
GAP

Todd Gaugler

January 30, 2012

2

Contents

1 Introductory Material 5
1.0.1 Arrays . 5
1.0.2 While and For Loops . 6
1.0.3 If/Else/Etc . 7
1.0.4 Functions . 8
1.0.5 Links . 8

2 Finite Fields 11
2.0.6 Links . 17

3 Coxeter Groups 19
3.0.7 Links . 23

4 Tableaus 25
4.0.8 A [very] Informal Description of the Problem 25

4.1 Result . 27
4.1.1 PolyDerive . 27
4.1.2 PolyCoeffs . 28
4.1.3 Final Code . 28
4.1.4 Matrices Corresponding to The Vector-Space Homomorphisms Induced by

elements of Sn . 39
4.1.5 Links . 42

3

CONTENTS CONTENTS

4

Chapter 1

Introductory Material

The following is the fairly complete summary of the Gap language found on its website, www.

gap-system.org : GAP is a system for computational discrete algebra, with particular emphasis
on Computational Group Theory. GAP provides a programming language, a library of thousands
of functions implementing algebraic algorithms written in the GAP language as well as large
data libraries of algebraic objects. See also the overview and the description of the mathematical
capabilities. GAP is used in research and teaching for studying groups and their representations,
rings, vector spaces, algebras, combinatorial structures, and more. The system, including source,
is distributed freely. You can study and easily modify or extend it for your special use.

The rest of this chapter will be dedicated to simple introductory material.

1.0.1 Arrays

It turns out that GAP seems to simplify arrays more than a traditional programming language like
c++ would: where in c++ one would have to first specify the types of things one is putting into
an array, GAP doesn’t seem to need that at all. One traditionally would create a 1-dimensional
array of integers in the following way:

integerArray:= [1,2,3,4,5] ;

[1, 2, 3, 4, 5]

integerArray[1];

1

integerArray[5];

5

Notice that when accessing the first member of the array, one uses [1] as opposed to [0], like in
c++. Also notice that ‘:=’ is used equivalently to ‘=’ in c++. It also turns out that GAP allows
you to store ’objects’ of different types in the same array: for example, we store an indeterminate
object named ‘x’ alongside an integer, ‘2’ in the array ‘a’.

5

www.gap-system.org
www.gap-system.org

CHAPTER 1. INTRODUCTORY MATERIAL

x:=Indeterminate(Rationals, "x");

x

a:=[x, 2];

[x, 2]

While this one works, it’s pretty obvious that this might not ALWAYS work- however, I haven’t
found any documentation to the contrary, and it’s worked with quite a few experiments (e.g.,
a matrix, a polynomial, and integer, and a variable all seem to be allowed to be put into one
array).

One can also use ‘..’ to avoid having to write out all the members of particular arrays. For
example,

a:=[1..10]; # This is the same as saying

[1 .. 10] #a:= [1,2,3,4,5,6,7,8,9,10];

a[4];

4

1.0.2 While and For Loops

As we all know, being able to run through set of data is something one would like to be able to do.
Here we define the syntax for while and for loops, and examples are provided in later sections.

While loops are fairly simple to implement–they look like the following:

while [boolean-expression] do

[statements]

od;

For example,

a:= 2;

counter:=1;

while a<5 do

counter:= counter+1;

a:=a+1;

od;

Similarly, for loops look as follows:

6

CHAPTER 1. INTRODUCTORY MATERIAL

for [simple-variable in some list] do

[statements]

od;

For example, this was taken directly from the GAP documentation:

gap> s := 0;;

gap> for i in [1..100] do

> s := s + i;

> od;

gap> s;

5050

1.0.3 If/Else/Etc

The GAP documentation defines the if statement in the following way:

if [boolean expression 1] then

[statements1]

elif [boolean expression 2] then

[statements2]

else

[statements3]

fi;

Which consists of an ‘if’ statement, an ‘else if’ statement by way of ‘elif’, and an ‘else’ statement.
A concrete example is below:

gap> i := 10;;

gap> if 0 < i then

> s := 1;

> elif i < 0 then

> s := -1;

> else

> s := 0;

> fi;

7

CHAPTER 1. INTRODUCTORY MATERIAL

1.0.4 Functions

In defining functions, it is easier to give a simple example in trying to explain their syntax. Let
us look at the following function that prints ‘hello world’:

sayhello:= function(); #This says that ‘hello world’

Print("Hello world. \n"); #is a function that takes no input

end;

function() ... end

sayhello(); #<-- this is the call of the function after we defined it

Hello world.

Functions have the following syntax:

function(arguments)

[statements]

end;

The following example code calculates the sign of a number n, which the function takes as in-
put:

gap> sign:= function(n)

> if n < 0 then

> return -1;

> elif n = 0 then

> return 0;

> else

> return 1;

> fi;

> end;

function(n) ... end

gap> sign(0); sign(-99); sign(11);

0

-1

1

1.0.5 Links

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP004.htm is a good overview of
most of the basics in Gap. If I left something basic out, it’s almost certainly in here.

8

http://www.gap-system.org/Manuals/doc/htm/ref/CHAP004.htm

CHAPTER 1. INTRODUCTORY MATERIAL

• http://www.gap-system.org/Manuals/doc/htm/tut/CHAP004.htm has a nice discussion of
functions in Gap

9

http://www.gap-system.org/Manuals/doc/htm/tut/CHAP004.htm

CHAPTER 1. INTRODUCTORY MATERIAL

10

Chapter 2

Finite Fields

Before really getting into a discussion of how Gap handles Finite Fields, it’s worth mentioning
that http://www.math.colostate.edu/~hulpke/CGT/education.html has a great installer for
Windows that includes GGAP, a really convenient graphical interface that cooperates with Gap.
There are natrually other ways to get GGAP, but this seemed to be by far the most simple and
convenient.

We would like to talk about some of the simplest applications of GAP to finite fields. For the most
part, I’ll skip talking about the general structure of coding in Gap, since it’s mostly familiar to
anyone thats ever used a programming language, and I’ll leave a link to a page discussing some of
the basics.

The first natural step to take when talking about finite fields is to tell Gap to construct a field of
some order pn where p is prime and n is a natural number. This is done through the assignment
operator, ‘:=’, and the function Z(p, n) or Z(pn) constructs a field of order pn.

gap> K:= Z(8);

Z(2^3)

Before continuing, we have to make the following observations about Gap:

1. Z(pn) returns a generator of the finite field. So, one could cycle through all the elements of
a particular field by taking Z(pn)i for different values of i.

2. The additive neutral (identity) element is 0 ∗ Z(pn).

3. The multiplicative identity element is Z(pn)0

So, in locating values of x ∈ K such that x3 + x + 1 = 0, we can cycle through the elements of
K, put them in the form of this polynomial, and test to see if the resulting element is equal to
0 ∗ Z(pn). This can be done with the following syntax:

gap> K:= Z(8);

Z(2^3)

11

http://www.math.colostate.edu/~hulpke/CGT/education.html

CHAPTER 2. FINITE FIELDS

gap> c:=0;

>0

gap> while c<9 do

gap> if (K^c)^3 + K^c +1 = 0*Z(8) then

gap> Print("K^"); Print(c); Print("\n");

gap> fi;

gap> c:=c+1;

gap> od;

>K^1

>K^2

>K^4

>K^8

Notice that the above code gives us a printout of the elements of K that satisfy our polynomial,
and are all in terms of K raised to some power i. Taking the elements that satisfy our polynomial,
for each polynomial ax2 + bx + c where a, b and c are all nonzero and are chosen from {0, 1}, we
would like to find the smallest power of y that is ‘1’.

Given a general element k in K, the function Order(k) returns the smallest power i such that
ki = Z(pn)0. So, writing an element k ∈ K as a polynomial function of the generator of K, the
same concept applies. In other words, to find the smallest powers of y that is 1, we can tell gap
to print out the orders of all such polynomial functions of the elements of K that satisfy our first
polynomial. While there is probably a way to do with using nested for loops, the structure of local
variables in Gap makes writing nested for loops tricky, and its easier to simply manually input all
7 functions. Notice that we have the following polynomials:

x2 + x + 1

x2 + x

x2 + 1

x + 1

x2

x

1

So, in finding the orders of the elements Gaps previously printed out for us under these polynomial
functions, we can do the following:

gap> Order((K^1)^2 + (K^1) + 1) ; Order ((K^1)^2 + (K^1));

Order((K^1)^2+ 1); Order((K^1)^2) ; Order(K^1 +1);

Order(K^1); Order(1);

>7

>7

>7

12

CHAPTER 2. FINITE FIELDS

>7

>7

>7

>1

And similar things can be done for the other elements that were printed out by Gap. Completing
these exercises for fields of order 16, 32, and 64 is the same idea, except the original polynomials
have to be changed. I computed that already, and you have a copy of that code in an email.

Just as a nice example of Gap’s finite field capabilities, I ran some calculations with the finite field
of order 7. We have the following:

Z/7Z = {0, 1, 2, 3, 4, 5, 6}

Element Order
0 0
1 1
2 3
3 6
4 3
5 6
6 2

These numbers can be verified with the following code:

gap> A:= Z(7);

Z(7)

gap> Order(A^0);

1

gap>Order(A);

6

gap>Order(A^2);

3

gap>Order(A^3);

2

gap>Order(A^4);

3

gap>Order(A^5);

6

gap>Order(A^6);

1

Which makes sense, since under mod 7, A = 3, and thus: A1 = 3, A2 = 2, A3 = 6, A4 = 4, A5 = 5,
A6 = 1 .

We can use the following code to run through all degree 5 polynomials with coefficients in {0, 1}:

13

CHAPTER 2. FINITE FIELDS

c:=1;; K:=Z(64);;

while c<65 do

if (K^c)^9=Z(2)^0 then k:=(K^c); break; fi;

c:=c+1;

od;

Print("c="); k; Print("\n");

a:=0;;

while a<2 do

b:=0;;

while b<2 do

c:=0;;

while c<2 do

d:=0;;

while d<2 do

e:=0;;

while e<2 do

f:=0;;

while f<2 do

if a+b+c+d+e+f=0 then f:=f+1;;

else

Print("P(x)= ");

Print(a);Print("x^5+");

Print(" ");Print(b);Print("x^4+");

Print(" "); Print(c);Print("x^3+");

Print(" "); Print(d);Print("x^2+");

Print(" ");Print(e);Print("x+");

Print(" "); Print(f); Print(" Order(P(c)= ");

Print(Order(a*k^5+ b*k^4+c*k^3+d*k^2+e*k + f));

Print("\n");

f:=f+1;;

fi;

od;

e:=e+1;;

od;

d:=d+1;;

od;

c:=c+1;;

od;

b:=b+1;;

od;

a:=a+1;;

od;

#This code has the following output in GGAP:

c=Z(2^6)^7

14

CHAPTER 2. FINITE FIELDS

P(x)= 0x^5+ 0x^4+ 0x^3+ 0x^2+ 0x+ 1 Order(P(c)= 1

P(x)= 0x^5+ 0x^4+ 0x^3+ 0x^2+ 1x+ 0 Order(P(c)= 9

P(x)= 0x^5+ 0x^4+ 0x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 0x^3+ 1x^2+ 0x+ 0 Order(P(c)= 9

P(x)= 0x^5+ 0x^4+ 0x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 0x^3+ 1x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 0x^5+ 0x^4+ 0x^3+ 1x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 0x^2+ 0x+ 0 Order(P(c)= 3

P(x)= 0x^5+ 0x^4+ 1x^3+ 0x^2+ 0x+ 1 Order(P(c)= 3

P(x)= 0x^5+ 0x^4+ 1x^3+ 0x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 1x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 1x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 0x^4+ 1x^3+ 1x^2+ 1x+ 1 Order(P(c)= 21

P(x)= 0x^5+ 1x^4+ 0x^3+ 0x^2+ 0x+ 0 Order(P(c)= 9

P(x)= 0x^5+ 1x^4+ 0x^3+ 0x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 0x^3+ 0x^2+ 1x+ 0 Order(P(c)= 9

P(x)= 0x^5+ 1x^4+ 0x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 0x^3+ 1x^2+ 0x+ 0 Order(P(c)= 21

P(x)= 0x^5+ 1x^4+ 0x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 0x^3+ 1x^2+ 1x+ 0 Order(P(c)= 7

P(x)= 0x^5+ 1x^4+ 0x^3+ 1x^2+ 1x+ 1 Order(P(c)= 7

P(x)= 0x^5+ 1x^4+ 1x^3+ 0x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 0x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 0x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 1x^2+ 0x+ 0 Order(P(c)= 21

P(x)= 0x^5+ 1x^4+ 1x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 1x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 0x^5+ 1x^4+ 1x^3+ 1x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 0x^3+ 0x^2+ 0x+ 0 Order(P(c)= 9

P(x)= 1x^5+ 0x^4+ 0x^3+ 0x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 0x^3+ 0x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 0x^4+ 0x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 0x^3+ 1x^2+ 0x+ 0 Order(P(c)= 9

P(x)= 1x^5+ 0x^4+ 0x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 0x^3+ 1x^2+ 1x+ 0 Order(P(c)= 7

P(x)= 1x^5+ 0x^4+ 0x^3+ 1x^2+ 1x+ 1 Order(P(c)= 7

P(x)= 1x^5+ 0x^4+ 1x^3+ 0x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 1x^3+ 0x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 1x^3+ 0x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 0x^4+ 1x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 1x^3+ 1x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 1x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

15

CHAPTER 2. FINITE FIELDS

P(x)= 1x^5+ 0x^4+ 1x^3+ 1x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 0x^4+ 1x^3+ 1x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 0x^3+ 0x^2+ 0x+ 0 Order(P(c)= 7

P(x)= 1x^5+ 1x^4+ 0x^3+ 0x^2+ 0x+ 1 Order(P(c)= 7

P(x)= 1x^5+ 1x^4+ 0x^3+ 0x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 0x^3+ 0x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 0x^3+ 1x^2+ 0x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 0x^3+ 1x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 0x^3+ 1x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 0x^3+ 1x^2+ 1x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 1x^3+ 0x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 1x^3+ 0x^2+ 0x+ 1 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 1x^3+ 0x^2+ 1x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 1x^3+ 0x^2+ 1x+ 1 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 1x^3+ 1x^2+ 0x+ 0 Order(P(c)= 63

P(x)= 1x^5+ 1x^4+ 1x^3+ 1x^2+ 0x+ 1 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 1x^3+ 1x^2+ 1x+ 0 Order(P(c)= 21

P(x)= 1x^5+ 1x^4+ 1x^3+ 1x^2+ 1x+ 1 Order(P(c)= 63

Gap also offers the ability to implement user-defined functions. The syntax is as follows:

FunctionName:= function(a, b, ,n)

.

.

.

return n;

end;

One example from the Gap manual is as follows:

gap> sign:= function(n)

> if n < 0 then

> return -1;

> elif n = 0 then

> return 0;

> else

> return 1;

> fi;

> end;

Which returns a value based on the sign of the input n.

16

CHAPTER 2. FINITE FIELDS

I was asked to write a function that takes in a single polynomial object, and outputs its sequence
of coefficients viewed as a vector. It turns out that Gap actually offers a nice environment for
polynomials, and we can manipulate it as follows to get some nice returns:

gap> x:=UnivariatePolynomial(Rationals, [0,1], 1);

gap> P:=4*x^2 + 2*x + 1;

>4*x_1^2+2*x_1+1

gap> CoefficientMatrix:=CoefficientsOfUnivariatePolynomial(P);

>[1, 2, 4]

Simply, we allowed x to be equal to UnivariatePolynomial(Domain, Coefficient Matrix, Invariant).
Through manipulations of the object x, we could construct new polynomials that still allowed us to
call the function CoefficientsOfUnivariatePolynomial on them. This function happens to return an
array-like structure the contains the coefficients of the polynomial. Here, P is our polynomial.

2.0.6 Links

• http://schmidt.nuigalway.ie/gap/CHAP018.htm Is the page in the Gap manual regarding
finite fields

• http://www.gap-system.org/search.html Is the search function on the Gap website

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP004.htm Is a nice overview of
some of the syntax behind Gap.

17

http://schmidt.nuigalway.ie/gap/CHAP018.htm
 http://www.gap-system.org/search.html
http://www.gap-system.org/Manuals/doc/htm/ref/CHAP004.htm

CHAPTER 2. FINITE FIELDS

18

Chapter 3

Coxeter Groups

A Coxeter group is a group generated by a finite set of generators such that each generator squared
is the identity, and that there exists some n ∈ N such that for any pair of generators, say aiaj,
(aiaj)

n = 1.

The nicest and easiest way to implement a Coxeter group in Gap is to take a free group with n
generators, then to modulo out by a satisfactory number of relations to arrive at a Coxeter group.
For example, suppose we took the group G1 generated by a, b, c such that a2 = b2 = c2, and
(bc)5 = (cd)3 = (abc)5 = 1. This can be implemented in Gap as follows:

gap> G1:=FreeGroup(3);

<free group on the generators [f1, f2, f3]>

gap> a:= G1.1;; b:= G1.2;; c:= G1.3;; #G1.(i) refers to the

gap> relations:= [#i’th generator of G1

(a*a), (a*b)^3, (a*c)^2,

(b*b), (b*c)^5,

(c*c),

(a*b*c)^5] ;;

gap> C:= G1/relations;

<fp group on the generators [f1, f2, f3]>

gap> Size(C);

> 60

#So, G1 contains 60 unique elements

Following this format, we can do the same thing for the following two Coxeter Groups:

• G2: Generated by a, b, c, d with the following presentation:

a2 = b2 = c2 = d2 = (ab)3 = (bc)5 = (cd)3 = (abc)5 = (bcd)5 = 1

(all other unmentioned pairs will have order 2)

• G3: Generated by a, b, c, d, e with the following presentation:

a2 = b2 = c2 = d2 = e2 = (ab)3 = (bc)5 = (cd)3 = (de)5 = (abc)5 = 1, (cde)5 = a

19

CHAPTER 3. COXETER GROUPS

(again, all other unmentioned pairs will have order 2)

In finding the size of G2 and G3, we have the following:

gap> G2:= FreeGroup(4);

<free group on the generators [f1, f2, f3, f4]>

gap> a:= G2.1 ;; b:= G2.2;; c:= G2.3;; d:= G2.4;;

gap> relations:= [

a*a, (a*b)^3, (a*c)^2, (a*d)^2,

(b*b), (b*c)^5, (b*d)^2,

(c*c), (c*d)^3,

(d*d),

(a*b*c)^5, (b*c*d)^5] ;;

gap> CoxeterGroup:= G2/relations;

<fp group on the generators [f1, f2, f3, f4]>

gap> Size(CoxeterGroup);

> 660

gap> G3:= FreeGroup(5);

<free group on the generators [f1, f2, f3, f4, f5]>

gap> a:= G3.1;; b:= G3.2;; c:= G3.3;; d:= G3.4;; e:=G3.5;

gap> relations:= [

a^2, (a*b)^3, (a*c)^2, (a*d)^2, (a*e)^2,

b^2, (b*c)^5, (b*d)^2, (b*e)^2,

c^2, (c*d)^3, (c*e)^2,

d^2, (d*e)^5,

e^2,

(a*b*c)^5, a*(c*d*e)^5] ;

gap> Coxeter:= G3/relations;

<fp group on the generators [f1, f2, f3, f4, f5]>

gap> Size(Coxeter);

> 175560

According to the second link in the link-subsection, calling the function Size() uses the Todd-
Coxeter algorithm when it tries to figure out the size of the group. The same can be said of the
Index() function:

In Group theory, the index of a subgroup H in a group G is the “relative size” of H in G:
equivalently, the number of ‘copies’, or cosets of H that fill up G. Gap has a built-in function that
uses the Todd-Coxeter algorithm to calculate the index of a subgroup. The syntax is as follows,
for a subgroup H of G:

gap> Index(G, H);

20

CHAPTER 3. COXETER GROUPS

And in looking to create a subgroup U of G, we have the following commands:

U:= Subgroup(G, [generators]) ;

IsSubgroup(G,U) #Returns true if U is a subgroup of G

We can find the index of G1 in G2 in the following way:

gap> G2:= FreeGroup(4);

<free group on the generators [f1, f2, f3, f4]>

gap> a:= G2.1 ;; b:= G2.2;; c:= G2.3;; d:= G2.4;;

gap> relations:= [

a*a, (a*b)^3, (a*c)^2, (a*d)^2,

(b*b), (b*c)^5, (b*d)^2,

(c*c), (c*d)^3,

(d*d),

(a*b*c)^5, (b*c*d)^5] ;;

gap> C2:= G2/relations;

<fp group on the generators [f1, f2, f3, f4]>

gap> C1:= Subgroup(C2, [C2.1, C2.2, C2.3]);

>Group([f1, f2, f3])

gap> IsSubgroup(C2, C1);

>true

gap> Size(C2);

660

Size(C1);

60 #These two Size() Calls were to ensure that we had the right groups

gap> Index(C2, C1);

>11

The idea was to look at our Coxeter Group (originally called G2) and to compare it to its subgroup
G1 by calling it the subgroup of G2 whose generators are only the first three generators of G2.
Similarly, to find the index of G2 in G3, we have:

gap> G3:= FreeGroup(5);

<free group on the generators [f1, f2, f3, f4, f5]>

gap> a:= G3.1;; b:= G3.2;; c:= G3.3;; d:= G3.4;; e:=G3.5;;

gap> relations:= [

a^2, (a*b)^3, (a*c)^2, (a*d)^2, (a*e)^2,

b^2, (b*c)^5, (b*d)^2, (b*e)^2,

c^2, (c*d)^3, (c*e)^2,

21

CHAPTER 3. COXETER GROUPS

d^2, (d*e)^5,

e^2,

(a*b*c)^5, a*(c*d*e)^5] ;;

gap> C3:= G3/relations;

<fp group on the generators [f1, f2, f3, f4, f5]>

gap>C2:= Subgroup(C3, [C3.1, C3.2, C3.3, C3.4]);

>Group([f1, f2, f3, f4])

gap>Size(C2);

>660

gap>Index(C3, C2);

>266

Where again, we take G3, take the subgroup of G3 spanned only by the first four generators of
G3 (which is G2), then run our Index function which utilizes the Todd-Coxeter algorithm.

Through the use of the function FactorCosetAction(G,U), one can get permutation representa-
tions of our group G based on the representation of some subset U of G. This function operates
more successfully based on the size of the group U . While we could try to factor G out by a few
relations to find a nice subgroup, we can us the function SylowSubgroup to get us a proper sub-
group of a large size (We have the following definition of a Sylow Subgroup: a Sylow p-subgroup of
a group G is a maximal p-subgroup of G). Letting G = G1, we have the following example:

gap> G1:=FreeGroup(3);;

gap> a:= G1.1;; b:= G1.2;; c:= G1.3;; #G1.(i) refers to the

gap> relations:= [#i’th generator of G1

(a*a), (a*b)^3, (a*c)^2,

(b*b), (b*c)^5,

(c*c),

(a*b*c)^5] ;;

gap> C:= G1/relations;

gap> Size(C);

> 60

gap> U:=SylowSubgroup(C,2);

>Group(<fp, no generators known>)

gap> FactorCosetAction(C,U);

>[f1, f2, f3] -> [(1,2)(3,7)(4,6)(5,9)(8,12)(10,14),

(1,3)(2,5)(6,11)(7,9)(8,13)(14,15), (1,4)(2,6)(3,8)(5,10)(7,12)(9,14)]

22

CHAPTER 3. COXETER GROUPS

In math 333, we were advised to draw diagrams of permutation groups in the following way:

1

��+
++

++
++

++
++

++
++

++
+ 2 3

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 4

��7
77

77
77

77
77

77
77

77
77

77
7 5

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 6 7 8

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 9 10

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

��7
77

77
77

77
77

77
77

77
77

77
7 2

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B 3 4 5 6

''NN 7

��7
77

77
77

77
77

77
77

77
77

77
7 8

''OO 9 10 11 12 13 14

��-
--

--
--

--
--

--
--

--
--

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B 2

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 3

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4 5

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6 7

''OOO 8 9

''PPP 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Overlapping these diagrams, we have the following:

1

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

��+
++

++
++

++
++

++
++

++
+

��7
77

77
77

77
77

77
77

77
77

77
7 2

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B 3

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 4

��7
77

77
77

77
77

77
77

77
77

77
7 5

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

$$I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 6

''NN 7

''OOO

��7
77

77
77

77
77

77
77

77
77

77
7 8

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

''OO 9

''PPP 10

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 11 12 13 14

��-
--

--
--

--
--

--
--

--
--

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Which unfortunately isn’t particularly enlightening to me; I can’t pinpoint exactly what group
this might be.

3.0.7 Links

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP045.htm Is the best section in
the Gap manual about finitely presented groups

23

http://www.gap-system.org/Manuals/doc/htm/ref/CHAP045.htm

CHAPTER 3. COXETER GROUPS

• http://www.gap-system.org/Gap3/Manual3/C001S020.htm Offers an alternative way to
represent Coxeter groups.

• http://en.wikipedia.org/wiki/Index_of_a_subgroup Is the wikipedia page I looked at
to get the idea of the index of a subgroup.

• http://en.wikipedia.org/wiki/Sylow_theorems Is a wikipedia page with information on
Sylow Subgroups

24

http://www.gap-system.org/Gap3/Manual3/C001S020.htm
 http://en.wikipedia.org/wiki/Index_of_a_subgroup
http://en.wikipedia.org/wiki/Sylow_theorems

Chapter 4

Tableaus

4.0.8 A [very] Informal Description of the Problem

A Tableau is a figure that looks roughly like the following: This particular Tableau has 9 cells,

3 6 2 7

9 5

1

8

9

and thus corresponds to a partition of 9, and a specific polynomial:

(x3 − x9)(x3 − x1)(x3 − x8)(x9 − x1)(x9 − x8)(x1 − x8)(x6 − x5)(x2 − x9)(x7)

Which can be derived from the tableau by looking at the integer entries as indices for 9-variables
(labeled x1, x2, ..., x9), then working from the first column, one can get the above polynomial
by following a simple pattern. Tableaus that we wish to talk about have to have the following
properties:

• Indices may be repeated across rows

• Indices may not be repeated down columns

Since I’m not writing this for a general audience, I’ll leave this description as it is for now.

One can now use the symmetric group S9 and have it act on the indices in the above tableau
to rearrange the integers, thus changing the polynomial associated with it. For example, having
(1 2)(3 4) act on our tableau above, we get figure 4.1, which has the new polynomial associated
with it:

(x4 − x9)(x4 − x2)(x4 − x9)(x9 − x2)(x9 − x8)(x2 − x8)(x6 − x5)(x1 − x9)(x7)

25

CHAPTER 4. TABLEAUS

3 6 2 7

9 5

1

8

9

6 7

9 5

8

9

2

14

(1 2)(3 4)

Figure 4.1:

One can now look at the vector space spanned by the polynomials associated with a specific
tableau and the actions of a symmetric group on that tableau. The hope is that GAP can help us
find the matrices associated with the linear transformations that Sn performs on the n-cell tableau
as it takes polynomials to other polynomials, help us find the trace of those matrices, and help us
find the dimension of the vector space associated with a specific tableau.

The first order of business that we need to talk about is representing the n-variable polynomials as
a vector. Unfortunately GAP4 doesn’t have fantastic support for multivariate polynomials (GAP3
did, but still didn’t really have what we were looking for). However, it appears we can continue
the following line of thought in GAP4: take a one variable polynomial, say of degree 2 just for
simplicity’s sake. It would look like this:

f(x1) = ax2
1 + bx1 + c

We can represent it’s coefficients a, b, c as a matrix in terms of f in the following way:

[a, b, c] = [f (2)(0)/2!, f (2)(0)/1!, f(0)]

Even more generally, for a polynomial of degree n, we would have:

[... coefficient behind xn
1 ...] = [....f (n)(0)/n!...]

It turns out that adding another variable won’t really affect hurt this process, it just makes the
matrix larger; we can use the other variable to ‘index’ the other:

f(x2, x1) = (ax2
1 + bx1 + c) + x2(dx

2
1 + ex1 + f) + x2

2(gx
2
1 + hx1 + i)

Which is really just 3 new and separate cases of what we had above, only now we need to be more
intelligent about how we get each case (it’s really almost the same thing):

[a, b, c, d, e, f, g, h, i] = [f(0, 0)/(∂x1)
22!, f(0, 0)/(∂x1)1!, f(0, 0)/0!, ..., f(0, 0)/(∂x2)

22!]

And naturally, this idea then continues to adding a third variable, where now this third variable
indexes what is already indexed by variable x2 (while not indicated, it is worth mentioning that
getting ‘g’ could be done by taking f(0, 0)/(∂x1)

2(∂x2)
2·2!2). The issue here would be to implement

this idea in Gap- one would need to able to do the following:

• Take derivatives of multi-variable polynomials

26

CHAPTER 4. TABLEAUS 4.1. RESULT

• Evaluate values of these polynomials for specific values of xi.

Both of these should be do-able, see the links section as to where I found documentation on
both.

The next issue would be to figure out a way the symmetric group could act on a Tableau. One
way to do this would be to use the OnIndeterminates function that GAP offers, that can do things
like the following:

OnIndeterminates(x^7*y+x*y^4,(1,17)(2,28));

x_17^7*x_28+x_17*x_28^4

Which takes a multivariate polynomial, and permutes the variables by using an element of a
symmetric group. So, one idea would be to take the polynomial associated with a specific Tableau,
run through the elements of the symmetric group Sn, and have OnIndeterminates run through
all the polynomials associated with that shape of tableau, and to print out all the vectors of
coefficients.

So, now in summary, we should be able to use GAP to find all the coefficients associated with
the polynomials coming from some tableau and a symmetric group’s action in it. The biggest
issue now is calculating things regarding the vector space these polynomials form- for example,
in finding the dimension of the vector space, it is difficult to find in the GAP documentation the
proper commands to use with the data we collected.

4.1 Result

After quite a bit of trial and error along with digging deeply into GAP’s manual, I put something
together that seems to do what we want it to do. Unfortunately I need to have a specifically shaped
Tableau in mind before I can run anything, but first I’d like to see if my result matches up with
what is expected. The following two functions, PlolyDerive and PolyCoeff are vitally important
to what I wrote, so let’s go through them before I try to explain what else I wrote:

4.1.1 PolyDerive

This code creates a function called PolyDerive that allows to me to input a polynomial, specify an
integer integer and a variable, then returns the integerth derivative with respect to the variable we
specified, and divides everything by integer!, which helps us get the coefficients in front of specific
terms, as discussed previously.

PolyDerive:=function(polynomial, integer, variable);

if(integer = 0) then return polynomial; fi;

counter:=1;

while counter<= integer do

27

4.1. RESULT CHAPTER 4. TABLEAUS

polynomial:= Derivative(polynomial, variable);

counter:=counter+1;

od;

return polynomial/Factorial(integer);

end;

return polynomial/Factorial(integer);

end;

4.1.2 PolyCoeffs

PolyCoeffs is a function that takes in a polynomial and returns a (very large vector, mind you)
vector that corresponds exactly to the coefficients of some inputted polynomial.

PolyCoeffs:= function(polynomial);

matrix:= [];

for i in [0 .. 3] do

for j in [0 .. 3] do

for k in [0 .. 3] do

for m in [0 .. 3] do

matrix[m*(4^3)+k*16+i*4+ j + 1] := Value(PolyDerive

....(PolyDerive(PolyDerive(PolyDerive(polynomial, j, y),

.... i, x) , k, z), m, w) ,

....[x,y,z,w], [0,0,0,0]); #The line Breaks (’...’) make this

od; od; od; od; #Easier to Read

return matrix;

end;

4.1.3 Final Code

So suppose we take the following Tableau:

1 2 3

4

This corresponds to the following polynomial:

(x1 − x4)(x2)(x3)

28

CHAPTER 4. TABLEAUS 4.1. RESULT

Our plan is to take all the elements of the symmetric group S(4) and have them permute the indices
of this tableau. Then we can generate vectors that represent the coefficients of these polynomials,
put them into another array (thus giving us a matrix) and have us call Rank() on that matrix,
giving us the degree of the space generated by our row vectors–our polynomials. The code looks
like the following:

PolyDerive:=function(polynomial, integer, variable);

if(integer = 0) then return polynomial; fi;

counter:=1;

while counter<= integer do

polynomial:= Derivative(polynomial, variable);

counter:=counter+1;

od;

return polynomial/Factorial(integer);

end;;

PolyCoeffs:= function(polynomial);

matrix:= [];

for i in [0 .. 3] do

for j in [0 .. 3] do

for k in [0 .. 3] do

for m in [0 .. 3] do

matrix[m*(4^3)+k*16+i*4+ j + 1] := Value(PolyDerive(PolyDerive(

.....PolyDerive(PolyDerive(polynomial, j, y),

.... i, x) , k, z), m, w) ,[x,y,z,w], [0,0,0,0]);

od; od; od; od;

return matrix;

end;

mx:=Indeterminate(Rationals, 1);

y:=Indeterminate(Rationals, 2);

z:= Indeterminate(Rationals, 3);

w:=Indeterminate(Rationals, 4);

x_1

x_2

x_3

x_4

OnIndeterminates(x^1 + y^2 + w^3 + z^4, (1, 2)(3, 4));

x_4^4+x_3^3+x_1^2+x_2

polynomialStart:= (x-w)*(y)*(z);

x_1*x_2*x_3-x_2*x_3*x_4

PolyDerive(polynomialStart, 1, x);

x_2*x_3 x_2*x_3

PolyDerive(polynomialStart, 2, y);

29

4.1. RESULT CHAPTER 4. TABLEAUS

0

PolyDerive(x^2*y*z, 2, x);

x_2*x_3

PolyCoeffs(polynomialStart);

Variable: ’matrix’ must have an assigned value

PolyCoeffs(15*x^2*y^2*w*z);

[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0]

m:=[PolyCoeffs(15*x^2*y^2*w*z),PolyCoeffs(12*x^2*y^2*w*z)] ;

[[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

IsMatrix(m);

true

Rank(m);

1

elementmatrix:= Elements(SymmetricGroup(4));

30

CHAPTER 4. TABLEAUS 4.1. RESULT

[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3),

(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4),

(1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3),

(1,4)(2,3)]

i:=1;

1

elementmatrix[i];

()

MATRIX:= [];

[]

MATRIX[i]:=PolyCoeffs(OnIndeterminates(polynomialStart,elementmatrix[2]));

[0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0]

for i in [1..Size(SymmetricGroup(4))] do

Print("Polynomial: ");

Print(OnIndeterminates(polynomialStart,elementmatrix[i]));

Print("\n \n ");

MATRIX[i]:=PolyCoeffs(OnIndeterminates(polynomialStart,elementmatrix[i]));

i:= i+1;

od;

Polynomial: x_1*x_2*x_3-x_2*x_3*x_4

Polynomial: x_1*x_2*x_4-x_2*x_3*x_4

Polynomial: x_1*x_2*x_3-x_2*x_3*x_4

Polynomial: x_1*x_3*x_4-x_2*x_3*x_4

Polynomial: x_1*x_2*x_4-x_2*x_3*x_4

Polynomial: x_1*x_3*x_4-x_2*x_3*x_4

Polynomial: x_1*x_2*x_3-x_1*x_3*x_4

31

4.1. RESULT CHAPTER 4. TABLEAUS

Polynomial: x_1*x_2*x_4-x_1*x_3*x_4

Polynomial: x_1*x_2*x_3-x_1*x_3*x_4

Polynomial: -x_1*x_3*x_4+x_2*x_3*x_4

Polynomial: x_1*x_2*x_4-x_1*x_3*x_4

Polynomial: -x_1*x_3*x_4+x_2*x_3*x_4

Polynomial: x_1*x_2*x_3-x_1*x_2*x_4

Polynomial: -x_1*x_2*x_4+x_1*x_3*x_4

Polynomial: x_1*x_2*x_3-x_1*x_2*x_4

Polynomial: -x_1*x_2*x_4+x_2*x_3*x_4

Polynomial: -x_1*x_2*x_4+x_1*x_3*x_4

Polynomial: -x_1*x_2*x_4+x_2*x_3*x_4

Polynomial: -x_1*x_2*x_3+x_1*x_2*x_4

Polynomial: -x_1*x_2*x_3+x_1*x_3*x_4

Polynomial: -x_1*x_2*x_3+x_1*x_2*x_4

Polynomial: -x_1*x_2*x_3+x_2*x_3*x_4

Polynomial: -x_1*x_2*x_3+x_1*x_3*x_4

Polynomial: -x_1*x_2*x_3+x_2*x_3*x_4

a:=1; for a in [1.. Size(SymmetricGroup(4))]do

Print("Matrix[", a ,"] :"); Print(MATRIX[a], "\n \n ");

od;

1

Matrix[1] :[0,

1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

32

CHAPTER 4. TABLEAUS 4.1. RESULT

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[2] :[0,

0, 0,

0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[3] :[0,

1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[4] :[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[5] :[0,

0, 0,

0, 1, 0,

33

4.1. RESULT CHAPTER 4. TABLEAUS

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[6] :[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[7] :[0,

1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[8] :[0,

0, 0,

0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

34

CHAPTER 4. TABLEAUS 4.1. RESULT

Matrix[9] :[0,

1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[10] :[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[11] :[0,

0, 0,

0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[12] :[0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

35

4.1. RESULT CHAPTER 4. TABLEAUS

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[13] :[0,

1, 0,

0, -1, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[14] :[0,

0, 0,

0, -1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[15] :[0,

1, 0,

0, -1, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[16] :[0,

0, 0,

0, -1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

36

CHAPTER 4. TABLEAUS 4.1. RESULT

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[17] :[0,

0, 0,

0, -1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[18] :[0,

0, 0,

0, -1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[19] :[0,

-1, 0,

0, 1, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[20] :[0,

-1, 0,

0, 0,

37

4.1. RESULT CHAPTER 4. TABLEAUS

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[21] :[0,

-1, 0,

0, 1, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[22] :[0,

-1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Matrix[23] :[0,

-1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

38

CHAPTER 4. TABLEAUS 4.1. RESULT

Matrix[24] :[0,

-1, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Rank(MATRIX);

3

So according to GAP, if this code is correct (I think the idea is correct, I wouldn’t be surprised to
hear that the code is buggy somewhere though) the dimension of the vector space corresponding
to our Tableau from a few pages ago is 3.

4.1.4 Matrices Corresponding to The Vector-Space Homomorphisms
Induced by elements of Sn

One can run the command TriangulizeMat() on our matrix MATRIX to get three basis vectors.
One can now link the non-zero entries in our basis vectors to polynomials: We end up with the
following (this is paraphrased, I have the code saved somewhere, I’d just rather explain what I’m
doing for now):

newMatrix:=TriangulizeMat(MATRIX);;

NonzeroEntriesFor(newMatrix[1]);

22 (entry=1) 85(entry = -1)

NonzeroEntriesFor(newMatrix[2]);

70 (entry=1) 85(entry = -1)

NonzeroEntriesFor(newMatrix[3]);

82 (entry=1) 85(entry = -1)

The entries in the vectors from MATRIX that are non-zero refer to specific polynomials. They
are the following:

22 --> x_1 * x_2 * x_3

39

4.1. RESULT CHAPTER 4. TABLEAUS

70 --> x_1 * x_2 * x_4

82 --> x_2 * x_3 * x_4

85 --> x_1 * x_3 * x_4

Notice that we then have the following polynomials associated with our basis:

e_1 = 22-85 --> x_1 * x_2 * x_3 - x_1 * x_3 * x_4

e_2 = 70-85 --> x_1 * x_2 * x_4 - x_1 * x_3 * x_4

e_3 = 82-85 --> x_2 * x_3 * x_4 - x_1 * x_3 * x_4

So, we’ll give them each the following vector representation:

e_1 = [1 0 0]

e_2 = [0 1 0]

e_3 = [0 0 1]

Using this notation, we can find matrices Ai corresponding to the linear transforms induced by
elements of the Symmetric group. We can look at the way in which some element s ∈ S4 acts on
our basis vectors to get an idea of what Ai should look like: We know that A should be a 3 × 3
matrix such that

T (x) = Ax

Where x is in our vector space V , and T : V → V is a linear transformation that corresponds to
the action of some element in S4. This all being said, we can find A by letting its columns i be
T (ei). Starting off with a simple example, let s ∈ S4 be the Identity. then:

s(e1) = e2, s(e2) = e2, s(e3) = e3

So our resulting matrix A is:

A =

1 0 0
0 1 0
0 0 1

 Trace(A) = 3

Now for a better example, let s = (1 2). In this case,

s(e1) = (1 2)(x1 · x2 · x3 − x1 · x3 · x4) = x1 · x2 · x3 − x2 · x3 · x4 = ‘22− 82′

s(e2) = (1 2)(x1 · x2 · x4 − x1 · x3 · x4) = x1 · x2 · x4 − x1 · x3 · x4 = ‘70− 82′

s(e3) = (1 2)(x2 · x3 · x4 − x1 · x3 · x4) = x1 · x3 · x4 − x2 · x3 · x4 = ‘85− 82′

We represent the our results as vectors in the following way:

‘22− 82′ = [1 0 − 1] ‘70− 82′ = [0 1 − 1] 85− 82 = [0 0 − 1]

40

CHAPTER 4. TABLEAUS 4.1. RESULT

And so,

A =

 1 0 0
0 1 0
−1 −1 −1

 Trace(A) = 1

Now letting s = (1 2 3), we have the following:

s(e1) = (1 2 3)(x1 · x2 · x3 − x1 · x3 · x4) = x1 · x2 · x3 − x2 · x1 · x4 = ‘22− 70′

s(e2) = (1 2 3)(x1 · x2 · x4 − x1 · x3 · x4) = x2 · x3 · x4 − x2 · x1 · x4 = ‘22− 70′

s(e3) = (1 2 3)(x2 · x3 · x4 − x1 · x3 · x4) = x3 · x1 · x4 − x2 · x1 · x4 = ‘85− 70′

This corresponds to the following matrix:

A =

 1 0 0
−1 −1 −1
0 1 0

 Trace(A) = 0

When s = (1 2 3 4) we have:

s(e1) = (1 2 3 4)(x1 · x2 · x3 − x1 · x3 · x4) = x2 · x3 · x4 − x2 · x4 · x1 = ‘82− 70′

s(e2) = (1 2 3 4)(x1 · x2 · x4 − x1 · x3 · x4) = x2 · x3 · x1 − x2 · x4 · x1 = ‘22− 70′

s(e3) = (1 2 3 4)(x2 · x3 · x4 − x1 · x3 · x4) = x3 · x4 · x1 − x2 · x4 · x1 = ‘85− 70′

This corresponds to the following matrix:

A =

 0 1 0
−1 −1 −1
1 0 0

 Trace(A) = −1

When s = (1 2)(3 4) we have

s(e1) = (1 2 3 4)(x1 · x2 · x3 − x1 · x3 · x4) = x2 · x1 · x4 − x2 · x4 · x3 = ‘70− 82′

s(e2) = (1 2 3 4)(x1 · x2 · x4 − x1 · x3 · x4) = x2 · x1 · x3 − x2 · x4 · x3 = ‘22− 82′

s(e3) = (1 2 3 4)(x2 · x3 · x4 − x1 · x3 · x4) = x1 · x4 · x3 − x2 · x4 · x3 = ‘85− 82′

This corresponds to the following matrix:

A =

 0 1 0
1 0 0
−1 −1 −1

 Trace(A) = −1

This was all done by hand, without pen and paper- so bear in mind there may be quite a few errors.
If some of these match up to what they should be, I might just doing something wrong.

While I did these by hand as opposed to having GAP do them, the results I used were from the
code I wrote, so if that code is correct these matrices and calculations should be correct.

41

4.1. RESULT CHAPTER 4. TABLEAUS

4.1.5 Links

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT007 uses the func-
tion ”OnIndeterminates” to permute indices of a polynomial.

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT007 has a function
called ‘Value’ that seems to be able to evaluate multi-variable polynomials

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT006 seems to have
some support for derivatives in multi-variables

• http://www.gap-system.org/Manuals/doc/htm/ref/CHAP059.htm#SECT002 has some in-
teresting ideas for bases of vector spaces

• http://www.math.tamu.edu/~yvorobet/MATH304-504/Lect2-12web.pdf just some quick
notes regarding matrices and linear transforms

42

http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT007
http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT007
http://www.gap-system.org/Manuals/doc/htm/ref/CHAP064.htm#SECT006
http://www.gap-system.org/Manuals/doc/htm/ref/CHAP059.htm#SECT002
http://www.math.tamu.edu/~yvorobet/MATH304-504/Lect2-12web.pdf

	Introductory Material
	Arrays
	While and For Loops
	If/Else/Etc
	Functions
	Links

	Finite Fields
	Links

	Coxeter Groups
	Links

	Tableaus
	A [very] Informal Description of the Problem
	Result
	PolyDerive
	PolyCoeffs
	Final Code
	Matrices Corresponding to The Vector-Space Homomorphisms Induced by elements of Sn
	Links

