
Down is optimal for player 1, and in case (ii) there is no value of q such that Up is
optimal for player 1. Letting (r, 1− r) denote a mixed strategy for player 1, where r is
the probability that 1 will play Up, we can represent the best-response correspondences
for cases (i) and (ii) as in our �gure above.

• In cases (iii) and (iv), neither Up nor Down is strictly dominated.

Thus, Up must be optimal for some values of q and Down must be optimal for others.
Let q′ = (w − y)/(x − z + w − y). Then in case (iii), Up is optimal for q > q′ and in
case (iv) the reverse is true.

• Since q′ = 1 if x = z and q′ = z if y = w, the best- response correspondences for cases
involving either x− z or y − w are L− shaped.
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Adding arbitrary payo�s to our original payo� matrix and performing the analogous compu-
tations yield the same four best-response correspondence diagrams, except that the horizontal
and vertical axes are swapped.

The crucial point to get from these diagrams is that given any of the four best-response
correspondences for player 1, r∗(q) , and any of the four for player 2, q∗(r), the pair of best-
response correspondences has at least one intersection, so the game must have at least one
Nash equilibrium. One can check that this is true with all sixteen possible combinations by
overlapping each graph in turn. As a result, we know there There can be:

1. A single pure-strategy Nash equilibrium

2. A single mixed-strategy Nash equilibrium

3. Two pure-strategy equilibria and a single mixed-strategy equilibrium

We have already seen a few examples of these situations.
Theorem 3. In the n-player normal-form game G = {S1, ..., Sn;u1, ..., un}, if n is �nite and
Si is �nite for every i then there exists at least one Nash equilibrium, possibly involving mixed
strategies.

Proof. Actually, the Proof of Nash's Equilibrium can be done using the �xed-point theorem.
One application of the �xed-point theorem is that you can take a continuous function f :
[0, 1] → [0, 1] and you are guaranteed there there exists at least one point x′ such that
f(x′) = x′.

The idea is to follow two steps, using the �xed-point theorem:

1. Showing that any �xed point of a certain correspondence is a Nash Equilibrium

2. using an appropriate �xed-point theorem application to show that this correspondence
must be a �xed point

The application of the �xed point theorem is due to Kakutani, who generalized Brouwer's
theorem to allow for correspondences as well as functions.

The n-player best-response correspondence is computed from the n individual players' best-
response correspondences as follows: Consider an arbitrary combination of mixed strategies
(p1, ..., pn). For each player i, derive i's best response(s) to the other players mixed strate-
gies. Then construct the set of all possible combinations of one such best response for each
player. A combination of mixed strategies (p∗1, ..., p

∗
n)is a �xed point of this correspondence

if (p∗1, ..., p
∗
n) belongs to the set of all possible combinations of the players' best responses to

(p∗1, ..., p
∗
n), but this is precisely the statement that (p∗1, ..., p

∗
n) is a Nash equilibrium. This

completes our �rst step.

Step two involves the fact that each players best response correspondence is continuous, in
an appropriate sense of `continuity'. All one needs to think about is a continuous function
f : [0, 1]→ [0, 1], and applying the variation on the �xed-point theorem, we can relate f to the
best-response correspondences of a player and show that its �xed point is a Equilibrium.
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Nash's Theorem guarantees that an equilibrium exists in a broad class of games, but none
of the application analyzed in our previous sections are members of this class. This shows
that the hypothesis of Nash's equilibrium are su�cient but not necessary conditions for
equilibrium to exist- there are many games that do not satisfy the hypothesis of the Theorem
but nonetheless have one or more Nash equilibria.
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CHAPTER

TWO

DYNAMIC GAMES OF COMPLETE INFORMATION

In this chapter, we focus on dynamic games, and we again restrict our attention to games
with complete information (where the player's payo� functions are common knowledge).
The central issue in all dynamic games is credibility. As an example of a non-credible threat,
consider the following two-move game:

1. First, player 1 chooses between giving player 2 $1,000 and giving player 2 nothing.

2. Second, player 2 observes player 1's move then chooses whether or not to explode a
grenade that will kill both players .

Suppose that player 2 threatens to explode the grenade unless player 1 pays the $1,000. If
player 1 believes the threat, player 1's best response is to pay the entire $1,000. However,
if player 1 doesn't really believe the threat, he should then pay player 2 nothing- his threat
isn't credible.

2.1 Dynamic Games of Complete and Perfect Informa-

tion

2.1.1 The Theory of Backwards Induction

The grenade game is a member of the following class of simple games of complete and perfect
information:

1. Player 1 chooses an action a1 from the feasible set A1.

2. Player 2 observes a1 and then chooses an action a2 from the feasible set A2

3. Payo�s are u1(a1, a2) and u2(a1, a2).
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It actually turns out that many real life economic issues �t this discussion. Two such examples
are Stackelberg's model of duopoloy and Leontief's model of wages and employment in a
unionized �rm. Other economic problems can be modeled by allowing for a longer sequence
of actions, either by adding more players or allowing players to move more than once. The
key features of a dynamic game of complete and perfect information are that:

1. The moves occur in sequence

2. All previous moves are observed before the next move is made

3. The player's payo�s from each feasible combination of moves are common knowledge

We can solve such a game by backwards induction, as follows: When player 2 gets the move at
the second stage of the game, he will face the following problem given the action a1 previously
chosen by player 1:

maxa2∈A2u2(a1, a2)

Assume that for each a1 in A1, player 2's optimization problem has a unique solution denoted
R2(a1).This is player 2's reaction to player 1's reaction. Since player 1 can solve player 2's
problem as well as 2 can, player 1 should anticipate player 2's reaction to each action a1 ∈ A1

that 1 might take, so 1's problem at the �rst stage amounts to:

maxa1∈A1u1(a1, R2(a1))

Assume that this optimization problem for player 1 also has a unique solution, denoted a∗1.
We call (a∗1, R2(a

∗
1)) the backwards-induction outcome of this game. The backwards-

induction outcome does not involve non-credible threats: player 1 anticipates that player 2
will respond optimally to any action that 1 might choose by player R(a1); player 1 gives no
credence to threats by player 2 to respond in ways that will not be in 2's self-interest when
the second stage arrives.

Recall that we used normal-form representation to study static games of complete infor-
mation, and we focused on the notion of Nash equilibrium as a solution concept for these
games. Here, we have made no mention of either normal-form representation or Nash equi-
librium. Instead, we have given an intuitive description of a game and have de�ned the
backwards-induction outcome as the solution to that game. We can conclude this section by
exploring the rationality assumption inherent in backwards-induction arguments. Consider
the following three-move game:

1. Player 1 chooses L or R, where L ends the game with payo�s of 2 to player 1 and 0 to
player 2

2. Player 2 observes 1's choice. If 1 chose R then 2 choses L′ or R′, where L′ ends the
game with payo�s of 1 to both players

3. Player 1 observes 2's choice, and if the earlier choices were R,R′ then 1 chooses L′′ or
R′′, both of which end the game L′′ with payo�s of 3 to player 1 and 0 to player 2 and
R′′ with analogous payo�s of 0 and 2.

The structure of this game follows the form of the following tree:
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1

R

R′

R′′

2

1

0
2

3
0

L

2
0

1
1

L′

L′′

When trying to compute the backwards-induction outcome of this game, we begin at the
third stage. Here player 1 faces a choice between a payo� of 3 from L′′ and a payo� of 0 from
R′′, so clearly L′′ is optimal. Thus at the second stage, player 2 would anticipate that if the
game reaches the third stage then player 1 will play L′′, which would yield a payo� of 0 for
player 2. The second-stage choice for player 2 therefore is between a payo� of 1 from L′ is
optimal. Thus, at the �rst stage, player 1 anticipates that if the game reaches the second
stage, player 2 would play L′, which would yield a payo� of 1 for player 1. The �rst-stage
choice for player 1 therefore is between a payo� of 2 from L and a payo� of 1 from R, so
clearly L is optimal.

This argument overall establishes that the backwards-induction outcome of this game is for
player 1 to choose L in the �rst stage, ending the game. Even though backwards induction
predicts that the game will end in the �rst stage, an important part of the argument concerns
what would happen if the game did not end in the �rst stage. In the second stage, when
player 2 anticipates that the game will reach the third stage, then 1 will play L′′, assuming
that 1 is rational. This assumption may seem inconsistent with the fact that 2 gets to move
in the second stage only if 1 deviates from the backwards-induction outcome of the game.
So it may seem that if 1 plays R in the �rst stage then 2 can't assume that in the second
stage that 1 is rational, but this is not the case: if 1 plays R in the �rst stage then ti cannot
be common knowledge that both players are rational, but there remain reasons for 1 to have
chosen R that do not contradict 2's assumption that 1 is rational. One possibility is that it
is common knowledge that player 1 is rational but not that player 2 is rational: if 1 thinks
2 might not be rational, then 1 might choose R in the �rst stage hoping that 2 will play R′

in the second stage, giving 1 the chance to play L′′ in stage three.

For some games, it may be more reasonable to assume that 1 played R because 1 is indeed
irrational. In these games, backwards induction loses much of its appeal as a prediction of
play, just as Nash equilibrium does in games where game theory does not provide a unique
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solution and no convention will develop.

2.1.2 Stackelberg Model of Duopoly

In 1934, Stackelberg proposed a dynamic model of duopoly in which a dominant �rm moves
�rst an a follower �rm moves second. The timing of the game is as follows:

1. Firm 1 chooses a quantity q1 ≥ 0

2. Firm 2 observes q1 and then chooses a quantity q2 ≥ 0

3. The payo� to �rm i is given by the pro�t function

πi(qi, qj) = qi [P (Q)− c]

Where P (Q) = a−Q is the market clearing price when the aggregate quantity on the
market is Q = q1 + q2 and c is the constant marginal cost of production.

To solve for the backwards-induction outcome of this game, we have to compute �rm 2's
reaction to an arbitrary quantity by �rm 1. In other words, R2(q1) solves:

maxq2≥0π2(q1, q2) = maxq2≥0q2[a− q1 − q2 − c]

which yields

R2(q1) =
a− q1 − c

2

provided that q1 < a−c. Interestingly, the same equation for R2(q2) appeared in our analysis
of the simultaneous move Cournot game in a previous section. Since �rm 2 can solve �rm
2's problem as well as �rm 2 can solve it, �rm 2 should anticipate that the quantity choice
q1 will be met with the reaction R2(q1). So, �rm 2's problem amounts to:

maxq1≥0π1(q1, R2(q1)) = maxq1≥0q1[a− q1 −R2(q1)− c] = maxq1≥0q1
a− q1 − c

2

Which yields the following:

q∗1 =
a− c
2

R2(q
∗
1) =

a− c
2

as the backwards-induction outcome of the Stackelberg duopoly game.

Notice that �rm 2 actually does worse in the Stackelberg model than it did in the Cournot
game illustrates an important di�erence between single and multi-person decision problems.
In single-person decision theory, having more information can never make the decision maker
worse of. In game theory, having more information actually can make the player worse
o�.

In the Stackelberg game, the information in question is �rm 1's quantity: �rm 2 knows q1
and �rm 1 knows that �rm 2 knows q1. To see the e�ect this information has, consider the
modi�ed sequential move game in which �rm 1 chooses q1, after which �rm 2 chooses q2 but
does so without observing q1. If �rm 2 believes that �rm 1 has chosen its Stackelberg quantity
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q∗1 = (a−c)/2, then �rm 2's best response is again R2(q
∗
1) = (a−c)/4. But if �rm 2 anticipates

that �rm 2 will hold this belief and so choose this quantity, then �rm 1 prefers to choose its
best response to (a− c)/4, namely, 3(a− c)/8, rather than its Stackelberg quantity (a− c)/2.
So, �rm 2 shouldn't believe that �rm 1 has chosen its Stackelberg quantity. Rather, the
unique Nash equilibrium of this modi�ed sequential move game is form both �rms to choose
the quantity (a− c)/3, precisely the Nash equilibrium of the Cournot game, where the �rms
move simultaneously. Thus, having �rm 1 knows that �rm 2 knows q1 hurts �rm 2.

2.1.3 Wages and Employment in a Unionized Firm

In 1946, Leontief's model of the relationship between a �rm and a monopoly union, the union
has exclusive control over wages, but the �rm has exclusive control over employment. The
union's utility function is U(w,L), where w is the wage the union demands from the �rm and
L is employment. Assume that U(w,L) increases in both w and L The �rm's pro�t function
is π(w,L) = R(L)−wL, where R(L) is the revenue the �rm can earn if it employs L workers.
Assume that R(L) is increasing and concave.

We have the following timing of this game:

1. The union makes a wage demand

2. The �rm observes and accepts w, then chooses employment, L

3. Payo�s are U(w,L) and π(w,L).

First we can characterize the �rm's best response in stage 2 L∗(w) to an arbitrary wage
demand by the union in stage 1, w. Given w, the �rm chooses L∗(w) to satisfy the follow-
ing:

maxL≥0π(w,L) = maxL≥0R(L)− wL

The �rst-order condition for which is:

R′(L)− w = 0

R

L

R(L)
slope = w

L∗(w)
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To guarantee that the �rst order condition R′(L) − w = 0 has a solution, assume that
R′(0) = ∞ and that R′(∞) = 0. Notice from our diagram that L∗(w) cuts each of the
�rm's isopro�t curves at its maximum. Holding L �xed, the �rm does better when w is
lower, so lower isopro�t curves represent higher pro�t levels. Holding L �xed, the union does
better when w is higher, so higher indi�erence curves represent higher utility levels for the
union.

We now turn to the union's problem at stage (1). Since the union could solve the �rm's
second stage problem just as well as the �rm can, the union should anticipate that the �rm's
reaction to the wage demand w will be to choose the employment level L∗(w). So, the union's
problem at the �rst stage amounts to

maxw≥0U(w, :
∗ (w))

in terms of the indi�erence curves plotted below:

L

w

L∗(w∗))

w∗

union's indi�erence curves

the union would like to choose the wage demand w that yields the outcome (w,L∗(w)) that
is on the highest possible indi�erence curve. The solution to the union's problem is w∗,
the wage demand such that the union's indi�erence curve through the point (w∗, L∗(w∗)) is
tangent to L∗(w) at that point.

It is straightforward to see that (w∗, L∗(w∗)) is ine�cient: both the union's utility and
the �rm's pro�t would be increased if w and L were in the shaded portion in the �gure
below.

This ine�ciency makes it puzzling that in practice �rms seem to retain exclusive control
over employment. One answer to this puzzle, based on the fact that the union and the �rm
negotiate repeatedly over time is proposed by Espinosa and Rhee.
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L

w

L∗(w∗))

w∗

union's indi�erence curves

�rm's isopro�t

curve

2.2 Sequential Bargaining

We now move into a three-period bargaining model. Players 1 and 2 are bargaining over a
dollar. They alternate in making o�ers, �rst player 1 makes a proposal that player 2 can
accept or reject; if 2 rejects then 2 makes a proposal that 1 can accept or reject, and so on.
Once an o�er has been rejected, it ceases to be binding and is irrelevant to the subsequent
play of the game. Each o�er takes one period, and the players are impatient: they discount
payo�s received in later periods by the factor δ per period, where 0 < δ < 1. We have the
following formal wording:

1. At the beginning of the �rst period, player 1 proposes to take a share s! of the dollar,
leaving 1− s1 for player 2

2. Player 2 either accepts the o�er (so payo�s s! and 1 − s1 go to player 1 and player 2
respectively ) or rejects the o�er, in which case play continues.

3. At the beginning of the second period, player 2 proposes that player 1 take a share s2
of the dollar, leaving 1− s2 for player 2.

4. Player 1 either accepts the o�er (so payo�s 1 − s2 and s2 go to player 1 and player 2
respectively ) or rejects the o�er, in which case play continues. to the third period

5. At the beginning of the third period, player 1 receives a share s of the dollar, leaving
1− s for player 2, where 0 < s < 1.

To solve for the backwards-induction outcome of this three-period game, we �rst compute
player 2's optimal o�er if the second period is reached. Player 1 can receive s in the third
period by rejective player 2's o�er of s2 this period, but the value this period of receiving s
next period is only δs. So, player 1 will accept s2 if and only if s2 ≥ δs. Player 2's second-
period decision problem therefore amounts to choosing between receiving 1− δs this period
and receiving 1−s next period. The discounted value of the latter option is δ(1−s), which is
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less than the 1−δs available from the former option, so player 2's optimal second-period o�er
is s∗2 = δs. So, if play reaches the second period, player 2 will o�er s∗2 and player 1 will accept.
Since player 1 can solve player 2's second-period problem as well as player 2 can, player 1
knows that player 2 can receive 1− s∗2 in the second period by rejecting player 1's o�er of s1
this period, but the value this period of receiving 1 − s∗2 next period is only δ(1 − s∗2). So,
player 2 will accept 1−s1 if and only if 1−s1 ≥ δ(1−s∗2) or s1 ≤ 1−δ(1−s∗2). Player 1's �rst
period decision problem therefore amounts to choosing between receiving 1 − δ(1 − s∗2) this
period and receiving s∗2 next period. The discounted value of the latter option is δs∗2 = δ2s,
which is less than 1 − δ(1 − δs∗2) = 1 − δ(1 − δs). So, in the backwards induction outcome,
player 1 o�ers the settlement (s∗1, 1− s∗1) to player 2, who accepts.

No formal backward-induction argument was made for this game, but we do so now: Suppose
that there is a backwards-induction outcome of the game as a whole in which player 1 and 2
receive the payo�s s and 1 − s respectively. We use these payo�s in the game beginning in
the third period, then work backwards to the �rst period. In this new back-wards induction
outcome, player 1 o�ers the settlement (f(s), 1 − f(s)) in the �rst period and player 2 will
accept where f(s) = 1− δ(1− δs).

2.3 Two-Stage Games of Complete But Imperfect Infor-

mation

2.3.1 Theory of Subgame Perfection

We now try to expand the class of games analyzed in the previous section. Just like with
dynamic games of complete and perfect information, we assume that play proceeds in a
sequence of stages, with the moves in all previous stages observed before the next stage
begins. Unlike in the games analyzed in the previous section, we now allow there to be
simultaneous moves within each stage. We can analyze the following simple game, called a
two-stage game of complete but imperfect information:

1. Players 1 and 2 simultaneously choose actions a1, a2 respectively from the sets A1, A2.

2. Players 3 and 4 observe the outcome of the �rst stage (a1, a2) and then simultaneously
choose actions a3, a4 from the feasible sets A3, A4.

3. Payo�s are ui(a1, a2, a3, a4) for i = 1, 2, 3, 4.

Some examples of real world economic examples include things like bank runs, tari�s and im-
perfect international competition. We solve a game from this class by using an approach that
models the spirit of backwards induction, but this time the �rst step in working backwards
from the end of the game involves solving a real game rather than solving a single-person
optimization problem as in the previous section. To keep these things simple, we assume
that for each feasible outcome of the �rst stage game, (a1, a2), the unique second stage
game that remains between players 3 and 4 has a unique Nash equilibrium, denoted by
(a∗3(a1, a2), a

∗
4(a1, a2)).
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If players 1 and 2 anticipate that the second stage behavior of players 3 and 4 will be given
by (a∗3(a1, a2), a

∗
4(a1, a2)), then the �rst-stage interaction between players 1 and 2 amounts to

the following simultaneous move game:

1. Players 1 and 2 simultaneously choose actions a1, a2 from feasible sets A1, A2, respec-
tively.

2. Payo�s are ui(a1, a)2, a
∗
3(a1, a2), a

∗
4(a1, a2)) for i = 1, 2.

Supposing that (a∗1, a
∗
2) is the unique Nash equilibrium of this simultaneous move game, then

we will call (a∗1, a
∗
2, a
∗
3(a1, a2), a

∗
4(a1, a2)) the subgame-perfect outcome of this two-stage

game. This outcome is the natural analog of the backwards-induction outcome in games
of complete and perfect information, and the analogy applies to both the attractive and
unattractive features o the latter.

2.3.2 Bank Runs

Suppose that two investors have each deposited D with a bank. The bank has invested these
deposits in a long term project. If the bank is forced to liquidate its investment before the
project matures, a total of 2r can be recovered, where D > r > D/2. If the bank allows the
investment to reach maturity, however, the project will pay out a total of 2R, where R > D.
There are two dates at which the investors can make withdraws from the bank: date 1 is
before the bank's investment matures; date 2 is after. If both investors make withdrawals at
date 1, then each receives r and the game ends. If only one investor makes a withdrawal at
date 1 then that investor receives D, the other receives 2r −D, and the game ends. Finally,
if neither investor makes a withdrawal at date 1 then the project matures and the investors
make withdrawal decisions at date 2. If both investors make withdrawals at date 2 then
each receives R and the game ends. If only one investor makes a withdrawal at date 2, then
that investor receives 2R −D, the other receives D, and the game ends. If neither makes a
withdrawal at date 2, then the bank returns R to each investor and the game ends. This can
be illustrated with �gure 2.1

In analyzing this game, we work backwards. Consider the normal form game at date 2.
Since R > D, �withdraw� strictly dominates �don't withdraw� so there is a unique Nash
equilibrium in this game: both investors withdraw, leading to a payo� of (R,R). Since there
is no discounting, we can simply substitute this payo� into the normal form game at date 1,
as in �gure 2.2.
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Figure 2.1: Bank Runs
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Figure 2.2:
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Since r < D, this one-period version of the two-period game has two pure-strategy Nash
equilibria:

1. Both investors withdraw, leading to a payo� of (r, r)

2. Both investors do not withdraw, leading to a payo� of (R,R).

So, the original two-period bank runs game has two subgame-perfect outcomes: both with-
draw at date 1, or both investors withdraw at date 2.

2.4 Tari�s and Imperfect International Competition

We now look at an example from international economics. Consider two identical countries,
denoted by i = 1, 2. Each country has a government that chooses a tari� rate, a �rm that
produces output for both home consumption and export, and consumers who buy on the
home market from either the home �rm or the foreign �rm. If the total quality on the
market in country i is Qi, then the market clearing price is Pi(Qi) = a − Qi. The �rm in
country i produces hi for home consumption and ei for export. So, Qi = hi + ej. The �rms
have a constant marginal cost, and no �xed costs- so the total cost of production for �rm
i is Ci(hi, ei) = c(hi + ei). The �rms also incur tari� costs on exports: if �rm i exports
ei to country j when government j has set the tari� rate tj, then �rm i must pay tjei to
government j.

First the government simultaneously choose tari� rates t1, t2 respectively. Then, the �rms
observe the tari� rates and simultaneously choose quantities for home consumption and for
export, (h1, e1) and (h2, e2). Then, the payo�s are pro�t to �rm i and total welfare to
government i, where total welfare to country i is the sum of the consumers' surplus enjoyed
by the consumers in country i, the pro�t earned by �rm i, and the tari� revenue collected
by government i from �rm j:

πi(ti, tj, hi, ei, hj, ej) = [a− (hi + ej)]hi + [a− (ei + hj)]ei − c(hi + ei)− tjei

Wi(ti, tj, hi, ei, hj, ej) =
1

2
Q2
i + πi(ti, tj, hi, ei, hj, ej) = +tiej

Suppose the governments choose tari�s t1 and t2. If (h∗1, e
∗
1, h
∗
2, e
∗
2) is a Nash equilibrium in

the remaining game between �rms 1 and 2, then for all i, (h∗i , e
∗
i ) must solve:

maxhi,ei≥0πi(ti, tj, hi, ei, h
∗
j , e
∗
j)

Since πi(ti, tj, hi, ei, h
∗
j , e
∗
j) can be written as the sum of �rm i's pro�ts on market i and �rm

i's pro�ts on market j, �rm i's two-market optimization problem simpli�es into a pair of
problems, one for each market: h∗i must solve:

maxh≥0hi[a− (hi + e∗j)− c]
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and e∗i must solve

maxei≥0ei[a− (ci + h∗j)− c]− tjei
Assuming that e∗j ≤ a− c, we have

h∗i =
1

2
(a− e∗j − c)

and assuming that h∗j ≤ a− c− tj, we have

e∗i =
1

2
(a− h∗j − c− tj)

Both of the best-response functions must hold for each i = 1, 2. Fortunately, these equations
simplify to the following:

h∗i =
a− c+ ti

3
e∗i =

a− c− 2tj
3

Recall that the equilibrium quantity chosen by both �rms in the Cournot game is (a− c)/3,
but that this result was derived under the assumption of symmetric marginal costs. In the
equilibrium described above, the government's tari� choices make marginal costs asymmetric
marginal costs. Having solved the second stage game that remain between the two �rms
after the governments choose tari� rates, we can now represent the �rst-stage interactions
between thet wo governments as the following simultaneous-move game. We can now solve
for the Nash equilibrium of this game between the governments.

To simplify things, letW ∗
i (ti, tj) denoteWi(ti, tj, h

∗
i , e
∗
i , h
∗
j , e
∗
j). If (t

∗
1, t
∗
2) is a Nash equilibrium

of this game between the governments then, for each i, t∗i must solve

maxti≥0W
∗
i (ti, t

∗
j)

But, W ∗
i (ti, t

∗
j) equals:

(2(a− c)− ti)2

18
+

(a− c+ ti)
2

9
+

(a− c− 2t∗j)
2

9
+
ti(a− c− 2t)i

3

So,

t∗i =
a− c
3

for each i, independent of t∗j . Substituting ti = t∗j = (a− c)/3, we have

h∗i =
4(a− c)

9
e∗i =

a− c
9

as the �rm's quantity choices in the second game. So, the subgame perfect outcome of this
tari� game is

t∗1 = t∗2 = (a− c)/3 h∗1 = h∗2 = 4(a− c)/9 e∗1 = e∗2 = (a− c)/9
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2.4.1 Tournaments

Suppose you have two workers and their boss. Worker i produces output yi = ei + εi where
ei is e�ort and εi is noise. Production proceeds as follows. First the workers simultaneously
choose nonnegative e�ort levels. Second, the noise terms ε1, ε2 are independently drawn from
a density f(ε) with zero mean. Third, the worker's outputs are observed but their e�ort
choices are not. The workers' wages therefore can depend on their outputs but not on their
e�orts. To induce e�ort, the boss has them compete in a tournament. The wage earned by
the winner is wH , the wage earned by the loser is wL. The payo� to a worker from earning
wage w and expending e�ort e is u(w, e) = w − g(e), where the disutility of e�ort g(e) is
increasing and convex. The payo� to the boss is y1 + y2 − wH − wL.

Making this into a more formal game, the boss is player 1, the workers are player 3 and 4
(there is no player 2) who observe the wages chosen in the �rst stage and then simultaneously
choose actions a3, a4, namely the e�ort choices e1, e2. Finally, the player's payo�s are as given
early. Since outputs are functions not only of the players actions but also of the noise terms
ε1, ε2, we work with the players expected payo�s.

Suppose the boss has chosen the wages wH , wL. If the e�ort pair (e∗1, e
∗
2) is to be a Nash

equilibrium of he remaining game between the workers then, for each i, e∗i must maximize
worker i's expected wage, net of the disutility of e�ort: e∗i must solve

maxei≥0wHProb{yi(ei) > yj(e
∗
j)}+ wLProb{yi(ei) ≤ yj(e

∗
j)} − g(ei)

= (wH − wL)Prob{yi(ei) > yj(e
∗
j)}+ wL − g(ei)

The �rst order condition is then

(wH − wL)
∂Prob{yi(ei) > yj(e

∗
j)}

∂ei
= e′(ei)

By Baye's rule,

Prob{yi(ei) > yj(e
∗
j)} = Prob{εi > e∗j + εj − ei}

=

∫
εj

Prob{εi > e∗j + εj − ei|εj}f(εj)dε)j

=

∫
εj

[1− F (e∗j − ei + εj)]f(εj)dεj

So the �rst order condition really becomes

(wH − wL)
∫
εj

f(e∗j − ei + εj)f(εj)dεj = g′(ei)

In a symmetric Nash equilibrium, if ε is distributed normal with variance σ2, we have

(wH − wL)
∫
εj

f(εj)
2dεj = g′(e∗) =

1

2σ
√
π
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Since in the symmetric Nash equilibrium each worker wins the tournament with probability
one-half, if the boss intends to induce the workers to participate in the tournament then she
must choose wages that satisfy

1

2
wH +

1

2
wL − g(e∗) ≥ Ua

Assuming that Ua is low enough that the boss wants to induce the workers to participate in
the tournament, she chooses wages to maximize expected pro�t. At the optimum, the above
equation holds with equality:

wL = 2Ua + 2g(e∗)− wH

So, expected pro�ts then becomes 2e∗ − 2Ua − 2g(e∗), so the boss wishes to choose wages
such that the induced e�ort e∗ maximizes e∗ − g(e∗). The optimal induced e�ort therefore
satis�es the �rst-order condition g′(e∗) = 1. Substituting this tells us that the optimal prize
wH − wL solves

(wH − wL)
∫
εj

f(εJ)
2dεj = 1

2.5 Repeated Games

We now look at games where we analyze whether threats and promises about future behavior
can in�uence current behavior in repeated relationships

2.5.1 Two-Stage Repeated Games

Remember the Prisoner's dilemma given in normal form. We have the two-stage example, in
the �gure on the next page.
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Player 2

Player 1

1,1

0,5

5,0

4,4

L2 R2

L1

R1

Player 2

Player 1

L2 R2

L1

R1

2,2

1,6 5,5

6,1

Suppose that the payo� for the entire game is simply the sum of the payo�s from the two
stages. This game will be called the two-stage Prisoner's Dilemma. This is identical to what
we did before, but here players 3 and 4 are identical to players 1 and 2, the action spaces
A3 and A4 are identical to A1 and A2, and the payo�s ui(a1, a2, a3, a4) are simply the the
sum of the payo� from the �rst stage outcome (a1,2 ) and the payo� from the second-stage
outcome (a3, a4). Furthermore, the second stage game that remains between players 3 and
4 has a unique Nash equilibrium, denoted by (a∗3(a1, a2), a

∗
4(a1, a2)). In fact, the two stage

Prisoners' Dilemma satis�es this assumption in the following way: previously, we allowed for
the possibility that the Nash equilibrium quantity choices in the second stage depend on the
�rst stage outcome. In the two-stage Prisoners' Dilemma, however, the unique equilibrium
of the second-stage game is (L1, L2), regardless of the �rst-stage outcome.

In computing the subgame-perfect outcome of such a game, we analyze the �rst stage of the
two-stage Prisoners' Dilemma by taking into account that the outcome of the game remaining
in the second stage will be the Nash equilibrium of that remaining game. So, the players' �rst
stage interaction in th two stage Dilemma amounts to the one-shot game above, where the
payo� pair (1, 1) for the second stage has been added to each �rst-stage payo� pair. So, the
unique subgame-perfect outcome of the two-stage Prisoners' Dilemma is (L1,2 ) in the �rst
stage, followed by (L1, L2) in the second stage. We end up with the following de�nition:

Definition

Given a stage game G, let G(T ) denoted the �nitely repeated game in which G is played
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T times, with the outcomes of all preceding plays observed before the next play begins. The
payo�s for G(T ) are simply the sum of the payo�s from the T stage games.

Definition

If the stage game G has a unique Nash equilibrium then, for any �nite T , the repeated game
G(T ) has a unique subgame-perfect outcome: the Nash equilibrium of G is played in every
stage.

We can now return to the two period case, but consider the possibility that the stage game G
has multiple Nash equilibria, as in the above �gure. The strategies labeled Li and Mi mimic
the Prisoner's Dilemma, but the strategies labeled Ri have been added to the game so that
there are now two pure-strategy Nash equilibria: (L1, L2) as in the Prisoners' Dilemma, and
now also (R1, R2). We end up with the following diagram:

L1

M1

R1

L2 M2 R2

1,1 5,0 0,0

0,5 4,4 0,0

0,0 0,0 3,3

Supposing that the stage game above is played twice, with the �rst-stage outcome observed
before the second stage begins, we can show that there is a subgame-perfect outcome of this
repeated game in which the strategy pair (M1,M2) is played in the �rst stage. We again
assume that in the �rst stage the players anticipate that the second-stage outcome will be
a Nash equilibrium. Eventually, we can see that the players' �rst stage interaction then
amounts to the one-shot game where (3, 3) has been added to the (M1,M2)- cell and (1, 1)
has been added to the eight other cells.
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There are then three pure-strategy Nash equilibria in the game above: (L1, L2), (M1,M2)
and (R1, R2).

L1

M1

R1

L2 M2 R2

2,2 6,1 1,1

1,6

1,1

7,7 1,1

1,1 4,4

So, in the �gure above, the Nash equilibrium (R1, R2) corresponds to the subgame perfect
outcome ((R1, R2, ), (L1, L2)) in the repeated game. These two subgame perfect outcomes
simply concatenate Nash equilibrium outcomes from the stage game, but the third Nash
equilibrium yields a quantitatively di�erent result.

The main point to get from this example is that credible threats or promises about future
behavior can in�uence current behavior. A second point, is that subgame perfection may not
embody a strong enough de�nition of credibility. In deriving the subgame perfect outcome
((M1,M2), (R1, R2)), for example, we assumed that the players anticipate that (R1, R2) will
be the second-stage outcome if the �rst-stage outcome is (M1,M2) and that (L1, L2) will be
the second stage outcome if any of the other eight �rst-stage outcomes occur.

2.6 The Theory of In�nitely Repeated Games

As in the �nite-horizon case, the main theme in in�nitely repeated game is that credible
threats and/or promises about future behavior can in�uence current behavior.

We begin by studying the in�nitely repeated Prisoners' Dilemma. We consider the class of
in�nitely repeated games analogous to the class of �nitely repeated games de�ned in the
previous section: a static game of complete information, G, is repeated in�nitely, with the
outcomes of all previous stages observed before the current stage begins. Suppose that the
Prisoners Dilemma below is to be repeated in�nitely and that, for each t, the outcomes of
the t− 1preceding plays of the stage game are observed before the tth stage begins: Simply
summing the payo�s from this in�nite sequence of stage games doesn't provide a useful
measure of a player's payo� in the in�nitely repeated game. Receiving a payo� of 4 in each
period is better than receiving a payo� of 1 for each period for example, bu the sum of the
payo�s is in�nity in both cases. Recall that the discount factor δ = 1/(1 + r) is the value
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1,1

0,5 4,4

5,0

L2 R2

L1

R1

Player 2

Player 1

today of a dollar to be received one stage later, where r is the interest rate per stage. Given
a discount factor and a players payo�s sequence of stage jumps, we can compute the present
value of the payo�s.

Definition

Given the discount factor δ, the present value of the in�nite sequence of payo�s π1, π2, ...
is:

π1 + δπ2 + δ2π3 + .... =
∞∑
t=1

δt−1πt

We can also use the factor δ to reinterpret an in�nitely repeated game as a repeated game
that ends after a random number of repetition.

Go back to considering the in�nitely repeated Prisoner's Dilemma in which each player's
discount factor is δ and each player's payo� in the repeated game is the present value of the
player's payo�s from the stage games. Suppose that player i begins the in�nitely repeated
game by co-operating and then cooperates in each subsequent stage game if and only if both
players have cooperated in every previous stage. Formally, player i's strategy is to play Ri

in the �rst stage, and in the tth stage, if the outcome of all t − 1 preceding stages has been
(R1, R2) then play Ri; otherwise play Li.

This is an example of a trigger strategy, because player i cooperates right up until someone
fails to cooperate, which triggers a witch to noncooperation ever after. If both players adopt
this trigger strategy, then the outcome of the in�nitely repeated game will be (R1, R2) in
every stage. We �rst argue that if δ is close enough to one then it is a Nash equilibrium of
the in�nitely repeated game for both players to adopt this strategy. We then argue that such
a Nash equilibrium is subgame-perfect, in a sense that we can now make more precise.

To show that we have a Nash equilibrium of the in�nitely repeated game for both players
to adopt the trigger strategy, we will assume that player i has adopted the trigger strategy
and then show that provided δ is close to one, it is a best response for player j to to also
adopt that strategy. Since player i will play Li forever once one stage's outcome di�ers from
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(R1, R2), player j's best response is indeed to play Lj forever once one stage di�ers from
(R1, R2). Thus, player j s best response for each and every stage such that all preceding
outcomes have been (R1, R2) will be to play R2. We end up with the following present value
of this sequence of payo�s:

5 + δ · 1 + δ2 · 1 + ... = 5 +
δ

1− δ

However, if playing Rj is optimal, then

V = 4 + δV

where V denotes the present value of the in�nite sequence of payo�s player j receives from
making this choice optimally. So, Rj is optimal if and only if

4

1− δ
≥ 5 +

δ

1− δ

Or, δ ≥ 1/4.

We now want to show that such a Nash equilibrium is sub-game perfect. To do this, we de�ne
a strategy in a repeated game, a subgame in a repeated game, and a subgame-perfect Nash
equilibrium in a repeated game. In order to illustrate these concepts with simple examples,
we will de�ne them for both �nitely and in�nitely repeated games. In the previous section we
said that the �nitely repeated game G(T ) based on the stage game G =}A1, ..., An;u1, ..., un}.
We now have the following:

Definition

Given a stage game G, let G(∞, δ) denote the in�nitely repeated game in which G is
repeated forever and the players share the discount factor δ. For each t, the outcomes of the
t−1 preceding plays of the stage game are observed before the tth stage begins. Each player's
payo� in G(∞, δ) is the present value of the player's payo�s from the in�nite sequence of
stage games.

In any game, a player's strategy is a complete plan of action, it speci�es a feasible action fro
the player in which the players might be called upon to act. In a static game of complete
information, for example, a strategy is simply an action. In a dynamic game, however, a
strategy is more complicated.

Consider the two-stage Prisoners' Dilemma again. Each player acts twice, so one might
think that a strategy is simply a pair of instructions (b, c) where b is the �rst stage ac-
tion and c is the second stage action. But, there are four possible �rst-stage outcomes-
(L1, L2), (L1, R2), (R1, L2), and (R1, R2)- and these represent four separate contingencies in
which each player might be called upon to act. So, each players strategy consists of �ve
instructions, denoted (w, v, x, y, z) where v is the �rst stage action, and w, x, y, z are the
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second-stage actions to be taken following the �rst-stage outcomes (L1, L2), (L1, R2), (R1, L2)
and (R1, R2) respectively. Using this notation, we can express things like `play b in the �rst
stage and c in the second, unless so-and-so'. In the �nitely repeated game G(T ) or the in-
�nitely repeated game G(∞, δ), the history of play throughout stage t is the record of the
players' choices in stages 1 through t. We end up with the following de�nition:

Definition

In the �nitely repeated game G(T ) or the in�nitely repeated game G(∞, δ), a players strat-
egy speci�es the action the player will take in each stage, for each possible history of play
throughout the previous stage.

2.6.1 Subgames

We now talk quickly about subgames. A subgame is a piece of a game, the piece that
remains to be played beginning at any point at which the complete history of the game
thus far is common knowledge among the players. In the two-stage Prisoners' Dilemma, for
example, there are four subgames, corresponding to the second-stage games that follow the
four possible �rst-stage outcomes.

Definition

In the �nitely repeated game G(T ), a subgame beginning at stage t+1 is the repeated game
in which G is played T − t times, denoted G(T − t). There are many subgames that begin
at stage t+1 , one for each of the possible histories of play through stage t. In the in�nitely
repeated game G(∞, δ), each subgame beginning at stage t + 1 is identical to the original
game G(∞, δ). As in the �nite-horizon case, there are as many subgames beginning at stage
t+ 1 of G(∞, δ) as there are possible histories of play through stage t.

We are now ready for the de�nition of subgame-perfect Nash equilibrium, which depends on
the de�nition of Nash equilibrium.

Definition

A Nash equilibrium is subgame-perfect if the players' strategies constitute a Nash equilib-
rium in every subgame
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One can think of Subgame-perfect Nash equilibrium as being a re�nement of Nash equilib-
rium. To show that the trigger-strategy Nash equilibrium in the �nitely repeated Prisoner's
Dilemma is subgame-e�ect, we must show that the trigger strategies constitute a Nash equi-
librium on every subgame of that in�nitely repeated game. Recall that every subgame of an
in�nitely repeated game is identical to the game as a whole. In the trigger-strategy Nash
equilibrium of the in�nitely repeated Prisoner's Dilemma, these subgames can be grouped
into two classes

1. Subgames in which all the outcomes of earlier stages have been (R1, R2)

2. Subgames in which the outcome of at least one earlier stage di�ers from (R1, R2).

If the players adopt the trigger strategy for the game as a whole, then (i) the player's strategies
in a subgame in the �rst class are again the trigger strategy, which we have shown to be a
Nash equilibrium of the game as a whole, and (ii) the players' strategies in a subgame in the
second class are simply to repeat the stage-game equilibrium (L1, L2) forever, which in itself
is also a Nash equilibrium of the game as a whole.

Applying analogous arguments in the in�nitely repeated game G(∞, δ), we end up with
Friedman's Theorem. First,we call the payo�s (x1, ..., xn) feasible in the stage game G if they
are a convex combination of the pure strategy payo�s of G. The set of feasible payo�s for
the Prisoner's Dilemma below is the shaded region;

(1,1)

(5,0)

(4,4)

(0,5)

payo� to player 2

payo� to

player 1

Notice that the pure-strategy payo�s (1, 1), (0, 5), (4, 4), (5, 0) are all feasible. There exist
other feasible payo�s, which can be modeled as ordered pairs that �t in the interior of the
above �gure. To get a weighted average of pure-strategy payo�s, the players could use a
public randomizing device, by playing (L1, R2) or (R1, L2) depending on the �ip of a coin,
for example, they achieve the expected payo�s (2.5, 2.5).
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Definition

Given a discount factor δ, the average payo� of the in�nite sequence of payo�s π1, π2, ...
is

(1− δ)
∞∑
t=1

δt−1πt

The advantage of being able to talk about average payo� vs. the present value is that the
former is directly comparable to the payo�s from the stage game. We end up wit the following
main result:
Theorem 4. (Friedman 1971): Let G be a �nite, static game of complete information. Let
(e1, ..., en) denote the payo�s from a Nash equilibrium of G and let (x1, ..., xn) denote any
other feasible payo�s from G. If xi > ei for every player i and if δ is su�ciently close to one,
then there exists a subgame-perfect Nash equilibrium of the in�nitely repeated game G(∞, δ)
that achieved (x1, ..., xn) as the average payo�.

2.6.2 E�ciency Wages

In e�ciency-wage models, the output of a �rm's work force depends on the wage the �rm
pays. In the context of developing countries, higher wages could lead to better nutrition.
From Shapiro and Stiglitz(1984) developed the following stage game: First, the �rm o�ers
the worker a wage w. Second, the worker accepts or rejects the �rm's o�er. If the workers
rejects w, then the worker becomes self-employed at wage w0. If the worker accepts w, then
the worker chooses either to supply e�ort (which entails disutility e) or to shirk (which entails
no disutility). The worker's e�ort decision is not observed by the �rm, but the worker's output
is observed by both the �rms and the worker. Output can either be higher or low, and for
simplicity, we take low output to be zero and so write high output as y > 0. Suppose that if
the worker supplies e�ort then output is sure to be high, but that if the worker shirks then
output is high with probability p and low with probability 1− p.

If the �rm employs the worker at wage w, then the player's payo�s if the worker supplies
e�ort and output is high are y − w for the �rm and w − e for the worker. If the worker
shirks, then e becomes 0; then y becomes 0. We assume that y − e > w0 > py, so that it is
e�cient for the worker to be employed by the �rm and to supply e�ort, and also better than
the worker to be self-employed than employed by the �rm and shirking.

The subgame-perfect outcome of this stage game is rather bleak, because the �rm pays w
in advance, so the worker has no incentive to supply e�ort, so the �rm o�ers w = 0 and
the worker chooses self-employment. In the in�nitely repeated game however, the �rm can
induce e�ort by paying a wage w in excess of w0 and threatening to �re the worker if output
is ever low.
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We can consider the following strategies in the in�nitely repeated game, which involve the
wage w∗ > w0 to be determined later. The �rms strategy is to o�er w = w∗ in the �rst
period, and in each subsequent period to o�er w = w∗ provided that the history of play is
high-wage, high-output, but to o�er w = 0 otherwise. The worker's strategy is to accept the
�rm's o�er if w ≥ w0 and to supply e�ort if the history of play including the current o�er is
high-wage, high-output.

We now derive conditions under which these strategies are a subgame-perfect Nash equilib-
rium. Suppose that the �rm o�ers w∗ in the �rst period. Given the �rm's strategy, it is
optimal for the worker to accept. if the worker supplies e�ort, then the worker is sure to
produce high output. If the worker supplies e�ort, then the worker is sure to produce high
output, so the �rm will again o�er w∗ and the worker will face the same e�ort-supply decision
next period. So, if it is optimal for the worker to supply e�ort, then the present value of the
worker's payo�s is

Ve = (w∗ − e) + δVe or Ve = (w∗ − e)/(1− δ)

If the worker shirks however, then the worker will produce high output with probability p, in
which case the same-e�ort supply decision will arise next period, but the worker will produce
low output with probability 1 − p, in which case the �rm will o�er w = 0 forever after, so
the worker will be self-employed forever after. Thus, if it is optimal for the worker to shirk,
then the present value of the worker's payo�s is

Vs = w∗ + δ

{
pVs + (1− p) w0

1− δ

}
Since it is optimal for the worker to supply e�ort if Ve ≥ Vs, or

w∗ ≥ w0 +
1− pδ
δ(1− p)

e = w0 +

(
1 +

1− δ
δ(1− p)

)
e

So, do induce e�ort, the �rms need to pay not only w0 + e to compensate the worker for the
foregone opportunity of self-employment and for the disutility of e�ort, but also the wage
premium. So if p is close to one, then the wage premium must be extremely high to induce
e�ort. If p = 0 on the other hand, then it is optimal for the worker to supply e�ort if

1

1− δ
(w∗ − e) ≥ w∗ +

δ

1− δ
w0

So, given the workers strategy, the �rm's problem in the �rst period amounts to choosing
between paying w = w∗, thereby inducing e�ort by threatening to �re the worker if low
output is ever observed, and so receiving the payo� y0w∗ each period, and paying w − 0,
thereby inducing the worker to choose self-employment, and so receiving the payo� zero in
each period. So, the �rm's strategy is a best-response to the workers if

y − w∗ ≥ 0

Recall that we assumed that y − e > w0. We require more if these strategies are to be a
subgame-perfect Nash equilibrium: our two equations imply the following;

y − e ≥ w0 +
1− δ
δ(1− p)

e
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Which makes logical and historical sense based on what we know about the other subgames
we've examined.

2.7 Dynamic Games of Complete but Imperfect Informa-

tion

2.7.1 Extensive-Form Representation of Games

Back in chapter 1, we looked at static games by representing them in a normal form. We
now analyze dynamic games by representing such games in extensive form. This approach
may make it seem that static games must be represented in normal form and dynamic games
in extensive form, but this is not the case. Any game, it turns out, can be represented in
either normal or extensive form, and we'll talk about how dynamic games can be represented
in normal form.

Definition

The extensive-form representation of a game speci�es:

1. The players in the game

2. When each player has the move

3. What each player can do at each of his or her opportunities to move

4. What each player knows at each of his or her opportunities to move

5. The payo� received by each player for each combination of moves that could be chosen
by the players

An example of a game in extensive form is as follows:

1. Player 1 chooses an action a1 from the feasible set A1 = {L,R}

2. Player 2 observes a1 and then chooses an action a2 from the set A2 = {L′, R′}

3. Payo�s are u1(a1, a2) and u2(a1, a2) as shown in the tree in �gure 2.5
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1
RL

L′ R′R′L′

Payo� to player 1
Payo� to Player 2

3
1

1
2

2
1

0
0

2 2

Figure 2.3:

The game begins with a decision node for player 1, where 1 chooses between L and R. If
player 1 chooses L, then a decision node for player 2 is reached, where 2 then chooses between
L′ and R′. Following player 2's choices, a terminal node is reached, and the indicated payo�s
are received.

It's actually pretty easy to extend the game shown above to represent any dynamic game of
complete and imperfect information. We next derive the normal-form representation of the
dynamic game as in �gure 2.5. Recall the following de�nition:

Definition

A strategy for a player is a complete plan of action� it speci�es a feasible action for the
player in every contingency in which the player might be called on to act.

In �gure 2.5 , player 2 has two actions but four strategies, because there are two di�erent
contingencies in which player 2 could be called upon to act:

1. If player 1 plays L, then play L′, if player 1 plays R then play L′, denoted by (L′, L′)

2. If player 1 plays L, then play L′, if player 1 plays R then play R′, denoted by (L′, R′)

3. If player 1 plays L, then play L′, if player 1 plays R then play L′, denoted by (R′, L′)

4. If player 1 plays L, then play R′, if player 1 plays R then play R′, denoted by (R′, R′)

Player 1 however, has two actions, but only two strategies: play L and play R. The reason
player 1 has only two strategies is that there is only one contingency in which player 1
might be called upon to act, so player 1's strategy space is equivalent to the action space
A1 = {L,R}.

Given these strategy spaces for the two players, it is straightforward to derive the normal-form
representation of the game from its extensive-form representation. This game is illustrated
in the �gure below.
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Player 1

(L′, L′) (R′, R′)(R′, L′)(L′, R′)

3,1

2,1

3,1 1,2 1,2

2,1 0,00,0

L

R

We now want to show how a static game can be represented in extensive form. We can
represent a simultaneous-move game between player1 and 2 a follows:

1. Player 1 chooses an action a1 from the feasible set A1

2. Player 2 does not observe player 1's move but chooses an action a2 from the feasible
set A2.

3. Payo�s are u1(a1, a2) and u2(a1, a2)

Alternatively, player 2 could move �rst and player 1 could then move without observing 2's
action. To represent this kind of ignorance of previous moves in an extensive-form game, we
introduce the notion of a player's information set:

Definition

An information set for a player is a collection of decision nodes satisfying:

1. The player has the move at every node in the information set, and

2. When the play of the game reaches a node in the information set, the player with the
move does not know which node in the information set has or has not been reached.

Part (ii) of this de�nition implies that each player must have the same set of feasible actions
at each decision node in an information set, otherwise the player would be able to infer from
the set of actions available that some node(s) had or had not been reached.

In an extensive-form game, we indicated that a collection of decision nodes constitutes an
information set by connecting the nodes by a dotted line, as in the extensive-form represen-
tation of the Prisoner's Dilemma given in �gure 2.4.
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Figure 2.4:

As a second example of the use of an information set in representing ignorance of previous
play, consider the following dynamic game of complete but imperfect information;

1. Player 1 chooses an action a1 from the feasible set A1 = {L,R}

2. Player 2 observes a1 and then chooses an action a2 from the feasible set A2 = {L′, R′}

3. Player 3 observes whether or not (a1, a2) = (R,R′) and then chooses an action a3 from
the feasible set A3 = {L′′, R′′}

The extensive-form representation of this game is given in the following �gure:

1

L R

2

R′L′

R′′L′′R′′L′′L′′ R′′L′′ R′′

L′ R′

33

2

In this extensive form, player 3 has two information set: a singleton information set following
R by player 1, and R′ by player 2, and a non-singleton information set that includes every
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other node at which player 3 has the move. So, all player 3 observes is whether or not
(a1, a2) = (R,R′).

Now comfortable with the notion of an information set, we can o�er an alternative de�nition
of the distinction between perfect and imperfect information. We previously de�ned perfect
information to mean that at each move in the game, the player with the move knows the
full history of the play of the game thus far. An equivalent de�nition of perfect information
is that every information set is a singleton; imperfect information, in contrast, means that
there is at least one non-singleton information set. So, the extensive-form representation of
a simultaneous-move game is a game of imperfect information.

2.8 Subgame-Perfect Nash Equilibrium

Recall that we previously de�ned a subgame as the piece of a game that remains to be
played beginning at any point at which the complete history of the game thus far is common
knowledge among the players, and we gave a formal de�nition for the repeated games we
considered there. We now have the following formal de�nition:

Definition

A subgame in an extensive-form game:

• Begins at a decision node n that is a singleton information set, but is not the game's
�rst decision node,

• Includes all the decision and terminal nodes following n in the game tree, but no nodes
that do not follow n, and

• Does not cut any information sets, i.e. if a decision node n′ follows n in the game tree,
then all other nodes in the information set containing n′ must also follows n, and so
must be included in the subgame.

So, given a general de�nition of a subgame, we can now apply the de�nition of a subgame-
perfect Nash equilibrium:

Definition

A Nash equilibrium is subgame-perfect if the player's strategies constitute a Nash equilib-
rium in every subgame.
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It is a fairly simple exercise to show that any �nite dynamic game of complete information
has a subgame-perfect Nash equilibrium, perhaps in mixed strategies. We have already en-
countered two ideas that are intimately related to subgame-perfect Nash equilibrium: the
backwards-inductive outcome, and the subgame-perfect outcome. Put informally, the di�er-
ence is that an equilibrium is a collection of strategies whereas an outcome describes what
will happen only in the contingencies that are expected to arise, not in every contingency
that might arise. Being more precise, we have the following de�nition:

Definition

In the two-stage game of complete and perfect information de�ned previously, the backwards-
induction outcome is (a∗1, R2(a

∗
1)) but the subgame-perfect Nash Equilibrium in Figure

2.3 is (a∗1, R2(a1)).

In this game, the action a∗1 is a strategy for player 1 because there is only one contingency
in which player 1 can be called upon to act- the beginning of the game. However, for player
2, R1(a

∗
1) is an action, but not a strategy, because a strategy for player 2 must specify the

action 2 will take following each of 1's possible �rst-stage actions. The best-response function
R2(a1), on the other hand is a strategy for player 2. In this game the subgames begin with
player 2's move in the second stage. There is one subgame for each of player 1's feasible
actions a1 in A1. To show that (a∗1, R2(a1)) is a subgame-perfect Nash equilibrium, we have
to show that (a∗1, R2(a1)) is a Nash equilibrium and that the player's strategies constitute a
Nash equilibrium in each of these subgames. Since the subgames are really just single-person
decision problems, the latter reduces to requiring that player 2's action be optimal in every
subgame, which is exactly the problem that the best-response function R2(a1) solves. At
last, (a∗1, R2(a1)) is a Nash equilibrium because the player's strategies are best responses to
each other: a∗1 is a best response to R2(a1), that is, a

∗
1 maximizes u1(a1, R2(a1)) and R2(a1)

is a best response to a∗1�that is, R2(a
∗
1) maximizes u2(a

∗
1, a2).

This section concludes with an example that illustrates the main theme of the chapter:
subgame-perfection eliminates Nash equilibria that rely on non-credible threats or promises.
Recall the extensive-form game in �gure 2.5, along with its normal-form representation.
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Player 1

(L′, L′) (R′, R′)(R′, L′)(L′, R′)

3,1

2,1

3,1 1,2 1,2

2,1 0,00,0

L

R

1
RL

L′ R′R′L′

Payo� to player 1
Payo� to Player 2

3
1

1
2

2
1

0
0

2 2

Figure 2.5:

Had we encountered the extensive-form game earlier, we would have solved it by backwards
induction, getting the outcome (R,L′). Had we encountered its normal-form representa-
tion, we would have solved for its pure strategy Nash-equilibria, which are (R, (R′, L′)), and
(L, (R′, R′)). Now comparing these Nash equilibria in the normal-form game with the results
of the backwards-induction procedure, the Nash equilibrium (R, (R′, L′)) corresponds to all
the bold paths shown below:

1
RL

L′ R′R′L′

Payo� to player 1
Payo� to Player 2

3
1

1
2

2
1

0
0

2 2

Figure 2.6:

Before, we called (R,L′) the backwards-induction Nash equilibrium of the game, but we
will use more general terminology and call it the subgame-perfect Nash equilibrium. The
di�erence between the outcome and the equilibrium is that the outcome speci�es only the
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bold path beginning at the game's �rst decision node and concluding at a terminal node,
whereas the equilibrium also speci�es the addition all bold path emanating from player 2's
decision node following L from player 1.

But, what about the other Nash equilibrium (L, (R′, R′))? In this equilibrium, player 2's
strategy is to play R′ not only if player 1 chooses L, but also if player 1 chooses R. Because
R′ leads to a payo� of 0 for player 1, player 2's best response to this strategy by player 2
is to play L, getting a better payo� of 1 for player 1, which is better than 0. One can say
that `player 2 is threatening to play R′ if player 1 plays R'. If this threat works, then 2
is not given the opportunity to carry out the threat. The threat should not work though,
because it isn't credible: if player 2 were given the opportunity to carry it out, then player
2 would just play L′ instead of R′. More formally, the Nash equilibrium (L, (R′, R′)) is not
subgame-perfect, because the player's strategies do not constitute a Nash equilibrium in one
of the subgames.
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CHAPTER

THREE

STATIC GAMES OF INCOMPLETE INFORMATION

We now begin our study of games that involve something called incomplete information,
or Bayesian games. Remember that in games of complete information, the player's payo�
functions are all common knowledge. In games of incomplete information, at least one player
is uncertain about another player's payo� function. One common example of a static game of
incomplete information is a sealed-bid auction: each bidder knows his or her own valuation
for the good being sold but does not know any other bidder's valuation; bids are submitted
in sealed envelopes, so the player's moves can be thought of as simultaneous. Let us begin
to move into methods which which we can use to analyze these games.

3.1 Static Bayesian Games and Bayesian Nash Equilib-

rium

3.1.1 Cournot Competition under Asymmetric Information

Consider a Cournot duopoly model wit inverse demand given by the following function:

P (Q) = a−Q

where Q = q1 + q2 is the aggregate quantity on the market. Firm 1's cost function is
C1(q1) = cq1. However, Firm 2's cost function is C2(q2) = cHq2 with probability θ and
C2(q2) = cLq2 with probability 1−θ, where cL < cH . Furthermore, information is asymmetric:
�rm 2 knows its cost function and �rm 1's, but �rm 1 knows its cost function and only that
�rm 2's marginal cost is cH with probability θ and cL with probability 1 − θ. All of this is
common knowledge. Firm 1 knows that �rm 2 has superior information, �rm 2 knows this,
and so on.
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Naturally, �rm 2 might want to choose a di�erent quantity if its marginal cost is high than
if it is low. Firm 1 should anticipate that �rm 2 may adapt its quantity to its cost in this
way. Let q∗2(cH) and q

∗
2(cL) denote �rm 2's quantity choice as a function of its cost, and let

q∗1 denote �rm 1's single quantity choice. If �rm 2's cost is high, it will choose q∗2(cH) to solve
the following:

maxq2 [(a− q∗1 − q2)− cH ]q2

Similarly, if �rm 2's cost is low, then q∗2(cL) will solve

maxq−2[(a− q∗2 − q2)− cL]q2

Finally, �rm 2 knows that �rm 2's cost is high with probability θ and should anticipate that
�rm 2's quantity choice will be q∗2(cL), depending on �rm 2's cost. So, �rm 1 chooses q∗1 to
solve:

maxq1θ[(a− q1 − q∗2(cH))− c]q1 + (1− θ)[(a− q1 − q∗2(cL))− c]q1

The �rst-order conditions for these problems are the following:

q∗2(cH) =
a− q∗1 − cH

2

q∗2(cL) =
a− q∗1 − cL

2

and:

q∗1 =
θ[(a− q1 − q∗2(cH))− c] + (1− θ)[(a− q1 − q∗2(cL))− c]

2

The solutions to the three �rst-order conditions are the following:

q∗2(cH) =
a− 2cH + c

3
+

1− θ
6

(cH − cL)

q∗2(cL) =
a− 2cL + c

3
− θ

6
(CH − cL)

q∗1 =
a− 2c+ θcH + (1− θ)cL

3

3.1.2 Normal Form Representation of Static Bayesian Games

Recall that when we have an n-player game of complete information, its normal-form repre-
sentation is G = {S1, ..., Sn;u1, ..., un}, where Si is player i's strategy space and ui(s1, ..., sn)
is player i's payo� when the players choose the strategies (s1, s2, ..., sn). We now want to
talk about developing the normal-form representation of a simultaneous move of incomplete
information, also called a static Bayesian game. The �rst step is to represented the idea
that each player knows his or her own payo� function but may be uncertain about the
other player's payo� functions. Let player i's possible payo� functions be represented by
ui(a1, .., an; ti) where ti is called player i's type and belongs to set of possible types. Each
type ti corresponds to a di�erent payo� function that player i might have.
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As a concrete example, consider the Cournot game in the previous section. The Firm's
actions are their quantity choices, q1 and q2. Firm 2 has two possible cost functions and thus
two possible pro�t or payo� functions:

π2(q1, q2; cL) = [(a− q1 − q2)− cL]q2

and
π2(q1, q2; cH) = [(a− q1 − q2)− cH ]q2

Firm 1 has only one possible payo� function:

π1(q1, q2; c) = [(a− q1 − q2)− c]q1

We say that �rm 2's type space is T2 = {cL, cH} and that �rm 1's type space is T1 = {c}.

From this de�nition, saying that player i knows his or her own payo� function is equivalent
to saying that player i knows his or her type. Similarly, saying that player i may be uncertain
about the other player's payo� functions is equivalent to saying that player imay be uncertain
about the types of the other players, denoted by

t−i = (t1, ..., ti−1, ti+!, ..., tn)

We use T−i to denoted the set of all possible values of t−i, and we use the probability
distribution p(t−i|ti) to denote player i's belief about the other player's types, given player
i's knowledge of his or her own type, ti. Joining some of these concepts, we have the following
de�nition:

Definition

The normal-form representation of an n-player static Bayesian game speci�es the player's
action spaces A1, ..., An, their type spaces T1, ..., Tn , their beliefs p1, ..., pn, and their payo�
functions u1, ..., un. Player i's type ti is privately known by player i, determines player i's
payo� function ui(a1, ..., an; ti), and is a member of the set of possible types Ti. Player i's
belief pi(t−i|ti) describes i's uncertainty about the n − 1 other player's possible types t−i,
given i's own type ti. We denote this game by:

G = {A1, ..., An;T1, ..., Tn; p1, ..., pn;u1, ..., un}

We will assume that the timing of a static Bayesian game is as follows:

1. Nature draws a type vector t = (t1, ..., tn), where ti is drawn from the set of possible
types Ti;

2. Nature reveals ti to player i but not to any other player ;
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3. The players simultaneously choose actions, player i choosing ai from the feasible set
Ai, and then

4. Payo�s ui(a1, ..., an; t1) are received.

By introducing the �ctional moves by nature in steps 1 and 2, we have described a game of
incomplete information as a game of imperfect information, where by imperfect information
we mean that at some move in the game the player with the move doesn't know the complete
history of the game thus far.

Two more technical points need to be discussed to complete our thoughts on normal-from
representations of static Bayesian games First, there are games in which player i has private
information not only about his payo� function but also about another player's payo� function.
In the n-player case we capture this possibility by allowing player i's payo� to depend not
only on the actions (a1, ..., an) but also on the types (t1, ..., tn). We write this payo� as
ui(a1, ..., an; t1, ..., tn).

The second technical point involves the beliefs pi(t−i | ti). We will assume that it is common
knowledge that in step 1 of the timing of a static Bayesian game, nature draws a type vector
t = (t1, ..., tn) according to the prior probability distribution p(t). When nature then reveals
ti to player i, he or she can compute the belief pi(t−i | ti) using Baye's rule:

pi(t−i | ti) =
p(t−i, ti)

p(ti)
=

p(t−i, ti)∑
t−i∈T−i

p(t−i, ti)

3.1.3 De�nition of Bayesian Nash Equilibrium

We want to de�ne an equilibrium concept for static Bayesian games. To do this we �rst need
to de�ne the player's strategy spaces in such a game. We have the following:

Definition

In the static Bayesian game G + {A1, ..., An;T1, ..., T
′
n; p1, ..., pn;u1, ..., un}, a strategy for

player i is a function si(ti) where for each ti in Ti, si(ti) speci�es the action from the feasible
set Ai that type ti would choose if drawn by nature.

Unlike games of complete information, in a Bayesian game the strategy spaces are not given
in the normal form representation of the game. Instead, the strategy spaces are constructed
from the type and action spaces: player i's set of possible strategies Si is the set of all possible
functions with domain Ti and range Ai.

Given the de�nitino of a strategy in a Bayesian game, we now look at the de�nition of a
Bayesian Nash equilibrium. In spite of the notational complexity of the de�nition is both
simple and familiar: each player's strategy must be a best response to the other player's
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strategies. That is a Bayesian Nash equilibrium is simply a Nash equilibrium in a Bayesian
game.

Definition

In the static Bayesian game G = {A1, ..., An;T1, ..., Tn; p1, ..., pn;u1, ...un} the strategies s∗ =
(s∗1, ..., s

∗
n) are a pure strategy Bayesian Nash Equilibrium if for each player i and for each

of i's types ti ∈ Ti, s∗i (ti) solves

maxai∈Ai

∑
t−i∈T−i

ui(s
∗
1(t1), ..., s

∗
i−1(ti−1), ai, s

∗
i+1(ti + 1), ..., s∗n(tn); t)pi(t−i|ti)

That is, no player wants to change his or her strategy, even if the change involves only one
action by type.

It is easy to show that in a �nite static Bayesian game, there exists a Bayesian Nash equi-
librium. The proof closely looks like the proof of the existence of a mixed-strategy Nash
equilibrium in �nite games of complete information.

3.2 Applications

3.2.1 Battle of the Sexes

Remember that in the Battle of the Sexes, there are two pure-strategy Nash equilibria
(Opera,Opera) and (Fight, F ight) and a mixed- strategy Nash equilibrium in which Chris
plays Opera with probability 2/3 and Pat plays �ght with probability 2/3.

Opera

Fight

Chris

Opera Fight

0,0

1,20,0

2,1

Pat

Now suppose that although they have known each other for quite some time, Chris and Pat
aren't sure of each other's payo�s. Suppose that Chris's payo� if both attend the opera is
2 + tc, where tc is privately known by Chris, Pat's payo� if both attend the �ght is 2 + tp,
where tp is privately known by Pat, and tc and tp are independent draws from a uniform
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distribution on [0, x]. All the other payo�s are the same. In terms of the abstract static
Bayesian game in normal form, G = {Ac, Ap;Tc, Tp; pc, pp;uc, up} , the action spaces are
Ac = Ap = {Opera, F ight}, the type spaces are Tc = Tp = [0, x], the beliefs are pc(tp) =
pp(tc) = 1/x for all tc, tp, and the payo�s are now as above.

Opera

Fight

Chris

Opera Fight

0,0

1, 2 + tp0,0

2 + tc, 1

Pat

We can construct a pure-strategy Bayesian Nash equilibrium of this incomplete-information
version of the Battle of the Sexes in which Chris plays Opera if tc exceeds a critical value c
and plays Fight otherwise. Similarly Pat plays Fight if tp is greater than some critical value
p

In such an equilibrium, Chris plays Opera with probability (x − c)/x and Oat plays Fight
with probability (x − p)/x. For a given value of x, we will determine values c, p such that
these strategies are a Bayesian Nash equilibrium. Given Pat's strategy, Chris's expected
payo�s from playing Opera and from playing Fight are:

p

x
(2 + tc) +

[
1− p

x

]
· 0 =

p

x
(2 + tc)

and
p

x
· 0 +

[
1− p

x

]
· 1 = 1− p

x
So, playing Opera is only optimal if

tc ≥
x

p
− 3 = c

Similarly, Pat's expected payo�s from playing Fight and Opera respectively are:

c

x
(2 + tc) +

[
1− c

x

]
· 0 =

c

x
(2 + tc)

and
c

x
· 0 +

[
1− c

x

]
· 1 = 1− c

x
So playing Fight is optimal if and only if

tp ≥
x

c
− 3 = p

Solving these two optimal strategies simultaneously leads p = c and p2+3p−x = 0. Solving
this quadratic gives us the following

1− 3 +
√
9 + 4x

2x
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Which approaches 2/3 as x goes to zero. So, as the incomplete information disappears,
the player's behavior in this pure strategy Bayesian Nash equilibrium of the incomplete
information game approaches their behavior in the mixed strategy Nash equilibrium in the
original game of complete information.

3.2.2 An Auction

Consider the following �rst-price sealed-bid auction. There are two bidders, i = 1, 2. Bidder
i has a valuation vi for the good, that is, if bidder i gets the good and pays the price p then
i's payo� is vi− p. The two bidders' valuations are independently and uniformly distributed
on [0, 1]. Bids are nonnegative, the high bidder wins the good, and in a tie, the winner is
determined by the �ip of a coin. All of this is common knowledge.

In formulating this problem as a static Bayesian game, we identify the action and type spaces,
the beliefs, and the payo� functions. Player i's action is to submit a bid bi, and her type is her
valuation vi. Because the valuations are independent, player i believes that vj is uniformly
distributed on [0, 1] no matter what the value of vi. Finally, player i's payo� function is:

ui(b1, b2; v1, v2) =


vi − bi if bi > bj

(vi − bi)/2 if bi = bj
0 if bi < bj

We now have to construct the player's strategy spaces. Recall that in a static Bayesian
game, a strategy is a function from types to actions. So, a strategy for i is a function bi(vi)
specifying the bid that each of i's types would choose. In a Bayesian Nash equilibrium, player
1's strategy b1(v1) is a best response to player 2's strategy of b2(v2), and vice versa. So, these
pairs must satisfy the following;

maxbi(vi − bi)Prob{bi > bj(vj)}+
1

2
(vi − bi)Prob{bi = bj(vj)}

Suppose that player j adopts the strategy bj(vj) = aj + cjvj. For some given value of vi,
player i's best response solves the following:

maxbi(bi − bi)Prob{bi > aj + cjvj}

where we have used the fact that Prob{bi = bj(vj)} = 0, because bj(vj) = aj + cjvj and vj is
uniformly distributed. Since it is pointless for player i to bid below player j's minimum and
bid, and stupid for player i to bid above player j's maximum, so we have aj ≤ bi ≤ aj + cj,
so

Prob{bi > aj + cjvj} = Prob{vj <
bi − aj
cj
} = bi − aj

cj

So, player i's best response is:

bi(vi) =

{
(vi + aj)/2 if vi ≥ aj

aj if vi < aj
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3.2.3 A Double Auction

Suppose we have a buyer and seller, where each have private information about their val-
uations. In our case, we take a �rm and a worker- the buyer is a �rm, and the seller is
a worker. The �rm knows the worker's marginal product and the worker knows his or her
outside opportunity. The seller names and asking price ps, and the buyer simultaneously
names an o�er price pb. If pb ≥ ps, then trade occurs at price p = (p + b + ps)/2; if pb < ps,
then no trade occurs.

The buyer's valuation for the sellers' good is vb, the seller's is independent uniform distribu-
tions on [0, 1]. If the buyer gets the good fro price p, then the seller's utility is vb− p; if there
is no trade, then the buyer's utility is zero. If the seller sells the good for price p, then the
seller's utility p− vs; if there is no trade, then the seller's utility is zero.

In this static Bayesian game, a strategy for the buyer is a function pb(vb) specifying the price
the buyer will o�er for each of the buyer's possible valuations. Likewise, a strategy for the
seller is a function ps(vs) specifying the price the seller will demand for each of the seller's
valuations. A pair of strategies {pb(vb), ps(vs)} is a Bayesian Nash equilibrium if the following
conditions hold:

For each vb ∈ [0, 1], pb(vb) solves:

maxpb

[
vb −

pb + E[ps(vs)|pb ≥ ps(vs)]

2

]
Prob{pb ≥ ps(vs)}

And for each vs ∈ [0, 1], ps(vs) solves:

maxps

[
ps + E[pb(vb)|pb(vb) ≥ ps]

2
− vs

]
Prob{pb(vb) ≥ ps}

Where E[pb(vb)|pb(vb) ≥ ps] is the expected price the buyer will o�er, condition on the o�er
being greater than the seller's demand of ps.

WE can now derive a linear Bayesian Nash equilibrium of the double auction- as previously,
we aren't restricting the player's strategy spaces to include only linear strategies. Many
other equilibria exist besides the one-price equilibria and the linear equilibrium, but the
linear equilibrium has some interesting properties we would like to explore later.

Suppose the seller's strategy is ps(vs) = as + csvs. Then ps is uniformly distributed on
[a2, as + cs], so we have:

maxpb

[
vb −

1

2

{
pb +

as + pb
2

}]
pb − as
cs

the �rst order condition for which is:

pb =
2

3
vb +

1

3
as

Similarly, suppose the buyer's strategy is pb(vb) = ab + cbvb. Then, we have

maxps

[
1

2

{
ps +

p2 + ab + cb
2

}
− vs

]
ab + cb − ps

cb
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the �rst order condition for which is:

ps =
2

3
vs +

1

3
(ab + cb)

As shown in the �gure below:

1

11/4 3/4

3/4

1/4

ps(vs)

pb(vb)

ps, pb

vs, vb

3.3 The Revelation Principle

The Revelation principle in the context of Bayesian games is an important tool for design-
ing games when the players have private information. We can apply it to the auction and
bilateral-trading problems described previously, and to lots of other Bayesian game prob-
lems.

Consider a seller that wants to design an auction to maximize his revenue. Specifying the
many di�erent auctions the seller should consider could be a big job, and overall very tedious.
Fortunately, the seller can use the Revelation principle to simplify his problem in two ways.
First, the seller can restrict attention to the following class of games:

1. The bidders simultaneously make claims about their types, Bidder i can claim to be
any type τi from i's set of feasible types Ti, no matter what i's true type tj.

2. Given the bidder's claims (τ1, ..., τn), bidder i pays xi(τ1, ..., τn) and receives the good
with probability qi(τ1, ..., τn). For each possible combination of claims (τ1, ..., τn) the
sum of the probabilities must be less than or equal to one.
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Games of this kind (static Bayesian games where each player's action is to submit a claim
about his or her type) are called direct mechanisms.

The second way the seller can use the Revelation principle is to restrict attention to those
direct mechanisms in which it is a Bayesian Nash equilibrium for each bidder to tell the
truth. A direct mechanism in which truth-telling is a Bayesian Nash equilibrium is called
incentive-compatible. We conclude with the following de�nition:

Definition

Any Bayesian Nash equilibrium of any Bayesian game can be represented by an incentive-
compatible direct mechanism.
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In this chapter, we get tot about the equilibrium concept of perfect Bayesian equilibrium.
This will make four equilibrium concepts:

1. Nash equilibrium in static games of complete information

2. Subgame perfect Nash equilibrium in dynamic games of complete information

3. Bayesian Nash equilibrium in static games of incomplete information

4. Perfect Bayesian equilibrium in dynamic games of incomplete information

4.1 Introduction to Perfect Bayesian Equilibrium

Perfect Bayesian equilibrium was invented in order to re�ne Bayesian Nash equilibrium.
Consider the following dynamic game of complete but imperfect information. First, player 1
chooses among three actions, L,M, and R. If player 1 chooses R then the game ends without
a move by player 2. If player 1 chooses either L or M, then player 2 learns that R was not
chosen (but not which of L or M was chosen) and then chooses between two actions L′ and
R′, after which the game ends. Payo�s are given in the extensive form, in �gure 4.1.
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1 R

1
3L

2

2
1

0
0

0
2

0
1

L′ R′ R′L′

R

Figure 4.1:

We also have the following normal-form representation for this game:

Player 2

Player 1

L

M

R

L′ R′

2,1 0,0

0,2

1,3 1,3

0,1

Looking at the normal-form representation of this game, we see that there are two pure-
strategy Nash equilibria- (L,L′) and (R,R′). To determined whether these Nash equilibria
are subgame-e�ect, we use the extensive-form representation to de�ne the game's subgames.
Because a subgame is de�ned to begin at a decision node that is a singleton information set,
the game in �gure 4.1 has no subgames. If a game has no subgames, then the requirement
of the subgame-perfection is trivially satis�ed (namely that the player's strategies constitute
a Nash equilibrium on every subgame). So, in any game that has no subgame, the de�nition
of subgame-perfect Nash equilibrium is equivalent to the de�nition of Nash equilibrium, so
we see that both (L,L′) and (R,R′) are subgame-perfect Nash equilibria. Also, (R,R′)
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clearly depends on a non-credible threat: if player 2 gets the move, then player L′ dominates
playing R′, so player 1 should not be induced to play R by 2's threat to play R′ if given
the move. We can strengthen the equilibrium concept so as to rule out the subgame-perfect
Nash equilibrium (R,R′) in 4.1 is to make the following two requirements:

1. Ate each information set, the player with the move must have a belief about which node
in the information set has been reached by the play of the game. For a non-singleton
information set, a belief is a probability distribution over the nodes in the information
set; for a singleton information set, the player's belief puts probability one on the single
decision node

2. Given their beliefs, the players strategies must be sequentially rational. That is, at each
information set the action taken by the player with the move must be optimal given
the player's belief at that information set and the other player's subsequent strategies
where a subsequent strategy is a complete plan of action covering every contingency
that might arise after the given information set has been reached.

In �gure 4.1, our �rst requirement implies that if the play of the game reaches player 2's
nonsingleton information set, then player 2 must have a belief about which node has been
reached. This belief is represented by the probabilities p and 1− p attached to the relevant
nodes in the tree, as we have in the following �gure:

1 R

1
3L

2

2
1

0
0

0
2

0
1

L′ R′ R′L′

[p] [1-p]

R

Given player 2's belief, the expected payo� from playing R′ is

p · 0 + (1− p) · 1 = 1− p

and the expected payo� from playing L′ is

p · 1 + (1− p) · 2 = 2− p

Since 2 − p > 1 − p for any value of p, requirement 2 prevents player 2 from choosing R′.
So, this requires that each player have a belief and act optimally given this belief su�ces to
eliminated the implausible equilibrium (R,R′).
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Our two requirements insist that the players have beliefs and act optimal given these beliefs,
but not that these beliefs have to be reasonable. In order to impose further requirements on
the player's beliefs, we distinguish between information sets that are on the equilibrium path
and those that are o� the equilibrium path:

Definition

For a given equilibrium in a given extensive-form game, an information set is on the equi-

librium path if it will be reached with positive probability if the game is played according
to the equilibrium strategies, and is o� the equilibrium path if it is certain not to be
reached if the game is played according to the equilibrium strategies (where �equilibrium�
can mean Nash, subgame-perfect, Bayesian, or perfect Bayesian equilibrium).

This also gives us a third requirements:

3 At information sets on the equilibrium path, beliefs are determined by Baye's rule and
the player's equilibrium strategies.

Requirements 1 through 3 are really what we want to focus on when we're talking about
perfect Bayesian equilibrium. The important new feature of this equilibrium is as follows:
beliefs are elevated to the level of importance of strategies in the de�nition of equilibrium.
Formally, an equilibrium no longer consists of just a strategy for each player but now also
includes a belief for each player at each information set at which the player has the move.
The advantage of making the player's belief explicit in this way is that just as in earlier
chapters, we insisted that the players choose credible strategies, we can now also insist that
they hold reasonable beliefs, both on the equilibrium path and o� the equilibrium path. We
now add a fourth requirement:

4 At information sets o� the equilibrium path, beliefs are determined by Baye's rule and
the player's equilibrium strategies where possible.

Definition

A perfect Bayesian equilibrium consists of strategies and beliefs satisfying requirements
1 through 4.

To motivate requirement four, we look at the three player games in ?? and 4.3.

This game has one subgame: it begins at playe 2's singleton information set. the unique Nash
equilibrium in this subgame between player 2 and 3 is (L,R′), so the unique subgame-perfect
Nash equilibrium of the entire game is (D,L,R′). These strategies and the beleif p = 1 for
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Figure 4.2:

hte player 3 satisfy Requirements 1 through 3. They also trivially satisfy requirement 4, since
there is no information set o� this equilibrium path, and so constittue a perfect Bayesian
equilibrium.

Now consider the strategies (A,L, L′) together with the belief p = 0. These strategies are a
Nash equilibrium- no player wants to deviate unilaterally. These strategies and belief also
satisfy Requirements 1 through 3 has a belief and acts optimally given it, and player 1 and 2
act optimally given the subsequent strategies of the other players. But this Nash equilibrium
is not subgame-perfect, because the unique Nash equilibrium of the games only subgame is
(L,R′). So, requirements 1-3 do not guarantee that the player's strategies are a subgame
perfect Nash equilibrium. The problem is that player 3's belief (p = 0) is inconsistent with
player 2's strategy (L), but requirements 1 through 3 impose no restrictions on 3's belief
because 4's informations et is not reached if the game is played according to the speci�ed
strategies. Requirement 3, however, forces player 3's belief to be determined by player 2's
strategy: if 2's strategy is L then 3's belief must be p = 1; if 2's strategy is R then 3's belief
must be p = 0. But if 3's belief is p = 1, then requirement 2 forces 3's strategy to be R′, so
the strategies (A,L, L′) and the belief p = 0 do not satisfy our four requirements.

As another illustration of this 4th requirement, look at �gure 4.3. AS before, if player 1's
equilibrium strategy is A then player 3's information set is o� the equilibrium path, but
now Requirement 4 may not determined 3's belief from 2's strategy. If 2's strategy is A′

then Requirement 4 puts no restrictions on 3's belief, but if 2's strategy is to play L with
probability q1, R with probability q2, and A

′ with probability 1− q1 − q2, where q1 + q2 > 0,
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Figure 4.3:

then Requirement 4 forces 3's belief to be p = q1/(q1 + q2).

To �nis up this section, we note a connection between perfect Bayesian equilibrium to the
equilibrium concepts introduced in earlier chapters. In a Nash equilibrium, each player's
strategy must be a best response to the other player's strategies, so no player chooses a strictly
dominated strategy. In a perfect Bayesian equilibrium, Requirements 1 and 2 are equivalent
to insisting that no player's strategy be strictly dominated beginning at any information
set. Nash and Bayesian Nash equilibrium do not share this feature at information sets o�
the equilibrium path; even subgame-perfect Nash equilibrium does not share this feature
at some information sets o� the equilibrium path. Perfect Bayesian equilibrium closes this
loophole: players can't threaten to play strategies that are strictly dominated beginning at
any information set o� the equilibrium path.

4.2 Signaling Games

4.2.1 Perfect Bayesian Equilibrium in Signaling Games

A signaling game is a dynamic game of incomplete information involving two players: a
sender (S) and a receiver (R). The game looks as follows:

1. Nature draws a type ti for the sender from a set of feasible types T = {t1, ..., tI}
according to a probability distribution p(ti), where p(ti) > 0 for every i and p(t1)+ ...+
p(tI) = 1.
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2. The sender observes ti and then chooses a message mj from a set of feasible messages
M = {m1, ...,mJ}

3. The receiver observes mj (but not ti) and then chooses an action ak from a set of
feasible actions A = {a1, ..., aK}

4. Payo�s are given by US(ti,mj, ak) and UR(ti,mj, ak)

In many real applications, the sets T,M and A are intervals on the real line rather than
the �nite sets we're going to consider here. It is straightforward to allow the set of feasible
message to depend on the type nature draws, and the set of feasible actions to depend on the
message the Sender chooses. For the rest of this section, we analyze the abstract signaling
game rather than applications. Figure 4.4 gives an extensive form representation (without
payo�s) of a simple case: T = {t1, t2},M = {m1,m2}, A = {a1, a2}, and Prob{t1} = p.

Sender

Receiver Nature Receiver

Sender

a1 a1

a1a1

a2

a2 a2

a2

m1

m1
m2

m2

Figure 4.4:

Recall that in any game, a player's strategy is a complete plan of action� a strategy speci�es
a feasible action in every contingency in which the player might be called upon to act. In a
signaling game, therefore, a pure strategy for the Sender is a function m(ti) specifying which
message will be chosen for each type that nature might draw, and a pure strategy for the
Receiver is a function a(mj) specifying which action will be chosen for each message

The sender then has the following four strategies:

1. Play m1 if nature draws t1 and play m1 if nature draws t2

2. Play m1 if nature draws t1 and play m2 if nature draws t2

3. Play m2 if nature draws t1 and play m1 if nature draws t2
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4. Play m2 if nature draws t1 and play m2 if nature draws t2

The receiver has the following four strategies:

1. Play a1 if the Sender chooses m1, and play a1 if the Sender chooses m2

2. Play a1 if the Sender chooses m1, and play a2 if the Sender chooses m2

3. Play a2 if the Sender chooses m1, and play a1 if the Sender chooses m2

4. Play a2 if the Sender chooses m1, and play a2 if the Sender chooses m2

We call the sender's �rst and fourth strategies pooling because each type sends the same
message, and the second and third separating because each type sends a di�erent message.
In a model with more than two types there are also partially pooling (or semi-separating)
strategies in which all the types in a given set of types send the same message but di�erent
sets of types send di�erent messages. In the two-type game in �gure ??, there are analogous
mixed strategies, called hybrid strategies in which we say t1 plays m1 but t2 randomizes
between m1 and m2.

We now end up translating the informal statements of Requirements 1 through 3 into a formal
de�nition of a perfect Bayesian equilibrium in a signaling game. To keep things simple, we
only pay attention to pure strategies; hybrid strategies will come in the next section. Because
the sender knows the full history of the game when choosing a message, this choice occurs
at a singleton information set. Thus, requirement 1 is trivial when applied to the sender.
The receiver in contrast, chooses an action after observing the sender's message but without
knowing the sender's type, so the receiver's choice occurs at a nonsingleton information set.
We get the following requirement:

1. After observing any message mj from M , the receiver must have a belief about which
types could have set mj. Denote this belief by the probability distribution µ(ti|mj)
where µ(ti|mj ≥ 0 for each t)i in T , and∑

ti∈T

µ(ti|mj) = 1

Applying requirement 2 to the receiver yields the following for the receiver:

2 For each mj in M , the receiver's actions a∗(mj) must maximize the receiver's expected
utility, given the belief µ(ti|mj) about which types could have sent mj. That is, a

∗(mj)
solves

maxak∈Aµ(ti | mj)UR(ti,mj, ak)

Requirement 2 also applies to the sender, but the sender has complete information and only
moves at the beginning of the game, so we have the next requirement:

3 For each ti ∈ T , the Sender's message m∗(ti) must maximize the sender's utility, given
the Receiver's strategy a∗(mj). That is, m

∗(ti) solves

maxmj∈MUS(ti,mj, a
∗(mj))
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Finally, for messages on the equilibrium path, applying the third requirement to the receiver's
beliefs gives us:

4 For each mj ∈M , if there exists ti
inT such that m∗(ti) = mj, then the receiver's belief at the information set correspond-
ing to mj must follow from Baye's rule and the Sender's strategy:

µ)ti | mj) =
p(ti)∑
ti∈Ti p(ti)

Definition

A pure strategy Bayesian equilibrium in a signaling game is a pair of strategies m∗(ti)
and a∗(mj) and a belief µ(ti|mj) satisfying Signaling requirements 1-4.

4.3 Job�Market Signaling

We now turn our attention to a game with the following timing:

1. Nature determines a worker's productivity ability ρ, which can be either high H or low
L. The probability that ρ = H is q.

2. The worker learns his own ability and then chooses a level of education, e ≥ 0.

3. Two �rms observe the workers education and then simultaneously make wage o�ers to
the worker

4. The worker accepts the higher of the two wage o�ers, �ipping a coin in case of a tie.
Let w denote the wage the worker accepts.

The payo�s are then w − c(ρ, e) to the worker, where c(ρ, e) is the cost to a worker with
ability ρ of obtaining education e; and y(ρ, e)−w to the �rm that employs the worker, where
y(ρ, e) is the output of a worker with ability ρ that has obtained education e, and zero to the
�rm that doesn't employ the worker.

We can make lots of assumptions based on other peoples models- we will use Spence's model,
which assumes critically that low-ability workers �nd signaling more costly than do high-
ability workers. More precisely, the marginal cost of education is higher for low than for
high-ability workers: for every e,

ce(L, e) > ce(H, e)

79



CHAPTER 4. DYNAMIC GAMES OF INCOMPLETE INFORMATION

where ce(ρ, e) denotes the marginal cost of education for a worker of ability ρ at education
e. To interpret this assumption, consider a worker with education e1, who is paid w1, as
depicted in �gure 4.5.

e2e1

wL

wH

w1

IL

IH

Figure 4.5:

An calculate the increase in wags that would be necessary to compensate this worker for an
increase in education from e1 to e2. The answer depends on the worker's ability: low ability
workers �nd it more di�cult to acquire the extra education, and so require a larger in crease
in wages.

Spence also assumes that competition among �rms will drive expected pro�ts to zero. One
way to build this assumption into our model would be to replace the two �rms in stage (3)
with a single player called the market, that makes a single wage o�er w and has the payo�
−[y(ρ, e)−w]2. To maximize its expected payo�, as required by our signaling requirements,
the market would o�er a wage equal to the expected output of a worker with education e,
given the market's belief about the worker's ability after observing e:

w(e) = µ(H|e) · y(H, e) + [1− µ(H|e)] · y(L, e)

To prepare for the analysis of the perfect Bayesian equilibria of this signaling game, we �rst
consider the complete-information analog of the game. That is, we assume that the worker's
ability is common knowledge among all the players, rather than privately known by the
worker. In this case, competition between the two �rms implies that a worker of ability ρ
with education e picks the wage w(e) = y(ρ, e) , and a worker with ability ρ therefore picks
e to solve

maxey(ρ, e)− c(ρ, e)

We denote this solution by e∗(ρ), as shown in �gure 4.6 and let w∗(ρ) = y[ρ, e∗(ρ)].
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indi�erence curves
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ρ

w∗(ρ)
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w

Figure 4.6:

We now return to the assumption that the worker's ability is private information. This opens
the possibility that a low-ability worker could try to masquerade as a high-ability worker.
Similarly, the low-ability worker could be said to envy the high-ability worker's complete-
information wage and education level. The latter case is both more realistic and interesting.
In a model with more than two values of the worker's ability, the former case arises only
if each possible value of ability is su�ciently di�erent from the adjacent possible values. If
ability is a continuous variable, then the latter case applies.

As described, three kinds of perfect Bayesian equilibria can exist in this model: pooling,
separating, and hybrid. Each kind typically exists in profusion, we restrict our attention
to just a few examples. In a pooling equilibrium both worker types choose a single level of
education, say ep. Signaling requirement 3 then implies that the �rm's belief after observing
pe must be the prior belief µ(H|ep) = q, which in turn implies that the wage o�ered after
observing ep is:

wp = q · y(H, ep) + (1− q) · y(L, ep)
To complete the description of a pooling perfect Bayesian equilibrium, it remains to

1. Specify the �rm's belief for out of equilibrium education choices

2. Show that both worker types best response to the �rm's strategy w(e) is to choose
e = ep

One possibility is that the �rms belief that any education level other than ep implies that the
worker has low ability. Although this sounds strange, nothing in the de�nition of Bayesian
equilibrium rules it out. If the �rms belief is:

µ(H|e) =
{
0 for e 6= ep
q for e = ep

then this implies that the �rm's strategy is

w(e) =

{
y(L, e) for e 6= ep
wp for e = ep
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A worker of ability ρ then chooses e to solve

maxew(e)− c(ρ, e)

solving this equation is actually pretty simple, a worker of ability ρ chooses either ep or the
level of education that maximizes y(, e)− c(ρ, e).

4.4 Corporate Investment and Capital Structure

Suppose you have an entrepreneur that has a new company but needs outside funding to
actually undergo a new project. The entrepreneur has private information about the prof-
itability of the existing company, but the payo� of the new project can't be removed from the
payo� of the existing company- all that can be observed is the aggregate pro�t of the �rm.
Suppose the entrepreneur o�ers a potential investor an equity stake in the �rm in exchange
for the necessary �nancing. Under what circumstances will the new project be undertaken,
and what will this equity stake be?

We can turn this game into a signaling game in the following way:

1. Nature determines the pro�t of the existing company. The probability that π = L is p.

2. The entrepreneur learns π and then o�ers the potential investor and equity stake s,
where 0 ≤ s ≤ 1.

3. The investor observes s and then decides whether or not to accept the o�er.

4. If the investor rejects the o�er then the investor's payo� is I(1+r) and the entrepreneur's
payo� is π. If the investor accepts s, then the investor's payo� is s(πR) and the
entrepreneur's is (1− s)(π +R).

This is a nice game from two aspects: The receiver's set of feasible actions is extremely
limited, and the sender's set of feasible signals is larger but still rather ine�ective. suppose
that after getting the o�er s the investor thinks that the probability that π = L is q. Then
the investor will accept s if and only if

s[q(1− q)H +R] ≥ I(1 + r)

As for the entrepreneur, suppose that the pro�t of the existing company is π and consider
whether the entrepreneur prefers t receive the �nancing at the cost of an equity stake of s or
to leave the project. The former is preferable if and only if

s ≤ R

π +R

In a pooling perfect Bayesian equilibrium, the investor's belief must be q = p after getting
this o�er. Since the participation constraint is harder to satisfy for π = H than for π = L, a
pooling equilibrium exists if and only if

I(1 + r)

pL+ (1− p)H +R
≤ R

H +R
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It �rst looks as though the high-pro�t type must subsidize the low-pro�t type. We can set
q = p in our �rst relation and get

s ≥ I(1 + r)/[pL+ (1− p)H +R]

In which case if the investor were certain that π = H he would take the smaller equity stake
s ≥ I(1 + r)/(H + R). The larger stake in a pooling equilibrium is very expensive for the
high-pro�t �rm, and is perhaps so expensive that it makes the �rm forego the new project.
If this equation fails however, then a pooling equilibrium does not exist.

4.5 Other Applications of Perfect Bayesian Equilibrium

4.5.1 Cheap-Talk Games

Cheap-talk games are analogous to signaling games, but in cheap talk games the Sender's
messages are just talk. Cheap talk can't be informative in Spence's model because all the
Sender's types have the same preferences over the Receiver's possible actions: all workers
prefer higher wages, independent of ability. To see why such uniformity of preferences across
Sender-types vitiates cheap talk, suppose that there were a pure-strategy equilibrium in which
one subset of Sender-types T1 sends one message m1 while another subset of types T2 sends
another message m2. In equilibrium, the receiver will interpret mi as coming from Ti and will
take the optimal action given this belief, denote this action by ai. Since all Sender-types have
the same preferences over actions, if one prefers a1 to a2, then all types have this preference
and will send m1 instead of m2, destroying the putative equilibrium.

So, for these cheap-talk situations, information transmission involves not only a simple cheap-
talk game but also a more complicated version of an economic environment. The timing of
the simplest cheap�talk game is identical to the timing of the simplest signaling game, with
a few tweaks:

1. Nature draws a type ti for the Sender from a set of feasible types T = {t1, ..., tI}
according to a probability distribution p(ti), where p(ti) > 0 for each i and p(t1)+ ...+
p(tI) = 1

2. The sender observes ti, and then chooses a message mj from the set of feasible messages
M = {m1, ...,mj},

3. The receiver observes mj and then chooses an action ak from a set of feasible actions
A = {a1, ..., aK}

4. Payo�s are given by US(ti, ak) and UR(ti, ak)

One of the key features of such a game is that the message doesn't have a direct e�ect on
either the Sender or Receiver's payo�. The only way the message can matter is through its
information content: by changing the receiver's belief about the Sender's type, a message
can change the Receiver's action, and then indirectly a�ect both player's payo�s.
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Because the simplest cheap-talk and signaling games have the same timing, the de�nitions
of perfect Bayesian equilibrium in the two games are identical as well:

Definition

A pure-strategy Bayesian equilibrium in a cheap-talk game is a pair of strategies m∗(ti) and
a∗(mj) and a belief µ(ti|mj) satisfying the signaling requirements. One di�erence between
signaling and cheap-talk games however is that in the latter a pooling equilibrium always
exists. Because messages have no e�ect (directly) on the Sender's payo�, if the receiver will
ignore all messages then pooling is a best response for the sender; if the sender is pooling
then the best response fro the receiver is to ignore all messages. Formally, let a∗ denote the
Receiver's optimal action in a pooling equilibrium, that is, a∗ solves

maxak∈A
∑
ti∈Ti

p(ti)UR(ti, ak)

As an example, consider the following game: let T = {tL, tH}, Prob(tL) = p, and A =
{aL, aH}. The payo�s from the type action pair (ti, ak) are independent of which message is
chosen, so we can describe the payo�s of this game with the �gure 4.7.

tL tH

aL

aH

x,1

z,0

y,0

w,1

Figure 4.7:

The �rst payo� in each cell is the Sender's, and the second the Receiver's, but this �gure
i not a normal form game- rather it simply lists the player's payo�s from each type-action
pair. We have chosen the Receiver's payo�s so that the Receiver prefers the low action (aL)
when the Sender's type is low, and high action when the type is high. To illustrate the �rst
necessary condition, suppose that both Sender-types have the same preferences of interaction
x > z and y > w, for example so that both types prefer aL to aH . Then both types would
like the receiver to think that t = tL, so the Receiver can't believe such a claim. To illustrate
the third condition, suppose that the player's preferences are completely opposed: z > x
and y > w. Then tL would like the receiver to think that t = tH and tH would like the
Receiver to think that t = tL, so the Receiver can't believe either of these claims. In this

84



4.6. SEQUENTIAL BARGAINING UNDER ASYMMETRIC INFORMATION

two-type two-action game, the only case that satis�es both the �rst and the third necessary
conditions is x ≥ z and y ≥ w � the player's interests are perfectly aligned, in the sense
that given the Sender's type the players agree on which action should be taken. Formally,
in a separating perfect Bayesian equilibrium in this cheap-talk game, the Sender's strategy
is [m(tL) = tL,m(tH) = tH ], the Receiver's beliefs are µ(tL|tL) = 1 and µ(tL|tH) = 0, and
the Receiver's strategy is [a(tL) = aL, a(tH) = aH ]. For these strategies and beliefs to be
an equilibrium, each Sender type ti must prefer to announce the truth, thereby inducing the
action a)i rather than to lie, thereby inducing aj. Thus, a separating equilibrium exists if
and only if x ≥ z and y ≥ w.

4.6 Sequential Bargaining under Asymmetric Informa-

tion

Think of a �rm and union bargaining over wages. Assume that employment is �xed. The
union's reservation wage, the amount that union members earn if not employed by the �rm,
is wr. The �rm's pro�t, π, is uniformly distributed on [πL, πH ], but the true value of π
is privately known by the �rm. Such private information might re�ect the �rm's superior
knowledge about new products in the planning stage, for example. To make things simple,
we assume that wr = πL = 0.

The bargaining game has two periods. In the �rst period, the union makes a wage o�er, w1.
If the �rm accepts this o�er, then the game ends, the union's payo� is w1 and the �rm's is
π − w1. If the �rm rejects this o�er, then the union makes a second o�er w2. If the �rm
accepts this o�er then the present value of he player's payo�s are δw2 for the union and
δ(π−w2) for the �rm, where δ is a constant re�ecting both the discounting and reduced life
of the contract remaining after the �rst period.

De�ning a perfect Bayesian equilibrium is hard in this model, but we can start by looking at
the union's �rst-period wage, o�er, which is:

w∗1 =
(2− δ)2

2(4− 3δ)
πH

If the �rm's pro�t π exceeds the following:

π∗1 =
2w1

2− δ
=

2− δ
4− 3δ

πH

then the �rm accepts w∗1, otherwise the �rm rejects w∗1. If its �rst-period o�er is rejected, then
the union changes its belief about the �rm's pro�t: the union believes that π is uniformly
distributed on [0, π∗! ]. The union's second-period wage o�er is then

w∗2 =
π∗1
2

=
2− δ

2(4− 3δ)
πH < w∗1

If the �rm's pro�t π is greater than w∗2, then the �rm accepts the o�er- otherwise, it rejects
it.

85



CHAPTER 4. DYNAMIC GAMES OF INCOMPLETE INFORMATION

Figure 4.8 provides an extensive-form representation of a simpli�ed version of this game.
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0 wL
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0
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πH − wH 0
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0
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F F F F

A2
A2 A2 A2 R2R2R2R2

R2 R2 R2 R2A2 A2 A2 A2

wH

πH − wH 0
0 wL

πH − wL

0
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πH − wH 0
0 wL

πH − wL

0
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Figure 4.8:

In this game, the union has the move at three information sets, so the union's strategy
consists of three wage o�ers: the �rst is w1, the other two come in response after w1 = wH
and w1 = wL are rejected. These three moves occur at three non-singleton information sets,
at which the union's beliefs are denoted (p, 1− p) (q, 1− q), and (r, 1− r) respectively.

In the full game, the a strategy for the union is a �rst-period o�er w1 and a second-period
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information set for each di�erent �rst-period wage o�er the union might take. Within both
the lone �rst-period and the continuum of second-period information sets, there is one decision
node for each possible value of ]pi. At each information set, the union's belief is a probability
distribution over these nodes. In the full game, we denote the union's �rst period belief by
µ1(π), and the union's second period belief by µ2(π|w1). A strategy for the �rm involves two
decisions. Let A1(w1|π) be 1 if the �rm would accept the �rst-period o�er w1 when its pro�t
is π, and zero if it would reject it. Likewise, we do the same for A2(w2|π,w1). A strategy for
the �rm is then a pair of functions:

[A1(w1|π), A2(w2|π,w1)]

and the beliefs [µ1(π), µ2(π|w1)] are a perfect Bayesian equilibrium if they satisfy the re-
quirements given in an earlier section. We can show that there is a unique perfect Bayesian
equilibrium, and we begin by considering the following one-period problem: suppose that
the union thinks that the �rm's pro�t is uniform over [0, π1], where for the moment π1 is
arbitrary. If the union o�ers w then the �rm's best response is clear: accept w if and only if
π ≥ w. So, we have the following:

maxww · Prob{ �rm accepts w }+ 0 · Prob{ �rm rejects w }

Where Prob{�rm accepts w} = (π1 − w)/π1. Going back to the two-period problem, for
arbitrary values of w1 and w2 it turns out that if the union o�ers w1 in the �rst period and
the �rm expects the union to o�er w2 in the second period, then all �rms with su�ciently
high pro�t will accept w1 and all others will reject it. The �rm's possible payo�s would then
be π − w1 from accepting w1, and δ(π − w2) from rejecting w1 and accepting w2, and zero
from denying both o�ers. The �rm then prefers accepting w1 to w2 if π − w1 > δ(π − w2)
or

π >
w1 − δw2

1− δ
≡ π∗(w1, w2)

From this one can ten derive that the union's optimal second-period o�er must be w∗(π1) =
π1/2, which yields an implicit equation for π1 as a function w1:

π1 = max{π∗(w1, π1/2), w}

which when solved, we eventually see that

Prob{�rm accepts w1} =
πH − π1(w1)

πH

4.7 Reputation in the Finitely Repeated Prisoner's Dilemma

A simple example of a reputation equilibrium is in the �nitely repeated Prisoner's Dilemma
Rather than assume that one player has private information about his payo�s, we can assume
that the player has private information about his feasible strategies. In looking at a simple
example, we have the following timing:
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1. Nature draws a type for the row player. With probability p, Row has only the `Tit-for-
Tat' strategy available; with probability 1 − p row can play any strategy. Row learns
his or her type, but Column doesn't learn row's type.

2. Row and Column play the prisoner's dilemma. The player's choices in this stage game
become common knowledge.

3. Row and Column play the prisoner's dilemma for a second and las time

4. Payo�s are received. The payo�s to the rational Row and to column are the sums of
their stage game payo�s.

To make this into a Prisoner's Dilemma, we have �gure 4.9.

Cooperate

Fink

1,1

a,b 0,0

b,a

FinkCooperate

Column

Row

Figure 4.9:

Just like in the last period of a �nitely repeated Prisoner's Dilemma under complete in-
formation, �nking strictly dominates cooperating the last stage of this two period game of
incomplete information both for the rational Row and for Column. Column will surely �nk
in the last stage, there is no reason why the rational Row should cooperate in the �nal stage.
Finally, tit-for-tat begins the game by cooperating. Thus, the only move to be determined
is Column's �rst-period move which is then mimicked in the second period.

By letting column's �rst-period move be cooperate� column receives the expected payo� of
p ·1+(1−p) ·b in the �rst period and p ·a in the second. In contrast, supposing he Finks, then
Column receives p · a in the �rst period and zero in the second. So, Column will cooperate
in the �rst period if and only if

p+ (1− p)b ≥ 0

4.8 Re�nements of Perfect Bayesian Equilibrium

In earlier sections, we de�ned a perfect Bayesian equilibrium to be strategies and beliefs
that satis�ed requirements 1-4, and we observed that in such an equilibrium no player's
strategy can be strictly dominated beginning at any information set. We now consider two
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further requirements , the �rst of which formalizes the idea that since perfect Bayesian
equilibrium prevents player i from playing a strategy that is strictly dominated beginning
at any information set, it is not reasonable for player j to believe that i would play such a
strategy.

Consider the game in �gure 4.10. The key feature of this example is that

R

2
2

1

L M

[p] [1-p]2

L′ L′ R′R′

3
1

0
0

1
0

0
1

Figure 4.10:

M is a strictly dominated strategy for player 1- the payo� of 2 from R exceeds both of
the payo�s that player 1 could receive from playing M − −0 and 1. The two other things
to notice with this example is that although M is strictly dominated, L is not. Also, this
example doesn't illustrate the requirement described initially, because M is not just strictly
dominated beginning at an information set but also strictly dominated. Since M is strictly
dominated, it is certainly not reasonable for player 2 to believe that 1 might have played M ,
but strict dominance is too strong a test, and thus yields too weak a requirement. We end
up with the following de�nition:

Definition

Consider an information set at which player i has the move. The strategy spi rime is strictly
dominated beginning at this information set if there exists another strategy si such that
for each belief that i could hold at the given information set, and for each possible combination
of the other player's strategies, i's expected payo� from taking the action speci�ed by si at the
given information set and playing the subsequent strategy speci�ed by si is strictly greater
than the expected payo� from taking the action and playing the subsequent strategy speci�ed
by s′i.
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We thus end up at our �fth requirement:

5 If possible, each player's beliefs o� the equilibrium path should place zero probability on
nodes that are reached only if another player plays a strategy that is strictly dominated
beginning at some information set.

An equivalent way to look at this requirement is by use of the following de�nition:

Definition

In a signaling game, the message mj from M is dominated for type ti from T if there is
another message mj′ from M such that ti's lowest possible payo� from mj′ is greater than
ti's highest possible pay o� from mj′ :

minak∈AUS(ti,mj′ , ak) > maxak∈AUS(ti,mj, ak)

Which leads us to the following reworking of our �fth requirement:

5 If the information set following mj is o� the equilibrium path and mj is dominated for
type ti, then the receiver's belief µ(ti|mj) should place zero probability on type ti

Continuing in this line of thought, we can construct the following de�nition:

Definition

Given a perfect Bayesian equilibrium in a signaling game, the messagemj fromM if equilibrium-

dominated for type ti from T if ti's equilibrium payo� denoted U∗(ti) is greater than ti's
highest possible payo� from mj:

U∗(ti) > maxak∈AUS(ti,mj, ak)

Which brings us to our sixth and �nal requirement for perfect Bayesian equilibrium, with
which we conclude this section:

6 If the information set following mj is o� the equilibrium path and mj is equilibrium
dominated for type ti then (if possible) the Receiver's beliefµ(ti|m) should place zero
probability on type ti.
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