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1
Curves in R3

1.1 Basic Definitions

For an open subset U ⊂ Rm, and a function f : U → Rn, f = (f1, ..., fm), represented as a column vector,
we have that

Dj

 f1
...
fm

Djf(x) = ∂f

∂xj
f(x) = lim

t→0

f(x+ t · ej)− f(x)
t

= d

dt
f(x+ t · ej)

∣∣∣
t=0

=


∂f1
∂xj

...
∂fm
∂xj


where

ej = (01, 02, ..., 1j , ..., 0m);

and x ∈ Rn We call this function f continuously differentiable, denoted f ∈ C1, if

∂f

∂x1 , ...,
∂f

∂xm

exist and are continuous. We say that f ∈ Ck if all partial derivatives up to the kth derivative exist and
are continuous. We say that f is smooth if f is infinitely differentiable (denoted f ∈ C∞), i.e. if f ∈ Ck
for all k = 1, 2, .....

The total derivative, or Jacobian of f : Rm → Rn, ∈ C1 is the matrix

Df(x) = (D1f(x), ..., Dn(fx)) =


∂f1
∂x1 . . . ∂f1

∂xm

...
...

∂fn
∂x1 . . . ∂fn

∂xm

 ∈ Rn,m∗

The function f is differentiable if there exists a linear map A : Rn → Rm such that

lim
v→0

f(a+ v)− (f(a) +A · v)
||v||

= 0

Fact. If f is continuously differentiable, this implies that f is differentiable with A = Df(x), which
implies that ∂f

∂xj exist for all j.

For all f : U → Rm, where U is open in Rn and v ∈ Rn, we have the directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t

= d

dt
f(x+ tv)

∣∣∣
t=0

∗This notation indicates n rows, and m columns
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CHAPTER 1. CURVES IN R3

In particular, for f : U → R where U is open in Rn and f ∈ C1, we have that

Df(x) =
(
∂f

∂x1 (x), ..., ∂f
∂xn

(x)
)

= grad(f)

and for v = (v1, ..., vn) that

Dvf(x) = v1 ∂f

∂x1 + ...+ vn
∂f

∂xn
= 〈v, grad(f)〉

For a, b ∈ Rn, we say that a is orthogonal to b if 〈a, b〉 = 0, denoted a ⊥ b. The norm of a vector
v ∈ Rn is defined as ||v|| =

√
〈v, v〉 =

√∑n
i=1 v

2
i , and the metric in Rn between vectors is defined as

d(v, w) := ||v − w||.

1.2 Curves

Definition. A curve is a map α : I → Rn where I = (a, b) ⊂ R and α ∈ C1. We write

α′ = Dα(t) = lim
h→0

α(t+ h)− α(t)
h

∈ Rn.

A curve is called regular if α′(t) 6= 0 for all t ∈ I (in other words, the parameterization of the curve
’never stops moving’). We say that α has unit speed if ||α′(t)|| = 1 for all t ∈ I.

The arc length of α from a to b is defined as

〈(α) :=
∫ b

a

||α′(t)||dt =
∫ b

a

√
〈a′(t), α′(t)〉dt

Let r : J → I, where J and I are open intervals in R, and call β = α ◦ r : I → J → Rn a reparameteri-
zation of α.

1.3 Regular Curves and unit speed

Lemma 1. If α : I → Rn is a regular curve, then there exists a reparameterization β of α such that β has
unit speed.

c
t

α

Proof. Let

s(t) =
∫ t

c

||α′(u)||du

Since α is assumed to be regular, this implies that 0 < ||α′(t)|| = s′(t). By the inverse function
theorem, we get that s is invertible, i.e., r := s−1 is a function r : J → I. Define β := α ◦ r. Since
α = β ◦ r−1 = β ◦ s, we have

α′(t) = β′(s(t))s′(t)⇒ ||β′(s(t))|| =
∣∣∣∣∣∣α′(t)
s′(t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣α′(t)
α′(t)

∣∣∣∣∣∣ = 1
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1.4 Vector Fields

Definition. A vector field on the curve α : I → Rn is a function X : I → Rn that assigns a vector to each
point α(t).

α

α(t1)

X(t1) α(t2)

X(t2)
T

T

For a curve α, we have the tangent vector field, T := α′(t) = ∂α
∂t (t) (depicted with gray arrows on the

diagram above). A frame field on α consists of vector fields E1, ..., En of α such that

〈Ei, Ej〉 = δi,j :=
{

0, i 6= j
1, i = k

for all t ∈ I. In this case, any vector v ∈ Rn at α(t) can be written as

v = 〈v,E(t)〉E1(t) + ...+ 〈v,En(t)〉En(t)

1.5 Curvature

For this section, we restrict our discussion to R3.

Definition. Let α : I → R3 be a curve with both unit speed, and infinitely differentiable. Let T := α′ be
the tangent vector field. Note that

〈T (t), T (t)〉 = ||T (t)||2 = ||α′(t)||2 = 1 (1.5.1)

Remark. You can show that the following is true with the product rule:

∂

∂t
〈v(t), w(t)〉 =

〈
∂

∂t
v(t), w(t)

〉
+
〈
v(t), ∂

∂t
w(t)

〉
Differentiating (1.5.1) gives us that

0 = d

dt
〈T (t), T (t)〉 = 〈T ′(t), T (t)〉+ 〈T, T ′(t)〉 = 2〈T ′(t), T (t)〉 ⇒ 〈T ′, T 〉 = 0 (1.5.2)

The curvature of α is then defined as κ(t) := ||T ′(t)||. We assume that κ(t) 6= 0∀t, and then define
the principal normal vector, N(t) := T ′(t)

κ(t) . Finally, we define the binormal vector field to be B(t) :=
T (t)×N(t), where ’×’ is the cross-product in R3. Recall,

v × w := det

e1 e2 e3
v1 v2 v3
w1 w2 w3

 ∈ R3
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1.6 The Frenet Formulas

Proposition 2. For a unit-speed curve α with κ > 0, T,N,B is a frame field. Additionally, there exists a
function τ : I → R called the torsion of α, such that the following formulas are true:

T ′ = κ ·N
N ′ = −κ · T +τ ·B
B′ = −τ ·N

(1.6.1)

Proof. We’d first like to show that T,N,B is a frame field. Well, it immediately follows that 〈T, T 〉 = 1,
from the unit speed of α, and 〈B, T 〉 = 〈B,N〉 = 0, because B = T × N . We then have that 〈N,T 〉 =
〈T
′

κ , T 〉 = 1
κ 〈T

′, T 〉 = 0, as we saw in (1.5.2). Then,

||N || =
∣∣∣∣∣∣T ′
κ

∣∣∣∣∣∣ = 1
κ
||T ′|| = 1

||T ′||
· ||T ′|| = 1, 〈N,N〉 = ||N ||2 = 1

From the definition of the cross-product, we have that

||B|| = ||T ×N || = ||T || · ||N || · sin(ζ)

where ζ is the angle between T and N . However, this angle is 90o, so ||B|| = 1  〈B,B〉 = 1. We
conclude that T,N,B is a frame field, and we now aim to show equality in the the three equations from
(1.6.1).

We immediately have the first identity in 1.6.1, because N = T ′

κ by definition. Next, we’ll show that
B′ is colinear to N , in order to show the third identity in (1.6.1). In fact, we’ll show that B′ ⊥ T , and
that B′ ⊥ B. We have

〈B, T 〉 = 0
d/dt

−−−−−→ 0 = 〈B′, T 〉+ 〈B, T ′〉 = 〈B′, T 〉+ 〈B, κN〉︸ ︷︷ ︸
0

⇒ B′ ⊥ T

Also,

〈B,B〉 = 1
d/dt

−−−−−→ 0 = 2〈B′, B〉 ⇒ B′ ⊥ B
As B′ is orthogonal to both T and B, and since B,N, and T make up a frame field, there exists some τ
such that B′ = −τN . For the second equation in (1.6.1), remember that we can write any vector v as a
linear combination of the vector in our frame field, v = 〈v, T 〉T + 〈v,N〉N + 〈v,B〉B. Applying this to
v = N ′, we’ll show

N ′ = 〈N ′, T 〉︸ ︷︷ ︸
−κ

T + 〈N ′, N〉︸ ︷︷ ︸
=0

N + 〈N ′, B〉︸ ︷︷ ︸
=τ

B

We have that

〈N,T 〉 = 0
d/dt

−−−−−→ 0 = 〈N ′, T 〉+ 〈N,T ′〉 ⇒ 〈N ′, T 〉 = −〈N,κN〉 = −κ〈N,N〉 = −κ

and additionally,

〈N,N〉 = 1
d/dt

−−−−−→ 0 = 2〈N ′, N〉

〈N,B〉 = 0
d/dt

−−−−−→ 0 = 〈N ′, B〉+ 〈N,B′〉 ⇒ 〈N ′, B〉 = −〈N,−τN〉 = −(−τ)〈N,N〉 = τ

1.7 Frenet Frame for Reparameterizations

If α is a regular curve, let β(t) = α(v(t)) be a reparameterization of α with unit speed. Then, the Frenet
frame for α is defined to be the Frenet frame for β at the corresponding points: if α(s) = β(r−1(s)), then
Tα(s) := Tβ(r−1(s)), Nα(s) := Nβ(r−1(s)), Bα(s) = Bβ(r−1(s)).
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1.8. ISOMETRIES

1.8 Isometries

Definition. A map F : Rn → Rn is called an isometry of Rn if it preserves the distance function,
d(F (x), F (y)) = d(x, y).

1.9 Examples

1. Let Ta : Rn → Rn be the translation map by a ∈ Rn, Ta(x) = x+a. Of course, note that T−1
a = T−a,

and that translation maps preserve distances (and i.e., are isometries).

2. Let A be an invertible matrix with A−1 = At (an orthogonal matrix) written A ∈ O(n) := the set of
all orthogonal matrices in Rn,n. Interpret A as a linear map Rn → Rn, A(x) = Ax. Then,

〈Ax,Ay〉 = 〈x,AtAy〉 = 〈x, y〉

Which implies that ||Ax|| = ||x|| ⇒ d(Ax,Ay) = d(x, y).

3. If f and g are isometries, so is their composition, because

d(f ◦ g(x), f ◦ g(y)) = d(g(x), g(y)) = d(x, y)

1.10 Orthogonal Matrices and Isometries

Claim. Let F be an isometry. Then, there exists a unique a ∈ Rn and A ∈ O(n) such that F = Ta ◦A.

Proof. Take a := F (0), and define the isometry A to be A := T−1
a ◦ F . We now must show that A is an

orthogonal matrix, i.e., that:

1. 〈Ax,Ay〉 = 〈x, y〉(⇐⇒ A−1 = At)

2. A is a linear map

We show this as follows:

(1) We have that A(0) = T−1
a (F (0)) = F (0)−a = F (0)−F (0) = 0, and that d(Ax,Ay) = d(x, y) because

A is an isometry. Furthering this idea,

||A(x)|| = d(A(x), 0) = d(A(x), A(0)) = d(x, 0) = ||x||

⇒ d(Ax,Ay) = d(x, y)
using this,

||Ax−Ay|| = ||x− y|| ⇒ 〈Ax−Ay,Ax−Ay〉 = 〈x− y, x− y〉
the bilinearity of the inner product then implies,

〈Ax,Ax〉 − 〈Ax,Ay〉 − 〈Ay,Ax〉+ 〈Ay,Ay〉 = 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉

and so,
||Ax||2 − 2〈Ax,Ay〉+ ||Ay||2 = ||x||2 − 2〈x, y〉+ ||y||2  〈Ax,Ay〉 = 〈x, y〉

and we have (1).

(2) For (2), we want to show that A is linear, e.g. that A(x + y) = A(x) + A(y), and A(cx) = cA(x) for
c ∈ R. Writing x =

∑n
j=1 x

jej and noticing that 〈Aej , Aek〉 = 〈ej , ek〉 = δjk, it follows that {Aej}
form an orthonormal basis of Rn. Therefore, we can expand A(x) in this basis:

A(x) =
n∑
j=1
〈A(x), A(ej)〉A(ej) =

n∑
j=1
〈x, ej〉A(ej) =

n∑
j=1

xjA(ej)

and the rest of this proof is simply following through the sums when considering either cx or x+ y.

9
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The uniqueness of a follows from seeing that if we assume F = Ta ◦A = Tb ◦B, then

Ta ◦A(0) = Tb ◦B(0)⇒ Ta(0) = Tb(0)⇒ a = b

and then

Ta ◦A = Ta ◦B  T−1
a ◦ Ta ◦A = T−1

a ◦ Ta ◦B ⇒ A = B

1.11 Congruent Curves

Definition. Let α, β be two curves in Rn, α : I → Rn, β : I → Rn. Then, α and β are called congruent if
there exists an isometry F of Rn such that β = F ◦ α.

Theorem 3. Let α, β be curves of unit speed. Then, α and β are congruent if and only if κα = κβ , and
τα = ±τβ .

Proof. (⇒) Let F (x) = Ta ◦ A(x) = Ax + a for a ∈ R3, A ∈ O(3) where β = F ◦ α. First note that the
Jacobian DF (x) = A, and this implies that

Tβ(t) = β′(t) = (F ◦ α)′(t) = DF (α(t)) · α′(t) = A · Tα(t).

This implies that

κβ = ||T ′β || = ||A · T ′α(t)|| = ||T ′α(t)|| = κα

and so,

Nβ =
T ′β
κβ

= A · T ′α
κα

= A ·Nα

⇒ Bβ = Tβ ×Nβ = (ATα ×ANα) = ±A(Tα ×Nα)

Where the last equality comes from the cross product of orthogonal matrices, and the ± is determined by
the determinant of A, which is ±1. This gives us that Bβ = ±A ·Bα, implying (from the Frenet formulas):

B′β = ±A ·B′α ⇒ −τβNβ = ∓AταNα = ∓ταNβ

⇒ τβ = ±τα

(⇐) Assume that κα = κβ , τα = ±τβ . We need to show that there exists an isometry F such that
β = F ◦α. Fix t0 ∈ I. Then, there exists an isometry F such that F maps the Frenet frame of α at α(t0) to
the Frenet frame of β at β(t0). Indeed, F = Tβ(t0) ◦A ◦ T−a(t0) where A ∈ O(3) is the unique orthogonal
matrix that maps the Frenet fields (at 0) to each other. Let α = F ◦α. We claim that α = β, and we know
that at t0 : α(t0) = β(t0) and

1. Tα(t0) = Tβ(t0)

2. Nα(t0) = Nβ(t0)

3. Bα(t0) = Bβ(t0)

10



1.12. PERSONAL ADDENDUM

Bα

Tα
Nα

0
α(t0)

Translate

β(t0)

Nβ

Tβ

Bβ

Bα

Tα

Nα

Nβ

Bβ
Tβ

Tβ

Translate

α
β

Figure 1.1: The idea is to translate the Frenet field to 0, to perform some kind of linear map that maps
the translated Frenet field of α to what the Frenet field of β looks like at t0, and then to translate the
result to β(t0).

We have that κα = κα = κβ , and we first assume that τα = τα = τβ at all t ∈ I. We want to show that
α = β : I → R3. It’s enough to show that Tα = Tβ for all t, and that α(t0) = β(t0) ⇒ α = β (from
calculus. This discussion is in O’Neil’s Book). To this end, define the following function f : I → R as
follows, f(t) := 〈Tα(t), Tβ(t)〉+ 〈Nα(t), Nβ(t)〉+ 〈Bα(t), Bβ(t)〉 ∈ R. So,

f ′(t) = 〈T ′α, Tβ〉+ 〈Tα, T ′β〉+ 〈N ′α, Nβ〉+ 〈Nα, N ′β〉+ 〈B′α, Bβ〉+ 〈Bα, B′β〉

Using the Frenet formulas,

= 〈καNα, Tβ〉+〈Tα, κβNβ〉+〈−καTα+ταBα, Nβ〉+〈Nα−κβTβ+τβBβ〉+〈−ταNα, Bβ〉+〈Bα,−τβNβ〉 = 0

where the equality to 0 follows from the cancellation of all the previous terms. Also,

f(t0) = 〈Tα(t0), Tβ(t0)〉+ 〈Nα(t0), Nβ(t0)〉+ 〈Bα(t0), Bβ(t0)〉 = 1 + 1 + 1 = 3

Recall that 〈v, w〉 = ||v|| · ||w|| · cos(ζ), so 〈Tα(t), Tβ(t)〉 ≤ 1, 〈Nα(t), Nβ(t)〉 ≤ 1, 〈Bα(t), Bβ(t)〉 ≤ 1,
so f(t) ≤ 3 with equality only when the angle between each component in the inner products is 0; when
coliniarity is present. Since 〈Tα(t), Tβ(t)〉1, this tells us that Tα(t) = Tβ(t) for all t, and we have case (1).
Now, when κα = κβ and τα = −τβ , we first reflect α to obtain −α : I → R3 (note here that −α = −1 ◦α,
where −1 is the isometry that reflects the image of α). We calculate T−α = −Tα ⇒ κ−α = κα, and that
N−α = −Nα. Therefore, B−α = T−α×N−α = Bα, and soB′−α = B′α and by Frenet, −τ−α ·N−α = −ταNα
implies that τ−α = −τα. Since −α and α are isometric, we can apply the previous case to −α instead of
α. Hence, α is isometric to −α, which is isometric to β.

1.12 Personal Addendum

I’m not surprised that we never formally introduced the chain rule, but I thought it might be best to
formally state anyway: The chain rule in higher dimensions: Fix differentiable functions f : Rm → Rk
and g : Rn → Rm, and a point a ∈ Rn. Let Dag denote the total derivative at g at a and Dg(a)f denote the
total derivative of f at g(a). These two derivatives are linear transformations Rn → Rm and Rm → Rk
respectively, so we can compose them - the chain rule for total derivatives says that their composite is the
total derivative of f ◦ g at a:

Da(f ◦ g) = Dg(a)f ◦Dag

11
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2
Submanifolds of Rn

2.1 The Inverse Function Theorem

Theorem 4. Let U be an open subset of Rn, F : U → Rn be a map of class Ck. If the Jacobian DF (a)
is invertible for some fixed a ∈ U , then there exist open sets U0, V0 ⊂ Rn such that a ∈ U0 ⊂ U and
F
∣∣
U0

: U0 → V0 is a Ck-diffeomorphism, i.e., F
∣∣
Uo

is bijective and both F
∣∣
U0

and (F
∣∣
U0

)−1 are Ck maps.

2.2 The Global Inverse Function Theorem

Corollary 5. Let U ⊂ Rn be open, F : U → Rn be a Ck map. If F is injective and DF (x) is invertible for all
x ∈ U , then F (U) ⊂ Rn is open, and F : U → F (U) is a Ck diffeomorphism.

Proof. F : U → F (U) is certainly bijective. For x ∈ U , there exist U0, V0 open subsets of Rn with
x ∈ U0, F (x) ∈ V0 ⊂ F (U) ⊂ Rn. This tells us that F (U) is open. We also have that (F

∣∣
U0

)−1 is a Ck

map. Since this is true for all x ∈ U , this gives us that F−1 ∈ Ck.

2.3 The Implicit Function Theorem

Theorem 6. Let U be an open subset of Rn ×R` with coordinates (x, y) = (x1, ..., xn, y1, ..., y`) ∈ Rn ×R`.
Let F : U → R` be a map with F ∈ Ck. Let (a, b) ∈ U , call c = F (a, b), and assume that (∂F∂y (a, b)) ∈ Rn+`,`

is invertible. Then, there exist an open set V ⊂ Rn,W ⊂ R` with a ∈ V, b ∈ W and there exists (g : V →
W ) ∈ Ck such that g(x) = y ⇐⇒ F (x, y) = c for all (x, y) ∈ V ×W .

R`

Rn( )

(
)

U

(a, b)

V

W

a

b
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2.4 Equivalent Conditions for being a Submanifold

Claim. Let M ⊂ Rn and let d be a natural number, d ≤ n. The following are equivalent:

(a) For all x ∈ M , there exist open subsets U, V in Rn with x ∈ U and there exists a map ϕ : U → V
such that ϕ is a Ck-diffeomorphism, and ϕ(M ∩ U) = V ∩ (Rd × {(0, ..., 0)︸ ︷︷ ︸

n−d

}).

M
x

U
Rn

Rd

V

ϕ

V ∩ (Rd × {(0, ..., 0)︸ ︷︷ ︸
n−d

})

(b) For all x ∈M there exists U ⊂ Rn with x ∈ U , and there exists a map f : U → Rn−d such that f ∈ Ck
and for all x ∈ U , rank(Df(x)) = n− d and M ∩ U = {x ∈ U |f(x) = 0}.

M
a

Rn−d

0

U

f

(c) For all x ∈ M , there exist Ũ ⊂ Rn with x ∈ Ũ such that there exists an open set W ⊂ Rd and a
map g : W → Ũ , g ∈ Ck, such that for all w ∈ W , rank(Dg(w)) = d and g : W → M ∩ Ũ is a
homeomorphism.

M
x

Ũ
Rd

W

w

g
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2.4. EQUIVALENT CONDITIONS FOR BEING A SUBMANIFOLD

If M satisfies any of the above conditions, we call M a Ck-submanifold of Rn of dimension d. For
k = ∞, we simply refer to M as a smooth manifold. The maps g in condition (c) are called the local
parameterizations of M at x.

Proof. (a ⇒ b) : Denote ϕ(x) = (ϕ1(x), ..., ϕn(x)), and let f(x) := (ϕd+1, ..., ϕn(x)). Since ϕ ∈ Ck, it
follows that f ∈ Ck. Also, f(x) = 0 if and only if ϕ(x) ∈ Rd × {(01, ..., 0n−d)}, which by assuming
condition (a) happens if and only if x ∈ M ∩ U . Since ϕ is a Ck diffeomorphism, this tells us that
rank(Dϕ(x)) = n for all x, which implies that rank(f(x)) = n− d for all x ∈ U .

(b⇒ c) : We have that rank(Df(x)) = n− d, so without loss of generality, we may assume that

rank

(
∂f i

∂xj
(x0)

)
i=1...n−d
j=d+1...n

= n− d

(after possibly rearranging the basis of Rn). By the implicit function theorem, there exists an open set
W ⊂ Rd, and there exists an open subset W̃ ⊂ Rn−d such that (x1

0, ..., x
d
0) ∈ W , (xd+1

0 , ..., xn0 ) ∈ W̃ ,
w ∈ W̃ ⊂ U and there exists a map (g̃ : W → W̃ ) ∈ Ck such that

g̃(x1, ..., xd) = (xd+1, ..., xn) ⇐⇒ f(x1, ..., xn) = 0 ⇐⇒ x ∈M ∩ (W × W̃ ) (2.4.1)

Where the last statement follows from assuming (b). Now, define

g : W → Rn; g(x1, ..., xd) := (x1, ..., xd, g̃(x1, ..., xd)).

Let Ũ = W × W̃ , so g : W → Ũ , g ∈ Ck is 1-1, and

rank(Dg) = rank(D(idRd × g̃)) = rank





1 01
. . .

0 1

∂g̃1

∂x1 . . . . . . ∂g̃d

∂x1

...
...

...
...

∂g̃1

∂xn−d
. . . . . . ∂g̃d

∂xn−d︸ ︷︷ ︸
d




d


n− d



= d

Finally, g(W ) = M∩Ũ because of (2.4.1), and is onto. Thus, g is a continuous bijection, and g−1(x1, ..., xn) =
(x1, ..., xd) is continuous, which implies that g : W →M ∩ Ũ is a homeomorphism.

(c⇒ a): Just to review, we are given that for any x ∈M there exists Ũ ⊂ Rn, x ∈ Ũ such that there exists
an open setW ⊂ Rd and a Ck differentiable map g : W → Ũ , where g : W →M∩Ũ is a homeomorphism,
and for all w ∈ W , rank(Dg) = d. We need to show that for all xo ∈M , there exist open sets U, V ⊂ Rn
and a map ϕ : U → V, ϕ ∈ Ck, ϕ(M ∩ U) = V ∩ (Rd × {0}).
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M

Y0x0

Rn−d

Rd

Z0
U = Y0 × Z0

Ũ

Let x ∈M ∩ Ũ , and let w0 = g−1(x0). Without loss of generality, we can rearrange things such that

rank

(
∂gi

∂xj

)
i=1...d
j=1...d

= d

Let g = (g1, ..., gn), define h = (g1, ..., gd), k = (gd+1, ..., gn) so that g = (h, k). Note that rank(Dh) = d,
and also that h, k ∈ Ck. By the inverse function theorem, there exists an open set Wo ⊂ Rd, and an open
set Y0 ⊂ h(W ), and an open subset Z0 ⊂ Rn−d such that x0 ∈ Y0 × Z0 ⊂ Ũ , and h|w0 : W0 → h(W0) is a
Ck diffeomorphism. Let U = Y0 × Z0. Define ϕ : U → Rn as follows:

ϕ(x1, ..., xd, xd+1, ..., xn) := (h−1(x1, ..., xd), (xd+1, ..., xn)− k(h−1(x1, ..., xd)))︸ ︷︷ ︸
∈Ũ

Note that ϕ ∈ Ck, because h−1, k ∈ Ck and ϕ is also injective. Define V := Image(ϕ). It isn’t hard to
check that rank(Dϕ) = n for all x ∈ Y0×Z0. By the Global inverse function theorem, ϕ(U) = V is open,
and ϕ : U → ϕ(U) is a Ck diffeomorphism - we have shown the first part of what we’d like to show.

It remains to show that ϕ(M ∩ U) = ϕ(U) ∩ (Rd × {0}).
(⊂) Assume that y ∈ ϕ(M ∩ U). This gives us that y = ϕ(x), where x ∈ M ∩ U ⊂ M ∩ Ũ . As such,

x = g(w) for some w ∈W , so:

y = ϕ(x) = ϕ(g(w)) = ϕ(h(w), k(w))
= (h−1(h(w)), k(w)− k(h−1(h(w)))) = (w, k(w)− k(w)) = (w, 0) ∈ Rd × {0}. (2.4.2)

We conclude that ϕ(M ∩ U) ⊂ ϕ(U) ∩ (Rd × {0}).
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2.5. EXAMPLES

(⊃) Now, take y ∈ ϕ(U) ∩ (Rd × {0}). This tells us that y = ϕ(x) ∈ Rd × {0}, for some x ∈ U . This
means that the second component of ϕ has to be 0;

(xd+1, ..., xn)− k(h−1(x1, ..., xd)) = 0⇒ x = (x1, ..., xn) = (x1, ..., xd, k(h−1(x1, ..., xd)))
= (h(h−1(x1, ..., xd)), k(h−1(x1, ..., xd))) = (h, k)(h−1(x1, ..., xd)) = g(h−1(x1, ..., xd)︸ ︷︷ ︸

∈W0⊂W

) (2.4.3)

Which tells us that x ∈ g(W ) = M ∩ U ⇒ y = ϕ(x) for x ∈M ∩ U .

2.5 Examples

(a) Rd × {0} is a submanifold of Rn. More generally, every linear subspace V of Rn is a submanifold of
Rn. More generally, every affine subspace V + a (a linear subspace with the adjoinment of a point)
is a submanifold of Rn of dimension dim(V ), and of class C∞.

(b) Any open subset of a submanifold of Rn is again a submanifold of Rn.

(c) Let W be an open subset of Rd, and let f : W → Rn−d with f ∈ Ck. Then, graph(f) := {(x, f(x)) ∈
Rn|x ∈ W} is a d-dimensional submanifold of Rn. This is true, because we can take g in condition
(c) to be g : W →W × Rn−d, g(x) := (x, f(x)).

(d) Let Sn be the n-sphere. Then, Sn is a submanifold of Rn+1 of dimensional n. In showing this,
use condition (b) with f : U → R, U := Rn+1 − {0} is an open subset of Rn+1, and f(x) =
||x||2 − 1 = (x1)2 + ... + (xn+1)2 − 1. Then, Df(x) = (2x1, ..., 2xn+1) = 2x. This tells us that
rank(Df) = 1 = (n+ 1)− n. Clearly, Sn ∩ U = {x ∈ U |f(x) = 0}.

(e) Define the cylinder c = {x ∈ R3|(x1)2 + (x2)2 = 1}, and use condition (b) where f(x) = (x1)2 +
(x2)2 − 1.

(f) If M ⊂ Rn, M ′ ⊂ Rn are submanifolds of Rn, then M × M ′ is a submanifold of R2n of where
dim(M ×M ′) = dim(M) + dim(M ′) (as a note, M ∩M ′ doesn’t work in general). To see this, use
condition (c), where

g : W → (M ∩ Ũ) g′ : W ′ → (M ′ ∩ Ũ ′)
}
⇒ g × g′ : W ×W ′ → (M ∩ Ũ)× (M ′ × Ũ ′)

(g) S1 ⊂ R2 ⇒ S1 × R2 is a submanifold of R4 of dimension 3. We call S1 × S1 ⊂ R4 the torus, more
specifically,

S1 × ....× S1︸ ︷︷ ︸
n

is called the n-torus.

As an exercise, give a condition on the map f : M ∩ U → Rn−d (for all x ∈M) such that this guarantees
that M is a product, M = M1 ×M2.

2.6 Lemma

Lemma 7. Let M be a d-dimensional submanifold of Rn. Let ϕ1 : U1 → V1, ϕ2 : U2 → V2 be as in section
2.4(a). Denote U ′1 = M ∩U1, V

′
1 is the projection of V1 to Rd, U ′2 = M ∩U2, V ′2 is the projection of V2 to Rd.

Also denote by ϕ′1 : U ′1 → V ′1 , ϕ′2 : U ′2 → V ′2 . Note that ϕ′1, ϕ
′
2 do not have a notion of Ck differentiability,

since U ′1 and U ′2 are not (necessarily) open in Rn. However, we do have that

17
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(a) ϕ′i(U ′1 ∩ U ′2) ⊂ Rd is open for i = 1, 2

(b) ϕ′2 ◦ (ϕ′1)−1 is a Ck-diffeomorphism.

M
U ′2

U ′1

RdRd RdRd
ϕ′1

ϕ′2

ϕ′2(U2)′ϕ′1(U ′1)

Proof.

(a) We have that
ϕ′i(U ′1 ∩ U ′2) = ϕi(U1 ∩ U2 ∩M) = ϕi(U1 ∩ U2) ∩ (Rd × {0})

and as ϕi is a diffeomorphism, we have that ϕi(U1 ∩ U2) is open in Rn, and as such the whole term on
the right hand side of the equation is open in Rd.

(b) We have that ϕ′2 ◦ (ϕ′1)−1 is a composition of Ck maps as follows:

ϕ′1(U ′1 ∩ U ′2)︸ ︷︷ ︸
⊂Rd, open

include
−−−−−→ ϕ1(U1 ∩ U2)︸ ︷︷ ︸

⊂Rn, open

ϕ−1
1

−−−−−→ U1 ∩ U2︸ ︷︷ ︸
⊂Rn, open

ϕ2
−−−−−→ ϕ2(U1 ∩ U2)︸ ︷︷ ︸

⊂Rn, open

project

−−−−−→ ϕ′2(U ′1 ∩ U ′2 ∩M)︸ ︷︷ ︸
⊂Rd. open

Which implies that ϕ′2◦(ϕ′1)−1 ∈ Ck, and (ϕ′2◦(ϕ′1)−1)−1 = ϕ′1◦(ϕ′2)−1 ∈ Ck. We then have our claim.

2.7 Ck -curves

Definition. Let M be a d-dimensional submanifold of Rn. Then, a Ck curve on M is a map α : I → M,
where I is an open interval of R, such that α is of class Ck, as a map α : I → Rn. A tangent vector
of M at some point a ∈ M is a vector v ∈ Rn such that there exists α : I → M , a Ck-curve such that
α(0) = a, α′(0) = v. The tangent space of M at a (denoted TaM) is the set of all tangent vectors at a.

18
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2.8 Submanifolds and Tangent Spaces

Proposition 8. Let M be a submanifold of Rn of dimension d, and let a ∈M .

(a) If f : U → Rn−d as in definition 2.4b, with a ∈ U , then TaM = Ker(Df(a)).

M
a

Rn−d

0

U

f

Figure 2.1: For all x ∈ M there exists U ⊂ Rn with x ∈ U , and there exists a map f : U → Rn−d such
that f ∈ Ck and for all x ∈ U , rank(Df(x)) = n− d and M ∩ U = {x ∈ U |f(x) = 0}.

(b) If g : W → W̃ as in definition 2.4c with a ∈ Ũ , then TaM = Im(Dg(b)) where b = g−1(a).

M
a

Ũ
Rd

W

b

g

Figure 2.2: For all x ∈ M , there exist Ũ ⊂ Rn with x ∈ Ũ such that there exists an open set W ⊂ Rd
and a map g : W → Ũ , g ∈ Ck, such that for all w ∈ W , rank(Dg(w)) = d and g : W → M ∩ Ũ is a
homeomorphism.

Proof. We have that Df : Rn → Rn−d is a linear map with rank(Df(a)) = n − d. This implies that
dim(Ker(Df(a))) = d. Hence, it’s enough to show that

Im(Dg(b)) ⊂(1) TaM ⊂(2) Ker(Df(a))

1. Let v = Dg(b) · w, for some w ∈ Rd. Let ε > 0 be such that b+ t · w ∈W, ∀t ∈ (−ε, ε). Then, define
the curve α : (−ε, ε) → M by, α(t) := g(b + t · w). Then α ∈ Ck, α(0) = g(b) = a, and by the chain
rule,

v′(0) = Dg(b+ 0 · w) · ∂(b+ t · w)
∂t

,

but since Dg(b+ 0 · w) · ∂(b+t·w)
∂t = Dg(b) · w = v, this implies that v ∈ TaM .

19
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2. Let v ∈ TaM , let v = α′(0), α : I → M with α(0) = a. WLOG, assumed that α(I) ⊂ U . Since
α(I) ⊂M and f(M)∩U = 0, this implies that f(α(t)) = 0 for all t ∈ I. Taking derivatives, we have
that

0 = Df(α(0)) · α′(0) = Df(a) · v∗ ⇒ v ∈ Ker(Df(a))

2.9 Functions of class Ck

Definition. Let M be a Ck-submanifold of Rn. Then, a function f : M → R is of class Ck if, for all
x ∈ M , there exists an open set U ⊂ Rn where x ∈ U such that there also exists f̃ : U → R ∈ Ck such
that f̃ |U∩M = f |U∩M . We denote the set of all such Ck-functions by Ck(M,R).

2.10 A map Ck(M,R)→ R

Let a ∈ M, and let v ∈ TaM . We define Dv : Ck(M,R) → R by Dv(f) := d
dtf ◦ α|t=0, where f ◦ α is a

function from I → R, for any Ck curve α with α(0) = a, α′(0) = v, and any f ∈ Ck(M,R). Then,

(a) Dv is well-defined

(b) Dv is linear, Dv(f + g) = Dv(f) +Dv(g), Dv(cf) = c ·Dv(f) for f, g ∈ Ck(M,R) and ∈ R.

Proof.

(a) We need to show that Dv is independent of our choice of α. Chose an extension f̃ : U → R, a ∈ U .
Then,

Dvf = d

dt
f ◦ α|t=0 = d

dt
f̃ ◦ α|t=0 = Df̃(α(0)) ◦ α′(0) = Df̃(a) · v

and for other choices of f̃ (eg, ˜̃f), f ◦ α = f̃ ◦ α = ˜̃f ◦ α is always the same function.
(b)

d

dt
(cf + g) ◦ α|t=0 = c

d

dt
f ◦ α|t=0 + d

dt
g ◦ α|t=0

and
d

dt
(fg) ◦ α = d

dt
(f ◦ g) · (g ◦ α) = d

dt
(f ◦ α) · (g ◦ α) + (f ◦ α) · d

dt
(g ◦ α)

Setting t = 0, we have our claim.

Remark. The properties in Lemma 2.6 and 2.10 will be used below to define general concepts of manifolds
and their tangent spaces without referring to the ambient space Rn.

∗Note that this isn’t ’multiplication’, as someone pointed out in class; rather, it’s the linear transform Df(a) acting on v
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3
Manifolds

3.1 Introductory Definitions

Definition. Let M be a set (we have no topology on this set right now).

(a) A (Ck-) chart on M is a map ϕ : U → Rd where U ⊂M such that

(i) ϕ is injective

(ii) ϕ(U) ⊂ Rd is open

(b) Two charts ϕ : U → ϕ(U) and ψ : V → ψ(V ) are called (Ck-) compatible if:

(i) ϕ(U ∩ V ) and ψ(U ∩ V ) are open in Rd

(ii) ψ ◦ ϕ−1 : ϕ(U ∩ V )
ϕ−1

−−−−−→ U ∩ V
ψ

−−−−−→ ψ(U ∩ V ) is a Ck-diffeomorphism.

(c) A (Ck-) atlas A is a collection of charts A = {ϕi : Ui → Rd|i ∈ I} such that

(i) ∪i∈IUi = M

(ii) Any two charts ϕi, ϕj ∈ A are Ck-compatible

(d) An atlas is called maximal if it is not properly contained in any other larger atlas (i.e., there does not
exist any chart ψ : V → Rn not in A such that ψ is compatible with all other charts of A ).

(e) A (Ck−) manifold of dimension d is a tuple (M,A ) where M is a set an A is an atlas on M . We
often simply write M instead of (M,A ) with the understanding that A is also given.

3.2 Compatibility with an Atlas

Lemma 9. Let M be a set and let A = {ϕi : Ui → Rd} be an atlas on M . Let ϕ : U → Rd and ψ : V → Rd
be any two charts such that ϕ is compatible with any ϕi ∈ A , and ψ is compatible with any ϕi ∈ A . Then,
ψ and ϕ are also compatible.

Proof. ∗ We have to show the two notions of compatibility: let x ∈ U ∩V . Since A is an atlas, this implies
the existence of ϕi : Ui → Rd ∈ A such that x ∈ Ui. Then,

ϕ(x) ∈ ϕ(Ui ∩ (U ∩ V )) = ϕ ◦ϕ−1
i (ϕi(Ui ∩U ∩ V )) = (ϕ ◦ ϕ−1

i )︸ ︷︷ ︸
Ck−diffeomorphism

(ϕi(Ui ∩ U)︸ ︷︷ ︸
open in Rd

∩ϕi(Ui ∩ V )︸ ︷︷ ︸
open in Rd

)
open
⊂ Rd

∗Before really jumping into this proof, note that Ck-compatibility is not an equivalence relation (it isn’t transitive).
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This implies that ϕ(x) ∈ ϕ(Ui ∩ (U ∩ V ))︸ ︷︷ ︸
open in Rd

⊂ ϕ(U ∩ V ), which implies that ϕ(U ∩ V ) is open in Rd.

Similarly, we find that ψ(U ∩ V ) is open in Rd.
Working on the second condition for compatibility, we have that

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ U ∩ V → ψ(U ∩ V )

is bijective. Locally, there is a ϕi : Ui → Rd, x ∈ Ui, ϕi ∈ A so that

ϕ(Ui ∩ U ∩ V ) Ui ∩ U ∩ V ϕi(Ui ∩ U ∩ V ) Ui ∩ U ∩ V ψ(Ui ∩ U ∩ V )ϕ−1

∈Ck

ϕi ϕ−1
i

∈Ck

ψ

Which implies that ψ ◦ ϕ−1|ϕ(Ui◦(U∩V )) ∈ Ck, so for all xi ∈ U ∩ V there exists ϕi : Ui → Rd, and so
we can remove the restriction in our domain and conclude that ψ ◦ ϕ−1 ∈ Ck. Similarly, we show that
(ψ ◦ ϕ−1)−1 = ϕ ◦ ψ−1 ∈ Ck.

3.3 Determining A

Corollary 10. Let A be an atlas onM . Denote by A the collection of all charts {ϕ : U → Rd|ϕ is compatible
with all charts in A }. Then, A is the unique maximal atlas covering A . Thus, it is enough to specify any
atlas even if it is non-maximal to determined the manifold (M,A ).

3.4 Examples

(a) Every d-dimensional submanifold of Rn is also a manifold in the sense of definition 3.1, because we
can take the atlas A = {ϕ′i : U ′i → V ′i } as defined in Lemma 2.6. We proved that each ϕ′i is a chart
and the first qualification for compatibility follows from lemma 2.6 (a), and the second follows from
lemma 2.6 (b).

(b) We know that (R,A = {idR}) is the standard C∞ (smooth) structure on R. But we also have non-
standard smooth structures as follows: let M = R, A = {ϕ} where ϕ : R→ R, ϕ(x) = x3. Note, A
and A are non-equivalent smooth structures because ϕ ◦ idR = x3 has inverse x 7→ x

1
3 which is not

smooth (in fact at 0, it isn’t even C1).

(c) The set of m× n matrices, Mat(m× n,R) = Rm,n can be identified with Rm·n, call this ρ : Rm,n →
Rm·n (which is a bijection), that looks likea1,1

. . .
am,n

 7→ (a1,1, ...., am,n)

This defines an atlas for the matrices (Rm,n,A = {ρ}).

(d) The general linear group GL(n,R) ⊂ Rn,m is the set of matrices A with determinant det(A) 6= 0.

Mapping GL(n,R)
ρ

−−−−−→ Rn2
, we see that ρ(GL(n,R)) ⊂open Rn2

, because det(A) : Rn2 → R
is continuous, implying that det−1(R − {0}) is an open subset of Rn2

. This defines the manifold
GL(n,R),A = {ρ|GL(n,R)}.
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(e) If (M1,A1) and (M2,A2) are two manifolds of dimension d1, d2 repectively, then

(M1 ×M2,A1 ×A2 = {ϕ1 × ϕ2 : U1 × U2 → Rd1+d2})

is a manifold of dimension d1 + d2. To see this, note that

(ϕ1 × ϕ2)(U1 × U2) = ϕ1(U1)︸ ︷︷ ︸
open in Rd1

× ϕ2(U2)︸ ︷︷ ︸
open in Rd2

⊂open Rd1+d2

(ψ1 × ψ2) ◦ (ϕ1 × ϕ2)−1 = (ψ1 ◦ ϕ−1
1 )× (ψ2 ◦ ϕ−1

2 )

(f) The real projective plane, denoted RPn is defined as the set of lines in Rn+1;

RPn = Rn+1 − {0}/ ∼, where x ∼ y ⇐⇒ ∃ c ∈ R|x = c · y.

We define A = {ϕj : Uj → Rn|j = 1, ..., n+ 1} where

Uj = {[x] ∈ RPn|x ∈ Rn+1 − {0}}, xj 6= 0} ⊂ RPn,

and point out that ∪nj=1Uj = RPn. For x = (x1, ..., xn+1),

ϕj([x]) =
(
x1

xj
, . . . ,

x̂j

xj
, . . . ,

xn+1

xj

)
∈ Rn

where the x̂j indicates the removal of the jth coordinate. This map is well defined, because if we
take c · x = (cx1, ..., cxn+1), then

ϕj([cx]) =
(
cx1

cxj
, . . . ,

ˆcxj
cxj

, . . . ,
cxn+1

cdj

)
=
(
x1

xj
, . . . ,

x̂j

xj
, . . . ,

xn+1

xj

)
= ϕj([x]) ∈ Rn

Considering the requirements for being a chart, ϕj is clearly injective, and ϕj(Uj) clearly open by the
definition of ϕj .

Take ϕj(Uj) = Rn open, ϕ−1
j (x1, . . . , xn) = [x1, . . . , 1j , . . . , xn]. Considering the first requirement for

being compatible, we have that

ϕj(Uj ∩ Uk) = {x ∈ Rn|xk 6= 0 for j > k or xk+1 = 0 for j < k} ⊂open Rn.

The second requirement for compatibility is as follows,

ϕk ◦ ϕ−1
j (x1, .., xn) = ϕk([x1, . . . , 1︸︷︷︸

jth

, . . . , xn]) =

x1

xk
, . . . ,

1
xk︸︷︷︸
jth

, . . . ,
x̂k

xk
, . . . ,

xn

xk


This implies that ϕk ◦ϕ−1

j is a Ck morphism, and similarly we show that (ϕk ◦ϕj)−1 is a Ck morphism.

3.5 Putting a topology on a manifold

Claim. Let M be a Ck-manifold. We define a topology on M by calling V ⊂ M open if and only if for
each x ∈ V , there exists a chart ϕ : U → Rd with x ∈ U , ϕ ∈ A (the maximal atlas) and U ⊂ V . This
defines a topology on M such that for each chart ϕ ∈ A , ϕ : U → ϕ(U) is a homeomorphism.

Proof. We have to prove the three basic properties of a topology are held up by this proposal.
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1. First, note that ∅ is open trivially, and M is open because M = ∪iUi, where Ui is the domain of a
chart.

2. Let Vj ⊂ M be open for all j ∈ J . We need to show that ∪jVj is open: let x ∈ ∪j∈JVj , so x ∈ Vj0 .
This implies that there exists ϕj0 : Uj0 → Rd, x ∈ Uj0 ⊂ Vj0 ⊂ ∪j∈JVj , implying that ∪j∈JVj is
open.

3. Lastly, let V1 and V2 be open, let x ∈ V1 ∩ V2. This implies the existence of ϕj ∈ A , ϕj : Uj → Rd,
j = 1, 2 with x ∈ Uj ⊂ Vj . Define ϕ := ϕ1|U1∩U2 : U1 ∩ U2 → Rd. It is enough to show that (i) ϕ is
a chart, and (ii) ϕ is compatible with all other charts in A (this will prove the claim, since then we
would have x ∈ U1 ∩ U2 ⊂ V1 ∩ V2, and (ϕ|U1∩U2 → Rd) ∈ A ). In proving so, we do the following:

(i) In showing that ϕ is a chart, we have to show that ϕ is injective, and ϕ(U1 ∩ U2) is open. The
injectivity of ϕ is of course true, because ϕ1 is injective (ϕ1 is, after all, a chart). Also,

ϕ(U1 ∩ U2) = ϕ1(U1 ∩ U2),

which is open since ϕ1 and ϕ2 are compatible. We conclude that ϕ is a chart.

(ii) We have the following line of thought: let ψ : V → Rd ∈ A . For the first compatibility
condition,

ϕ(V ∩ (U1 ∩ U2)) = † ϕ1(V ∩ U1)︸ ︷︷ ︸
open, ϕ1 & ψ compatible

⋂
ϕ1(U1 ∩ U2)︸ ︷︷ ︸

open, ϕ1,ϕ2 compatible

⊂open Rd

and
ψ(V ∩ (U1 ∩ U2)) = ψ(V ∩ U1)︸ ︷︷ ︸

open, ψ, ϕ1 compatible

⋂
ψ(V ∩ U2)︸ ︷︷ ︸

open, ψ, ϕ2 compatible

so we have the first compatibility condition. Next, note that

ψ ◦ ϕ−1 = ψ ◦ ϕ−1|ϕ1(V ∩(U1∩U2))︸ ︷︷ ︸
Ck−diffeomorphism

: ϕ(V ∩ (U1 ∩ U2))︸ ︷︷ ︸
open

−−−−−→ ψ(V ∩ (U1 ∩ U2))︸ ︷︷ ︸
open

and as such, ψ ◦ ϕ−1 is a Ck diffeomorphism.

The second part of this proof is to prove that ϕ : U → ϕ(U) is a homeomorphism ‡ . Well, we have that
ϕ ∈ A is injective, and so ϕ : U → ϕ(U) is bijective. We need to show that,

(1) ϕ is continuous

(2) ϕ−1 is continuous.

And we do so as follows:

(1) Let Y be an open subspace of ϕ(U). We need to show that ϕ−1(Y ) is open in the topology of M , so
let x ∈ ϕ−1(Y ). It is enough to show that ϕ|ϕ−1(Y ) : ϕ−1(Y ) → Y is (i) a chart, and (ii), that ϕ is
compatible with any ψ ∈ A .

(i) Since ϕ is injective, it follows that ϕ|ϕ−1(Y ) is injective. As Y is assumed open,

ϕ|ϕ1(Y )(ϕ−1(Y )) = Y ⊂open Rd.
†The equality here follows from ϕ1 being injective
‡In the initial writing of this section, I was blatantly abusing terminology. It’s worth mentioning that now, I think the point of

this discussion was to remove ourselves from the notion of Rn being the ambient space of our manifold, and instead relying on the
new topology we have shown to exist by part one of the proof to indicate the notion of homeomorphic spaces.
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(ii) Let ψ : V → Rd ∈ A . Then, for the first compatibility condition,

ψ(V ∩ ϕ−1(Y )) = ψ ◦ ϕ−1 ◦ ϕ(V ∩ ϕ−1(Y )) = ψ ◦ ϕ−1︸ ︷︷ ︸
Ck

diffeomorphism

(ϕ(U ∩ V )︸ ︷︷ ︸
open;

ϕ & ψ are
compatible

∩ Y︸︷︷︸
open

)

and so, we have a Ck map of an open set, which is then of course, open in Rd. Similarly,

ϕ(V ∩ ϕ−1(Y )) = ϕ(U ∩ V )︸ ︷︷ ︸
open;

ϕ & ψ are
compatible

∩ Y︸︷︷︸
open

⊂open Rd.

For the second compatibility condition, we have that

ϕ|ϕ−1(Y ) ◦ ψ−1 = ϕ ◦ ψ−1︸ ︷︷ ︸
Ck

diffeomorphism

: ψ(ϕ−1(Y ) ∩ V )︸ ︷︷ ︸
open

−−−−−→ ϕ(ψ−1(Y ) ∩ V )︸ ︷︷ ︸
open

which is clearly a Ck diffeomorphism. We do something similar when considering ψ ◦ ϕ−1.

(2) It remains to show that ϕ−1 is continuous. Let W be an open subspace of U . We need to show that
ϕ(W ) ⊂open Rd. Let y ∈ ϕ(W ), x = ϕ−1(y). By the open-ness of W , there exists a chart ψ ∈ A ,
ψ : V → Rd such that x ∈ V ⊂ W . Since ϕ and ψ are compatible, ϕ(V ∩ U) is an open subspace of
Rd, and y = ϕ(x) ∈ ϕ(U ∩ V )︸ ︷︷ ︸

open

⊂ ϕ(W ), so ϕ(W ) is open in Rd.

3.6 Restricting Charts to open subsets in M

Lemma 11. Less formally, the points below tell us that open subspaces of a manifold are again, manifolds.

(a) Let ϕ : U → ϕ(U) ∈ A . If V ⊂open M , then ϕ|V is a chart in A .

(b) If V ⊂M open, then the collection A |V = {ϕ|V |ϕ ∈ A } is an atlas for V , thus V is also a manifold.

Proof. For Homework, see the exercises at the end of the chapter.

3.7 Examples and Definitions

(a) Let M = R t {0∗}. Let A = {ϕ1, ϕ2} where ϕ1 : R→ R, ϕ(x) = x, and ϕ2 : (R− {0} ∪ {0∗})→ R,

ϕ2(x) =
{
x, x 6= 0
0, x = 0∗

Then ϕ1, ϕ2 are compatible, because R ∩ (R− {0} ∩ {0∗}) = R− {0}, which is open, and

ϕ1 ◦ ϕ−1
2 (x) = x, and ϕ2 ◦ ϕ−1

1 (x) = x ∀x ∈ R− {0}

and ϕi(R ∩ (R − {0} ∪ {0∗})) = R − {0} for i = 1, 2. This implies that (M, {ϕ1, ϕ2}) is a manifold
under this structure. As a note, notice that there do not exist disjoint open neighborhoods containing
0 and 0∗ in this topology, and as such, the topology on M is not Hausdorff. We will now restrict our
discussion to manifolds that are Hausdorff.
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(b) Let (M,A ) be a manifold and let X be a set. Define a manifold structure on M ×X: for each chart
ϕ : U → Rd ∈ A and x ∈ X, let ϕx : U ×X → Rd by ϕx(u, x) := ϕ(u). Then, Ã = {ϕx|ϕ ∈ A , x ∈
X} is an atlas on M ×X, and if X is uncountable, then M ×X is not second-countable §. We will
now restrict our discussion to manifolds that are second-countable.

Definition. From here on in, a manifold is a tuple (M,A ) as in definition 3.1 such that the induced
topology of M is Hausdorff and second-countable.

3.8 Compact sets and Manifolds

Proposition 12. Let M be a manifold. Then,

(a) All open sets U ⊂ M are locally compact, i.e., for all x ∈ U there exists a compact set K ⊂ U such that
x ∈ K0 ⊂ K ⊂ U .

(b) M has an exhaustion by compact sets, i.e., there exist compact sets K1,K2, ... ⊂M such that Ki ⊂ Ki+1
and M = ∪iKi.

(c) M is para-compact, i.e., every open cover has a locally finite open refinement. I.e., for an open cover U
of M , there exists an open refinement ¶ V of U such that V is locally finite (i.e., for all x ∈ M , there
exists W ⊂open M such that x ∈W and V ∩W 6= 0 for only finitely many V ∈ V)

Proof.

(a) Let U ⊂ M be open. Let x ∈ U , and let ϕ : V → Rd be a chart with x ∈ V ⊂ U . Since ϕ(V ) ⊂ Rd
is open, there exists B ⊂open Rd such that ϕ(x) ∈ B ⊂ B ⊂ ϕ(V ). Since ϕ is a homeomorphism,
ϕ−1(B) := K ⊂ U ,K compact, andKo = ϕ−1(B) (becauseK0 = (ϕ−1(B))0 = ϕ−1(Bo) = ϕ−1(B)).
This implies that x ∈ Ko ⊂ K ⊂ U . Hence, we have local compactness.

(b) We want compact sets K1,K2, ...|Ki ⊂ Ki+1,∪i∈NKi = M . Let B be a countable base for M . Then,
B′ = {B ∈ B|B is compact } is also a countable base for M , since for x ∈ U ⊂open M by (q), there
exists a compact set K such that x ∈ Ko ⊂ K ⊂ U ⇒ ∃B ∈ B : x ∈ B ⊂ Ko ⊂ K, implying that
B ⊂ K is compact (closed subsets of compact sets are compact), which implies that B ∈ B′, with
x ∈ B ⊂ U . We write B′ = {B1, B2, ...}. Then K1 = B1, and by induction, we assume that we have
K1, ...,Kn such that Bi ⊂ Ki and Ki ⊂ Ki+1. Since Kn is compact, there exists some s ∈ N such
that Kn ⊂ B1 ∪ ... ∪Bs. Let t = max(s, n+ 1) and set Kn+1 := B1 ∪ ... ∪Bt.

(a) n+ 1 ≤ t⇒ Bn+1 ⊂ Kn+1

(b) Kn ⊂ B1 ∪ ... ∪Bs ⊂ B1 ∪ ... ∪Bt = Ko
n+1

so we have M = ∪i∈NBi ⊂ ∪i∈NKi ⊂M , as we wanted.

(c) Let U be an open cover of M . Let K1,K2, ... be as in (b). Then, define Cj := Kj+1 −Ko
j , which is

compact, and let Wj := Kj+2 −Kj−1, which is open, and note that Cj ⊂ Wj . Let B be any basis for
the topology on M . We define a cover Cj for Cj by setting Cj := {B ∈ B|∃x ∈ Cj ,∃U ∈ U : x ∈ B ⊂
I ∩Wj}. Then Cj is a cover of Cj since U covers M and since x ∈ Wj and B is a basis of M . Since
Cj is compact, there exists a finite subcover Fj ⊂ Cj which still covers Cj . Now set V = ∪i∈NFi.
Note that V is a refinement of U (by the definition of Cj). If x ∈ M , this implies there exists j such
that x ∈ Kj+1 − Kj ⊂ Kj+1 − Ko

j = Cj . This implies there exists W ∈ Fj : x ∈ W ⊂ Wj . Now,
Wj ∩W` = ∅ for all ` 6= j− 2, ..., j+ 2. Thus, we intersect non-trivially only finitely many of the open
sets V ⊂ F` ⊂ V. Since each Fk is finite, Wj intersects finitely many V ∈ V.

§Recall that Z is called second countable if and only if there exists a countable base of its topology, i.e., there exists a countable
set B = {Bi|Bi ⊂open Z, i ∈ N} such that for all open sets U ⊂ Z, there exists N ∈ N such that U = ∪i∈NBi. The main example
of a second-countable space is Z = Rn, with basis B = { open balls of rational radius and center in Qn}.
¶ For all V ∈ V, there exists U ∈ U such that V ⊂ U
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4
Maps between Manifolds

4.1 Ck maps

Definition. Let M and N be two Ck-manifolds (not necessarily of the same dimension). A map F : M →
N is called of class Ck if and only if for all x ∈ M there exist charts ϕ : U → ϕ(U) of M , where x ∈ U ,
and a chart ψ : V → ψ(V ) of N where F (x) ∈ V and F (U) ⊂ V , and ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V ) is a Ck
map.

F

M
N

V
xU

ψ ◦ F ◦ ϕ−1

ϕ(U) ψ(V )

ϕ
ψ

F (U)F (U)

We write this as, F ∈ Ck(M,N). F is a Ck diffeomorphism, denoted F ∈ Diffk(M,N), if F is
bijective and if F ∈ Ck(M,N) and F−1 ∈ Ck(M,M).

4.2 Properties of Ck maps

Lemma 13.

(a) If F ∈ Ck(M,N), then F is continuous.

(b) If F ∈ Ck(M,N), and ϕ : U → ϕ(U) and ψ : V → ψ(V ) are any charts on M and N respectively, then
ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ))→ ψ(V ) is of class Ck.
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Proof. (a) If W be an open subset of N . We need to show that F−1(W ) is an open subset of M . Let
x ∈ F−1(W ). Since F ∈ Ck(M,N), there exists ϕ : U → ϕ(U) and ψ : V → ψ(V ) with x ∈ U,F (x) ∈
V, F (U) ⊂ V where ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is a Ck map. Since ϕ and ψ are homeomorphisms,
this gives us that

F |U = ψ−1︸︷︷︸
continuous

◦
(
ψ ◦ F ◦ ϕ−1)︸ ︷︷ ︸

∈Ck

◦ ϕ︸︷︷︸
continuous

−−−−−→ V

is continuous. Since W is an open subset of N , there exists ψ̃ : Ṽ → ψ̃(Ṽ ) with F (x) ∈ Ṽ ⊂ W .
Then,

(F |U )−1(V ∩ Ṽ ) = ϕ−1︸︷︷︸
continuous

◦
(
ψ ◦ F ◦ ϕ−1)−1︸ ︷︷ ︸

∈Ck

◦ ψ(V ∩ Ṽ )︸ ︷︷ ︸
open, ψ & ψ̃
compatible

which implies that (F |U )−1(V ∩ Ṽ ) ⊂open F−1(W ) (recall that F (x) ∈ V ∩ Ṽ ), and as x is contained
in an open set which itself is contained in F−1(W ), it follows that F−1(W ) is open.

(b) Now, let ϕ : U → ϕ(U) and ψ : V → ψ(V ) be any charts of M and N , respectively. We need to show
the following composition is a Ck map:

ϕ(U ∩ F−1(V ))
ϕ−1

−−−−−→ U ∩ F−1(V )
F

−−−−−→ F (U) ∩ V
ψ

−−−−−→ ψ(F (U) ∩ V ) ⊂ ψ(V )

Let a ∈ ϕ(U ∩ F−1(V )), and let x = ϕ−1(a). Also let y = F (x) ∈ V . Since F ∈ Ck(M,N), there
exists ϕ̃ : Ũ → ϕ̃(Ũ), and ψ̃ : Ṽ → ψ̃(Ṽ ), such that

(ψ̃ ◦ F ◦ ϕ̃−1) : ϕ̃(Ũ)→ ψ̃(Ṽ ) ∈ Ck,

where x ∈ Ũ , F (x) ∈ Ṽ , and F (Ũ) ⊂ Ṽ . Then,

ψ ◦ F ◦ ϕ−1 = (ψ ◦ ψ̃−1)︸ ︷︷ ︸
∈Ck

◦ (ψ̃ ◦ F ◦ ϕ̃−1)︸ ︷︷ ︸
∈Ck

◦ (ϕ̃ ◦ ϕ−1)︸ ︷︷ ︸
∈Ck

and so, ψ ◦ F ◦ ϕ−1|ϕ(U∩Ũ∩F−1(V )) ∈ Ck. As this works for an arbitrary a ∈ ϕ(U ∩ F−1(V )), we can
change the restricted domain instead to U ∩ F−1(V ), implying that ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ))→
ψ(V ) is of class Ck.

4.3 Examples

(a) Let M be a manifold. Then, idM : M →M ∈ Ck(M,M).

(b) Let M,N be manifolds, and let n ∈ N . Let F : M → N denote the constant map F (x) = n for all
x ∈M , then F ∈ Ck(M,N).

(c) Let M be a manifold, ϕ : U → ϕ(U) be a chart of M . Then, U has an induced manifold structure
(see 3.6(b)) and ϕ(U), an open subset of Rd, is a manifold (ϕ(U), {idϕ(U)}). Then, ϕ : U → ϕ(U) is
a Ck-diffeomorphism. In proving this note that

id ◦ ϕ ◦ ϕ−1 = idϕ(U), ϕ ◦ ϕ−1 ◦ id = idϕ(U)

(d) Recall the manifolds (R, {idR) and (R, {ϕ : x → x3}). The map F : (R, {id}) → (R, ϕ), F (x) = x1/3

is a smooth (C∞) map. ∗ This is actually almost trivially easy to see, we’re in the situation where we
have

∗In fact, if M = R, then any smooth structure on R is diffeomorphism to (R, {idR}). More generally, any smooth structure on
Rn with n 6= 4 is smoothly diffeomorphic to (Rn, {idRn ). In contrast, R4 has uncountably many smooth structures that are not
diffeomorphic, called fake R4 ’s. Milno-Kerane showed that S7 has exactly 28 non-diffeomorphic smooth structures.
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(R, idR) (R, ϕ)

R R

idR

x 7→x
1
3

x 7→x3

(idR)−1◦(x
1
3 )◦(x3)=idR∈C∞

(e) If F ∈ Ck(M,N) and G ∈ Ck(N,P ), then G ◦ F ∈ Ck(M,P ). This follows from the fact that the
composition of Ck maps is again, Ck.

(f) If F ∈ Ck(M,N) and F̃ ∈ Ck(M̃, Ñ), then F × F̃ ∈ CK(M × M̃,N × Ñ). This follows from the fact
that the product of Ck maps is again, Ck.

(g) Let M,N be manifolds. Then, projM : M ×N →M and projN : M ×N → N are Ck maps.

Proof. Let (x, y) ∈ M × N . Choose ϕ : U → ϕ(U), ψ : V → ψ(V ) such that x ∈ U, y ∈ V . Then,
projM (U × V ) ⊂ U , and ϕ ◦ projM ◦ (ϕ× ψ)−1 = projϕ(U)︸ ︷︷ ︸

∈Ck

: ϕ(U)× ψ(V )→ ϕ(U).

(h) Let F : M → N × P , then F ∈ Ck(M,N × P ) if and only if projN ◦ F ∈ Ck(M,N) and projP ◦ F ∈
Ck(M,P ).

(i) Let M be a submanifold of Rn, and let F : M → R where (R, {idR}) has the canonical manifold
structure. Then, the definitions for Ck(M,R) from definition 2.9 and 4.1 coincide †.

Proof. (2.9 ⇒ 4.1) Take F : M → R, x ∈ M with the conditions conditions from definition 2.9,
namely that there exists a map F̃ : U → R ∈ Ck with F̃ |U∩M = F |U∩M . Since M is a submanifold
of Rn, there exist Ũ , Ṽ which are open subsets of Rn, and ϕ̃ : Ũ → Ṽ is a Ck diffeomorphism. We
have that x ∈ Ũ and ϕ̃(M ∩ Ũ) = Ṽ ∩ (Rd × {0}). By 3.4(a)‡, ϕ|Ũ∩M is a chart of M . Then, with
ψ : R→ R, ψ = idR, we have

idR ◦ F ◦ ϕ−1 = F̃ ◦ ϕ̃−1︸ ︷︷ ︸
:ϕ(Ũ∩U)→R∈Ck

∣∣∣
ϕ̃(U ∩ Ũ ∩M)︸ ︷︷ ︸

⊂openRd

∈ Ck

(4.1⇒ 2.9) Given definition 4.1, we have that ϕ : U → ϕ(U) (where of course, U ⊂M,ϕ(U) ⊂ Rd),
is a chart such that

idR ◦ F ◦ ϕ−1 ∈ Ck

Since M is a submanifold of Rn, there exists ϕ̃ : Ũ → Ṽ ∈ Ck-diffeo (by 2.4(a)§) with x ∈ Ũ , ϕ̃(M ∩
Ũ) = Ṽ ∩ {Rd × {0}}. Since ϕ̃|Ũ∩M is also a chart of M as a manifold, we know that

ϕ ◦ ϕ̃−1|ϕ̃(Ũ∩U∩M)

is a Ck map. Let W be an open subset of Rn−d, ˜̃V an open subset of Rd such that ˜̃V ×W ⊂ ϕ̃(Ũ ∩U).
Note that ρ : ˜̃V ×W → ϕ(U) given by ρ(x,w) = ϕ ◦ ϕ−1(x, 0) ∈ Ck. Take ϕ̃−1( ˜̃V ×W ) ⊂open Rn,
then define

F̃ : ϕ̃−1( ˜̃V ×W )→ R
†Definition 2.9: Let M be a Ck-submanifold of Rn. Then, a function f : M → R is of class Ck if, for all x ∈M , there exists an

open set U ⊂ Rn where x ∈ U such that there also exists f̃ : U → R ∈ Ck such that f̃ |U∩M = f |U∩M .
‡Every d-dimensional submanifold of Rn is also a manifold in the sense of definition 3.1, because we can take the atlas A =

{ϕ′i : U ′i → V ′i } as defined in Lemma 2.6.
§Definition [of a submanifold] 2.4(a): For all x ∈ M , there exist open subsets U, V in Rn with x ∈ U and there exists a map

ϕ : U → V such that ϕ is a Ck-diffeomorphism, and ϕ(M ∩ U) = V ∩ (Rd × {(0, ..., 0)︸ ︷︷ ︸
n−d

}).
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CHAPTER 4. MAPS BETWEEN MANIFOLDS

by
F̃ = (F ◦ ϕ−1)︸ ︷︷ ︸

∈Ck

◦ ρ︸︷︷︸
∈Ck

◦ ϕ̃︸︷︷︸
∈Ck

|
ϕ̃−1( ˜̃V×W ) ∈ C

k

and
F̃ |

M∩ϕ̃−1( ˜̃V×W ) = F ◦ ϕ−1 ◦ (ϕ ◦ ϕ̃−1)|
M∩ϕ̃−1( ˜̃V×W ) = F |

M∩ϕ̃−1( ˜̃V×W )

4.4 Partitions of Unity

Lemma 14. Let 0 < r < s < ∞ and let x0 ∈ Rn. Then, there exists a smooth function f : Rn → R such
that

1. 0 ≤ f ≤ 1

2. f |Br(x0) = 1

3. F |R−Bs(x0) = 0

We call f a bump function.

Proof. We proceed by completing 4 steps:

Step 1: Let g : R→ R,

g :=
{
e−

1
x , x > 0

0, x ≤ 0

We claim that g is a smooth map. Clearly, g is smooth for all x > 0, and x < 0. It only remains
to be shown that g is smooth at x = 0. First, we have to show (inductively) for x > 0 that the kth

derivative of g is

g(k)(x) = pk(x) · e
− 1
x

x2k

where pk(x) is a polynomial of degree ≤ k (this is left as an exercise). We want to check that
d
dxg

(k)(0) exists and is equal to 0; we want

limh→0
g(k)(0 + h)− 0

h

?= 0

But we have that

lim
h→0+

p(k)(h)e− 1
hh2k − 0
h

= lim
h→0+

pk(h) e
− 1
h

h2k+1 = ¶pk(0) · lim
h→0+

e−
1
h

h2k+1 = 0

Which implies that g ∈ C∞(R,R).

Step 2: [This step covers the next case, of slightly higher complexity - where now n = 1, x0 = 0, and
f : R→ R such that 0 ≤ f ≤ 1, f |Br(0) = 1, F |Rn−Bs(0) = 0.] Let

f(x) := g(s− x)
g(s− x) + g(x− r)

¶By L’Hopital’s Rule
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Since g(x) ≥ 0 (since either s−x > x or x− r > 0), this implies that g(s−x) + g(x− r) ≥ g(s−x),
and so 1 ≥ f(x) after dividing by the left hand side of the previous equation. As g(x) ≥ 0, this tells
us that f(x) ≥ 0. For x− r ≤ 0, this implies thatf(x) = g(s−x)

g(s−x)+0 = 1, and for x ≥ s, we have that

s− x ≤ 0⇒ f(x) = 0
0 + g(x− r) = 0

As such, f ∈ C∞(R,R). As a remark, note that our discussion above works for x ≥ 0, to make this
work for all x, simply let f(x) = f(−x) for x < 0.

Step 3: [Now, we let n ≥ 1, x0 = 0] Let f be as in Step 2. Then, set f2 : Rn → R, f2(x) := f(|x|). It follows
that f2 has the required properties, f2 is smooth since |.| is smooth at Rn − {0}, and f2(x) = 1 in a
neighborhood of 0.

Step 4: [Now we move up to the general case, for n ≥ 1 and x0 ∈ Rn] Let f2 : Rn → R be as in Step 3.
Then, f : Rn → R, f(x) = f2(x0 − x) has the required properties.

4.5 Support of a Manifold, Partitions of Unity

Definition. Let M be a manifold.

(a) Let f : M → R. The set supp(f) := {x ∈M |f(x) 6= 0} is called the support of f . By definition, the
support of f is closed.

(b) A partition of unity on M is a collection of functions {χi}i∈I:, χi ∈ C∞(M,R) such that

(a) 0 ≤ χi(x) ≤ 1,∀i ∈ I, ∀x ∈M
(b) supp(χi) is locally finite for all i ∈ I (this means that for all x ∈M , there exists an open subset

U ⊂M with x ∈ U such that supp(χi) ∩ U 6= ∅ for only finitely many χi).

(c)
∑
i∈I χi(x) = 1, for all x ∈ M (this sum makes sense because it is actually a finite sum by the

condition above).

(c) Let U = {Uj}j∈I be an open cover of M and let {χi}i∈I be a partition of unity. Then, we call the
partition subordinate to U if for all i ∈ I there exists j ∈ J such that supp(χi) ⊂ Uj .

4.6 Subordinate Partitions of Unity

Proposition 15. Let U = {Uj}j∈I be an open cover of M . Then, there exists a partition of unity {χi}i∈I
subordinate to U .

Proof. Let K1,K2, ... be an exhaustion of M by compact sets as in proposition 3.7. This means that Ki

is compact, Ki ⊂ M , Ki ⊂ Ko
i+1, and M = ∪iKi. Let x ∈ M , let ix = max{i|x ∈ M − Ki}, and

choose jx ∈ J such that x ∈ Ujx . Then, x ∈ UjX ∩ (Ko
i2
− Kix) ⊂open M . Let ϕx : Vx → Rd be a

chart such that Vx ⊂ Ujx ∩ (Ko
i2
− Kix). Since ϕx(Vx) ⊂open Rd, this implies the existence of s > 0

such that Bs(ϕx(x)) ⊂ ϕ(Vx). Let f : Rd → R such that 0 ≤ f ≤ 1, f |Br(ϕx(x)) = 1 for r = s
2 , and

f |Rd−Bs(ϕx(x)) = 0. Then define ψx : M → R as,

ψx(y) :=
{

f ◦ ϕx(y), y ∈ Vx
0, else

Then ψx ∈ C∞(M,R), and ψx restricted to some neighborhood Wx is identically equal to 1, with

x ∈Wx ⊂ supp(ψx) ⊂ ϕ−1
x (Bs(ϕx(x))) ⊂ Vx ⊂ Ujx ∩ (Ko

i2 −Kix) (4.6.1)
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Since (Ki+1 −Ko
i ) is compact, we can cover it by finitely many Wx(i,1), ...,Wx(i,ri). Define

W := ∪∞i=1{Wx(i,1), ...,Wx(i,ri)}

Note that W is an open cover of M , and W is countable, so relabel these as W = {Wx1 ,Wx2 , ...}. Let
ψ : M → R be given by

ψ(y) :=
∞∑
i=1

ψxi(y)

Note that ψ is well-defined, since each x ∈ M lies in some x ∈ Ko
i+2 −Ki, and supp(χxi) intersects only

finitely many of theseKo
i+2−Ki by 4.6.1. Furthermore, x ∈Wxi0

for some i0, so that ψi0(x) = 1, implying

that ψ(x) ≥ 1. Then, we define the partition of unity χi : M → R by χi(y) = ψxi (y)
ψ(y) ∈ C

∞(M,R), and
0 ≤ χj ≤ 1, supp(χx) = supp(ψxi) is locally finite, and

∞∑
i=1

χx(x) =
∞∑
i=1

ψxi(x)/ψ(x) =
∑∞
i=1 ψxi(x)
ψ(x) = ψ(x)

ψ(x) = 1∀x ∈M

4.7 Smooth bump functions on manifolds

Corollary 16. Let M be a manifold, let x ∈ M . Then let A ⊂ M be a closed subset, U ⊂ M be open such
that x ∈ A ⊂ U ⊂M . Then, there exists a smooth bump function f ∈ C∞(M,R) such that

1. 0 ≤ f ≤ 1

2. supp(f) ⊂ U

3. f |A = 1

Proof. Let U = {U,M−A}. Note that U is an open cover of M , which implies that there exists a partition
of unity subordinate to U : {χIi , χ

M−A
j } such that supp(χUi ) ⊂ U , supp(χM−Aj ) ⊂ M − A. Let f : M → R

be the following smooth function,

f(x) :=
∑
i

χUi (x) ∈ C∞(M,R)

This function satisfies,

1. 0 ≤ f ≤ 1

2. supp(χUi ) ⊂ U ⇒ supp(f) ⊂ U

3. f |A = 1−
∑
j

χM−Jj︸ ︷︷ ︸
0 on A

= 1, since supp(χjkM−A) ⊂M −A.
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5
The Tangent Space

This chapter is modeled after chapter 3 in Lee’s book. We now restrict to C∞ manifolds.

5.1 Definition

Definition. Let M be a C∞ manifold, and denote (as usual), by C∞(M,R) the set of smooth functions
from M to R. Let a ∈M . Then we define the tangent space of M at a to be the following:

TaM := {v : C∞(M,R)→ R|(1) v is linear, (2) v is a derivation}

Explicitly, for v ∈ TaM , our conditions are:

1. For all r, s ∈ R, for all f, g ∈ C∞(M,R), v(r · f + s · g) = r · v(f) + s · v(g).

2. For all f, g ∈ C∞(M,R), we have that

va(fg) = va(f) · g(a) + f(a) · va(g)

Remark. TaM is a R-vector space, because we can define,

(rv)(f)a := r · v(f)⇒ rv ∈ TaM

which satisfies our two conditions above, and we have

(v + w)(f) := v(f) + w(f)⇒ v + w ∈ TaM

which also satisfies our two conditions, and finally satisfies the conditions for being an R-vector space.

5.2 Properties

Lemma 17. Let v ∈ TaM .

(a) If c : M → R is a constant function, c(x) = c for all x ∈M , then v(c) = 0.

(b) If f(a) = g(a) = 0, then
v(fg) = 0

(c) Let f, g ∈ C∞(M,R) such that there exists an open neighborhood U ⊂ M with a ∈ U such that
f |U = g|U , then v(f) = v(g).
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Proof. (a) First, if c = 1 : M → R, x 7→ 1, then

v(1) = v(1 · 1) = v(1) · 1 + 1 · v(1) = 2v(1)⇒ v(1) = 0

(b) Similarly,
v(fg) = v(f)g(a) + f(a)v(g) = 0 + 0 = 0

(c) By Cor(4.7) with A := {a} ⊂closed M , A ⊂ U ⊂open M . Therefore, there exists a bump function
χ ∈ C∞(M,R) such that χ(a) = 1, and χ|M−U ≡ 0. Note that f(a) − g(a) = 0, and 1 − χ(a) = 0.
Therefore, by part (b),

v(0) = 0 = v((f − g)(1− χ)) = v((f − g)− (f − g)χ),

and since f − g = 0 on U , and χ = 0 on M − U , the term (f − g) · χ is identically 0 on all of M , so

0 = v(f − g) = v(f)− v(g)

and therefore, v(f) = v(g).

5.3 Differentials and Push forwards.

Definition. Let (F : M → N) ∈ C∞(M,N).

(a) There is an induced map F ∗ : C∞(N,R)→ C∞(M,R) given by

F ∗(f) := f ◦ F

where f ∈ C∞(N,R). The picture of this is in Lee’s book, chapter 3, within the first few pages.

(b) For a ∈ M , there is an induced map dFa : TaM → TF (a)N , which maps a linear derivation v to
dFa(v), where for f ∈ C∞(N,R), v ∈ TaM ,

(dFa(v)︸ ︷︷ ︸
∈TF (a)N

)(f) := v(F ∗(f)) = v(f ◦ F )

(check for yourself that this makes sense, v is a map from C∞(M,R) → R, and since f ∈ C∞(N,R)
and F ∈ C∞(M,N), f ◦ F is in C∞(M,R), and we now define a new map dFa(v) : C∞(N,R) by
taking something in C∞(N,R), a smooth map between M and N , and a map v : C∞(M,R) → R to
get something that maps C∞(N,R)→ R ).

M N

R

F

f◦F f

C∞(M,R) C∞(N,R)

R

va

F∗

dFa(v)

We also use the notation dFa = dF = F∗, and it is called the differential of F at a. Note that dFa(v)
is indeed in TF (a)N , because for r, s ∈ R and f, g ∈ C∞(N,R),

(1)
dFa(v)(rf + sg) = v((rf + sg) ◦ F ) = v(r · (f ◦ F ) + s · (g ◦ F ))

= rv(f ◦ F ) + sv(g ◦ F ) = rdFa(v)(f) + sdFa(v)(g)

(2)

dFa(v)(f · g) = v((f · g) ◦ F ) = v((f ◦ F )(g ◦ F )) = v(f ◦ F )(g ◦ F )(a) + (f ◦ F )(a) · v(g ◦ F )

= dFa(v)(f) · g(F (a)) + f(F (a)) · dFa(v)(g)
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5.4 Properties of F∗
Let F ∈ C∞(M,N), G ∈ C∞(N,P ).

(a) dFa : TaM → TF (a)N is linear.

(b) d(G ◦ F )a = dGF (a) ◦ dFa : TaM → TF (a)N → TG(F (a))P .

(c) d(idM ) = idTaM for all manifolds M and a ∈M .

(d) If F ∈ Diff∞(M,N) ∗, then dFa is invertible, and

(dFa)−1 = d(F−1)F (a) : TF (a)N → TaM.

(e) If there exists a ∈ U , which is an open subset of M , and F (a) ∈ V ⊂open N such that F |U : U → V
is a C∞ diffeomorphism, then dFa : TaM → TF (a)N is an isomorphism. †

Proof. We proceed as follows:

(a) We have that,

dFa(rv + sw)(f) = (rv + sw)(f ◦ F ) = rv(f ◦ F ) + sw(f ◦ F ) = rdFa(v)(f) + s · dFa(w)(f),

and so for all f ∈ C∞(N,R), dFa(rv + sw) = rdFa(v) + sdFa(w).

(b) We apply, for v ∈ TaM and f ∈ C∞(P,R),

(dGF (a) ◦ dFa)(v)(f) = dFa(v)(f ◦G) = v(f ◦G ◦ F ) = d(G ◦ F )a(v)(f)

which gives us (b).

(c) We have,
d ida(v)(f) = v(f ◦ id) = v(f)

and so, v ∈ TaM 7→ v, which is (c).

(d) Because F is a diffeomorphism, F ◦ F−1 = id, using (c) we have that

dFa ◦ dF−1
F (a) = d(F ◦ F−1)F (a) = d idF (a) = idTF (a)N .

and similarly,
dF−1

F (a) ◦ dFa = idTaM

and so therefore, this shows that (dFa)−1 = dF−1
F (a).

(e) First note that we only need to show that the inclusions iU : U ↪→ M and iV : V ↪→ N are maps
whose differentials diU and diV are isomorphisms, because

F ◦ iU = iV ◦ F |U : U → N

This gives us that dF ◦ diU = diV ◦ dF |U , which would give us that

dF = diV ◦ dF |U ◦ (diU )−1

is an isomorphism, since F |U is an isomorphism from (d). We now show that for U ⊂open M ,
iU : U →M gives an isomorphism diU : TaU → TaM . We will show that diU is (1) injective, and (2)
surjective.

∗Recall that this means that F is a bijection, F ∈ C∞(M,N), and F−1 ∈ C∞(N,M)
†As a good exercise, consider F : R → S1 in the normal covering space way, and apply this property. Which are the neighbor-

hoods on which this works?
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Lemma 18. Let f ∈ C∞(U,R), and a ∈ U . Then, there exists a function f̃ : C∞(M,R), and there exists
V ⊂open U such that a ∈ V and f |V = f̃ |V .

We’ll use this lemma to finish the proof of our property, then actually prove the lemma. We have to
show (1) injectivity, and (2) surjectivity:

(1) Injectivity: let diU (v) = 0 for some v ∈ TaU , we would like to show that v = 0. By our
assumption, diU (v)(f0) = 0 for all f0 ∈ C∞(M,R) - but we still need to show that for any
f ∈ C∞(U,R), v(f) = 0. Using our lemma, there exists f̃ and V such that f̃ |V = f |V , and then
v(f) = v(f̃ |U ) because f, f̃ coincide on V (see 5.2(c)‡). Finishing this line of thought,

v(f) = v(f̃ |U ) = diU (v)(f̃) = 0

and it follows that v = 0, as v(f) = 0 for all f ∈ C∞(U,R).
(2) Surjectivity: let w ∈ TaM . We need to show that there exists v ∈ TaU such that diU (v) = w.

We define this v ∈ TaU as follows, by setting v(f) := w(f̃) where f̃ ∈ C∞(M,R) comes from
our lemma above. Note that v is well defined, since by 5.2(c), it is independent of of the chosen
extension f̃ . Also, v satisfies 5.1 (1) and (2), because w does. Finally:

diU (v)(f) = v(f ◦ iU ) = w(f̃ ◦ iU ) = w(f),

since f and f̃ |U coincide on some neighborhood, V , and 5.2(c) assures us that if f and f̃ coincide
on a neighborhood, then w(f) = w(f̃).

Now, we prove the lemma.

Proof. Let f ∈ C∞(U,R), and let a ∈M . We need an f̃ ∈ C∞(M,R) and a V ⊂open U such that

f̃ |V = f |V

Let ϕ : W → Rd be a chart with a ∈ W . Let Br be a ball centered at ϕ(a) such that Br ⊂ ϕ(W ) of
radius r. Let Br/2 be the ball of radius r

2 so that Br/2 ⊂ Br. By lemma 4.4, there exists a bump function
g : Rd → R such that g|Br/2

= 1, and g|Rd−Br = 0. Let V := ϕ−1(Br/2), and define f̃ : M → R by

f̃ =
{

f(x) · g(ϕ(x)) x ∈W
0 else

Then,
f̃ |V = f̃ |ϕ−1(Br/2) = f |V · g ◦ ϕ|ϕ−1(Br/2)︸ ︷︷ ︸

=1

= f |V .

We now only need to show that f̃ ∈ C∞(M,R).

Case 1: If x ∈W , then using the chart ϕ : W → ϕ(W ) shows that

idR ◦ f̃ ◦ ϕ−1|ϕ(W ) = f(ϕ−1|ϕ(W )︸ ︷︷ ︸
∈C∞, 4.2(b)

) · g ◦ ϕ ◦ ϕ−1︸ ︷︷ ︸
∈C∞

|ϕ(W )

(as a remark, I think you have to say something a little more about W [namely, that U ⊂ W ], and
ϕ has to be a chart of M . Really it’s not a big deal, and I’m sure everything works out just fine, but
there was some brushing of details under the rug here).

Case 2: If x /∈ W , then x ∈ M − ϕ−1(Br) ⊂open M , and f̃ = 0 on M − ϕ−1(Br). Thus for any chart ψ,
idR ◦ f̃ ◦ ψ−1 = 0 ∈ C∞.

‡Let v ∈ TaM, f, g ∈ C∞(M,R) such that there exists an open neighborhood U ⊂ M with a ∈ U such that f |U = g|U , then
v(f) = v(g).
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5.5 An isomorphism between Rn and TaRn

Proposition 19. Let M = Rn, a ∈ Rn. Define D : Rn → TaRn, by

D : v 7→ Dv

where
Dv(f) := d

dt
f(a+ t · v)

∣∣∣
t=0

for all f ∈ C∞(Rn,R). Then, D is a well-defined linear isomorphism between Rn and TaRn. In particular,
when v is the canonical unit basis vector ei, we write

∂

∂xi

∣∣∣
a

:= ∂

∂xi
:= Dei

∣∣∣
a

:= Dei ∈ TaRn

It is,
∂

∂xi

∣∣∣
a
(f) = Dei(f) = d

dt
f(a+ t · ei)

∣∣∣
t=0

= ∂f

∂xi
(a)

where the rightmost expression is the usual partial derivative in Rn

Proof. We prove this proposition in a number of steps, whose combination imply our proposition.

• D is well-defined: we want to show that things land where we think they land, i.e., that Dv is
actually in TaRn. We can show this by proving that Dv is (1) linear, and (2) a derivation.

1. Simply,

Dv(rf + sg) = d

dt
(rf + sg)(a+ tv)|t=0,

the linearity of the directional derivative in rf + sg implies (1).

2. From the definition of Dv and properties of the directional derivative,

Dv(fg) = d

dt
(fg)(a+ tv)|t=0

= d

dt
f(a+ tv)

∣∣
t=0 · g(a) + f(a) · d

dt
g(a+ tv)|t=0

= Dvf · g(a) + f(a)Dv(g),

and we have (2).

• D is linear: We have that, D : Rn → TaRn, and for f ∈ C∞(Rn,R),

Drv+sw(f) = d

dt
f(a+ t(rv + sw))|t=0 = 〈rv + sw,Df(a)〉§

and 〈, 〉 is linear in each component, so D must be linear.

• D is injective: let Dv = 0, i.e., Dv(f) = 0 for all f ∈ C∞(Rn,R). In the hope that we can show
that v = 0, we write v ∈ Rn in terms of its components and the unit basis vectors; v =

∑n
j=1 v

jej ,
and let f : Rn → R which maps, f(x1, ..., xn) = xi ∈ C∞(Rn,R). Then, since Dv(f) = 〈v,Df〉,

0 = Dv(f) =
∑
j

vjDej (f) =
∑
j

vj
∂f

∂xj
(a) =

∑
j

vj
∂xi

∂xj
(a) =

∑
j

vjδi,j = vi

where δi,j is the usual Kronecker-delta function. Hence, v =
∑
j v

jej = 0, and we have that D is
injective.

§this follows from a very early definition from chapter 1; the definition of the directional derivative.
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• D is surjective: let w ∈ TaRn. We want v ∈ Rn such that Dv = w. Let f ∈ C∞(Rn,R), and expand
f in terms of its Taylor series:

f(x) = f(a) +
n∑
j=1

∂f

∂xj
(a)(xj − aj) +

∑
i,j

Ri,j(xi − ai)(xj − aj)

for some remainder function Ri,j . Note that w(f(a)) = 0, since f(a) is constant, and we have
5.2(a). Note that x 7→ Ri,j(xi − ai), and x 7→ (xj − aj) are 0 at x = 0. Therefore, by 5.2(b), we
have the product of two functions whose value at a is 0, so

w((Ri,j(x)(xi − ai))(xj − aj)) = 0

this implies that

w(f) =
n∑
j=1

∂f

∂xj
(a)w(xj − aj) =

n∑
j=1

∂f

∂xj
(a)w(xj)

where the second equality comes from the linearity of w and the fact that w(aj) = 0. Set w(xj) :=
vj . Then,

w(f) =
n∑
j=1

vjDej (f) = D∑n

j=1
vjej

(f)

and this implies that for all f ,
w = D∑n

j=1
vjej

and we’ve constructed an element v ∈ Rn such that Dv = w.

5.6 Some Important Formulas

Corollary 20. Let M be a C∞-manifold (smooth manifold) of dimension d, and let a ∈M .

(a) If ϕ : U → Rd is a chart of M , a ∈ U , then ϕ : U → ϕ(U) is a diffeomorphism, and so

dϕa : TaM → Tϕ(a)Rd¶

is an isomorphism of R-vector spaces by 5.4(e). In particular, TaM is a d-dimensional R-vector space.
We define (for a ∈M):

∂

∂xi

∣∣∣
a

:= dϕ−1
ϕ(a)

(
∂

∂xi

∣∣∣
ϕ(a)

)
so that { ∂

∂xi

∣∣∣
a
} gives a basis of TaM , i.e. every v ∈ TaM can be written as

v =
∑
j

vj · ∂

∂xj

∣∣∣
a

For f ∈ C∞(M,R):

∂

∂xi

∣∣∣
a
(f) = dϕ−1

ϕ(a)

(
∂

∂xi

∣∣∣
ϕ(a)

)
(f) = ∂

∂xi

∣∣∣
ϕ(a)

(f ◦ ϕ−1) = ∂(f ◦ ϕ−1)
∂xi

(ϕ(a)) (5.6.1)

¶If you want to get technical, this is really

TaM ∼= TaU −−−−−−→ Tϕ(a)ϕ(U) ∼= Tϕ(a)Rd
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(b) Let ϕ : U → Rd, ψ : V → Rd be two charts with a ∈ U , a ∈ V . We have the basis of TaM given by
{ ∂
∂xi

∣∣∣
a
} from ϕ, and { ∂

∂x̃i

∣∣∣
a
} coming from ψ. Note that for f : ψ(V )→ R,

d(ψ ◦ ϕ−1)
(

∂

∂xi

∣∣∣
ϕ(a)

)
(f) = ∂

∂xi

∣∣∣
ϕ(a)

(f ◦ ψ ◦ ϕ−1) = ∂(f ◦ ψ ◦ ϕ−1)
∂xi

(ϕ(a))

by the chain rule,

=
d∑
j=1

∂f

∂x̃j
(ψ(a)) · ∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(a))

⇒ d(ψ ◦ ϕ−1)
(

∂

∂xi

∣∣∣
ϕ(a)

)
=

d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
ψ(a)

this implies

∂

∂xi

∣∣∣
a

= dϕ−1
(

∂

∂xi

∣∣∣
ϕ(a)

)
= dψ−1 ◦ d(ψ ◦ ϕ−1)

(
∂

∂xi

∣∣∣
ϕ(a)

)

= dψ−1

 d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
ψ(a)

 =
d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xj
(ϕ(a)) · dψ−1

(
∂

∂x̃j

∣∣∣
ψ(a)

)

=
d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
a

in summary, we have the change of variables formula,

∂

∂xi

∣∣∣
a

=
d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
a

(5.6.2)

(c) If F ∈ C∞(M,N) where M is a d-dimensional manifold and N is a k-dimensional manifold, then let
ϕ : M → Rd be a chart of M with a ∈ U , and let ψ : V → Rk be a chart of N , where F (a) ∈ V . As in
(b), we have that

d(ψ ◦ F ◦ ϕ−1)ϕ(a)

(
∂

∂xi

∣∣∣
ϕ(a)

)
=

k∑
j=1

∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂xj

∣∣∣
ψ(F (a))

which will be left as an exercise (it’s really the same calculation). Therefore, we get equation (3),

dF

(
∂

∂xi

∣∣∣
a

)
= dψ−1 ◦ dψ ◦ dF

(
dϕ−1

(
∂

∂xi

∣∣∣
ϕ(a)

))
= dψ−1 ◦ d(ψ ◦ F ◦ ϕ−1)

(
∂

∂xi

∣∣∣
ϕ(a)

)

=
k∑
j=1

∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a)) · dψ−1

(
∂

∂x̃j

∣∣∣
ψ(F (a))

)
=

k∑
j=1

∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
F (a)

in summary,

dF

(
∂

∂xi

∣∣∣
a

)
=

k∑
j=1

∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a)) · ∂

∂x̃j

∣∣∣
F (a)

(5.6.3)
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5.7 Smooth Curves

(a) Let I = (a, b) ⊂ R be an open interval, and let M be a manifold. Then, a smooth curve α on M is
an element α ∈ C∞(I,M). For t0 ∈ I, we can use

d

dt

∣∣∣
t0
∈ Tt0I

(from 5.5 for n = 1) to define

α′(t0) = dα

(
d

dt

∣∣∣
t0

)
∈ Tα(t0)M

and we call α′(t0) the velocity of α at t0.

(1) For f ∈ C∞(M,R), we have

α′(t0)(f) = dα

(
d

dt

∣∣∣
t0

)
(f) = d

dt

∣∣∣
t0

(f ◦ α) = d(f ◦ α)
dt

(t0)

(2) For a smooth map F : M → N , we have

dF (α′(t0)) = dF ◦ dα
(
d

dt

∣∣∣
t=0

)
= d(F ◦ α)

(
d

dt

∣∣∣
t=0

)
= (F ◦ α)′(t0)

where F ◦ α ∈ C∞(I,N).

(b) In fact, we claim that for all v ∈ TaM , there exists some ε > 0 such that there exists some α ∈
C∞((−ε, ε),M) such that α(0) = a, and α′(0) = v.

Proof. Let ϕ : U → Rd be a chart of M , and a ∈ U . Let v ∈ TaM , and write v =
∑d
j=1 v

j ∂
∂xj

∣∣∣
a

coming from ϕ. Now define ṽ :=
∑d
j=1 v

jej ∈ Rd, and let ε > 0 such that for all t ∈ (−ε, ε), we
have that ϕ(a) + t · ṽ ∈ ϕ(U). Define α : (−ε, ε) → M by α(t) := ϕ−1(ϕ(a) + t · ṽ) ∈ U . Clearly,
α(0) = ϕ−1(ϕ(a)) = a and α ∈ C∞((−ε, ε),M). Note, for f ∈ C∞(M,R),

α′(0)(f) = d(f ◦ α)
dt

(0) = d(f ◦ ϕ−1(ϕ(a) + tṽ))
dt

(0)

= ‖
d∑
j=1

∂(f ◦ ϕ−1)
∂xj

(ϕ(a)) · d(ϕ(a) + tṽ)j

dt
(0)︸ ︷︷ ︸

ṽj=vj

= ∗∗
d∑
j=1

∂

∂xj

∣∣∣
a
(f) · vj = v(f)⇒ α′(0) = v

‖By the chain rule
∗∗By 5.6(1)
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6
Vector Fields

(This section is modeled after Lee, Chapter 3 and 8).

6.1 The Tangent Bundle

Definition. Let M be a d-dimensional manifold. We define the tangent bundle of M to be the space

TM := {(a, v)|a ∈M, v ∈ TaM}

Note that there is a natural projection map π : TM →M which maps (a, v) 7→ a.

Claim. We can give TM the structure of a 2d-dimensional manifold. For (ϕ : U → Rd) ∈ A, a chart of
M , denote by

ϕTM : π−1(U)→ R2d

the following map: let (a, v) ∈ π−1(U), i.e., v ∈ TaM . Then we can write (by 5.6(a))

v =
d∑
i=1

vi
∂

∂xi

∣∣∣
a

for some vi ∈ R. We define
ϕTM (a, v) :=

(
ϕ(a), v1, v2, ..., vd

)
∈ R2d

If we take A := {ϕTM |ϕ ∈ A}, this defines an atlas for TM , and π ∈ C∞(TM,M).

Proof. We show that A is an atlas in the same way that we’ve done in a number of times before.

• ϕTM is a chart, i.e., (1) ϕTM has to be injective, and (2) ϕTMU ′ is open, where U ′ ⊂ π−1(U).

1. Well, ϕTM has to be injective, because ϕ is injective, and ∂
∂xi is a basis of TaM - so the vi are

chosen uniquely with respect to v.

2. Is ϕTM (π−1(U)) ⊂open R2d? Well,

ϕTM (π−1(U)) = ϕ(U)× Rd ⊂open R2d

and since ϕ(U) is open in Rd, we have our assertion.

• We must show the compatibility of maps in the atlas: Let (ϕ : U → ϕ(U)), (ψ : V → ψ(V )) ∈ A.
There are 3 compatibility conditions to show,
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1. ϕTM (π−1(U) ∩ π−1(V )) needs to be open in Rd, but since

ϕTM (π−1(U) ∩ π−1(V )) = ϕTM (π−1(U ∩ V )) = ϕ(U ∩ V )× Rd

and as ϕ(U ∩ V ) is open in Rd, the term on the right is open in R2d. We do the same thing for
ψTM .

2. ψTM ◦ ϕ−1
TM : ϕ(U ∩ V )×Rd → ψ(U ∩ V )×Rd, needs to be a smooth diffeomorphism. Really

inspecting this map, (
ϕ (a) , v1, ..., vd

) ϕ−1
TM

−−−−−→

(
a,

d∑
i=1

vi
∂

∂xi

∣∣∣
a

)
using 5.6(2), the change of variable formula, and denoting the coordinate tangent vectors for
ψ as ∂

∂x̃k
,(

a,

d∑
i=1

vi
∂

∂xi

∣∣∣
a

)
=
(
a,

d∑
i=1

vj
d∑
k=1

∂
(
ψ ◦ ϕ−1)k
∂xi

· ∂

∂x̃k

∣∣∣
a

)
=
(
a,

d∑
i=1

(
d∑
k=1

vi
∂
(
ψ ◦ ϕ−1)k
∂xi

· ∂

∂x̃k

∣∣∣
a

))

Taking ψTM of this, we get

=
(
ψ (a) ,

d∑
i=1

vk
∂
(
ψ ◦ ϕ−1)1
∂xi

, ...,

d∑
i=1

vi
∂
(
ψ ◦ ϕ−1)d
∂xi

)

Note that

(v1, ..., vd) 7→
(
∂(ψ ◦ ϕ−1)k

∂xi

)
k,i

·

v
1

...
vd


is a smooth map, which implies that ψTM ◦ ϕ−1

TM is smooth, and(
ψTM ◦ ϕ−1

TM

)−1 = ϕ−1
TM ◦ ψTM

is smooth by a similar argument.

• A is an atlas:

1. We have that ⋃
ϕTM∈A

π−1(U) =
⋃
ϕ∈A

U × TM |U = TM

2. ϕTM , ψTM are compatible, which was just shown.

• TM is Hausdorff: Let (a, v) 6= (b, w) ∈ TM . If a 6= b, then there exist charts ψ : U → Rd
and ψ : V → Rd such that a ∈ U , b ∈ V , and U ∩ V = ∅, because M is Hausdorff. Then,
take ϕTM , ψTM , and we have satisfied our condition in this case. Considering the other case, if
(a, v) 6= (a,w) ∈ TaM , then v 6= w ∈ TaM ∼= Rd. Since Rd is Hausdorff, there exist neighborhoods
U and V of v and w such that U ∩ V is empty.

• TM is 2nd-countable: let B be a countable base for M . Define

BA = {B ∈ B|∃(ϕ : U → Rd) ∈ A such that B ⊂ U}

Then, the BA is a countable base for M . BA is a base because: for a ∈ V ⊂open M , there exists a
chart ϕ : U → Rd, a ∈ U ⊂ V . Since B is a base, there exists B ∈ B such that a ∈ B ⊂ U . But then,
B ∈ BA, and a ∈ B ⊂ U ⊂ V . Write BA = {B1, B2, ...}, and choose ϕi : Ui → Rd with Bi ⊂ Ui.
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Since (ϕi)TM are charts of TM , we know that π−1(Ui) is homeomorphic to ϕ(Ui)×Rd (by Lemma
3.5), and ϕ(Ui)× Rd is 2nd countable. Note that

TM =
∞⋃
i=1

π−1(Ui),

and recall that a countable union of 2nd countable space is again, 2nd countable.

• π : TM →M is smooth: for ϕ and ϕTM ,

ϕ ◦ π ◦ ϕ−1
TM = ϕ ◦ π

(
ϕ−1(x), ...

)
= ϕ(ϕ−1(x)) = x ∈ C∞

6.2 Induced (smooth) maps on tangent bundles

Corollary 21. If F ∈ C∞(M,N), then there is an induced map dF ∈ C∞(TM, TN) given by

dF (a, v) := (F (a), dFa(v))

where dFa : TaM → TF (a)M .

Proof. For a chart of M ϕ : U → Rd, and ψ : V → Rk, a chart of N , we have:

ψTM ◦ dF ◦ ϕ−1
TM (ϕ(a), v1, ..., vd) = ψTM ◦ dF

(
a,

d∑
i=1

vi
∂

∂xi

∣∣∣
a

)
= ψTM

(
F (a),

d∑
i=1

vidF

(
∂

∂xi

∣∣∣
a

))

by (5.6(3)),

= ψTM

(
F (a),

d∑
i=1

vi
k∑
`=1

∂(ψ ◦ F ◦ ϕ−1)`

∂xi
·
(

∂

∂x̃`

∣∣∣
F (a)

))

=
(
ψ(F (a)),

d∑
i=1

vi
∂(ψ ◦ F ◦ ϕ−1)1

∂xi
, ...,

d∑
i=1

vi
∂(ψ ◦ F ◦ ϕ−1)k

∂xi

)
where ψ(F (a)) is smooth, and

(
d∑
i=1

vi
∂(ψ ◦ F ◦ ϕ−1)1

∂xi
, ...,

d∑
i=1

vi
∂(ψ ◦ F ◦ ϕ−1)k

∂xi

)
=
(
∂(ψ ◦ F ◦ ϕ−1)`

∂xi

)
k,i

·

v
1

...
vd


which is smooth in (v1, ..., vd).

6.3 Recognizing tangent bundles as Cartesian products

Remark. Note that if M has a chart ϕ : M → Rd where the domain of ϕ is all of M , then π−1(M) = TM ,
so that

(ϕ−1 × idRd) ◦ ϕTM : TM → ϕ(M)× Rd →M × Rd

is a diffeomorphism, by 4.3(c). In this case, TM is just the Cartesian product M × Rd. In general, this
will not be the case, because we cannot identify different tangent spaces at different points of M with
each other without any extra information.
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6.4 Vector Fields

Definition. Let M be a manifold. A vector field X on M is a section

X : M → TM

of π. In other words, π ◦X(x) = x. We write X : a 7→ (a,Xa) where Xa ∈ TaM . For a subset S ⊂M , we
define a vector field on S to be a map X : S → TM such that π ◦X(x) = x.

Remark. If f ∈ C∞(U,R) where U ⊂open M , and X is a vector field defined on U , then X gives us a map
Xf : U → R given by Xf(a) := Xa(f); which makes sense, as X ∈ TaM and f ∈ C∞(U,R). Note that
the following properties are almost immediate, as Xa is a derivation:

1. X(rf + sg) = rXf + s ·Xg for r, s ∈ R, f, g ∈ C∞(U,R), and

2. X(f · g) = (Xf) · g + f · (Xg) as functions from U → R.

6.5 What is a smooth vector field?

Proposition 22. Let X be a vector field on a manifold M . Then, the following conditions are equivalent:

(a) X ∈ C∞(M,TM).

(b) For all f ∈ C∞(M,R), Xf ∈ C∞(M,R).

(c) For every open subset U ⊂M and for all f ∈ C∞(U,R), Xf ∈ C∞(U,R).

(d) For p ∈ U , and all charts ϕ : U → ϕ(U), if we write Xp as

Xp =
d∑
j=1

Xj ∂

∂xj

∣∣∣
p

= X1(p) · ∂

∂x1

∣∣∣
p

+ ...+Xd(p) · ∂

∂xd

∣∣∣
p
,

then Xj ∈ C∞(U,R), j = 1, ..., d, where we call the maps Xj : U → R the coordinate functions.

(e) For every point p ∈ M , there exists a chart ϕ : U → Rd with p ∈ U , the coordinate functions Xj : U →
Rd are smooth; Xj ∈ C∞(U,R) for j = 1, ..., d

If any of these conditions is satisfied, then X is called a smooth vector field.

Proof. We proceed as follows:
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a ⇐⇒ d ⇐⇒ e

First, we have for a chart ϕ : U → Rd of M ,

ϕTM ◦X ◦ ϕ−1 (x) = ϕTM

ϕ−1 (x) ,
d∑
j=1

Xj
(
ϕ−1 (x)

)
· ∂

∂xj

∣∣∣
ϕ−1(x)


= (x,X1(ϕ−1(x)), ..., Xd(ϕ−1(x)))

Now, X ∈ C∞(M,TM) if and only if it turns out that the map above is smooth. This map is smooth if
and only Xj ◦ ϕ−1 is smooth for all j = 1, ..., d, which is the case if and only if Xj ∈ C∞(U,R). This is
equivalent to (d) and (e) by definition 4.1 and lemma 4.2.

e⇒ c

Let f ∈ C∞(U,R), and let ϕ : V → ϕ(V ) be a chart (as in (e)) with p ∈ V ⊂ U . Then,

Xp =
d∑
j=1

Xj(p) · ∂

∂xj

∣∣∣
p
, and Xf(p) = Xp(f) =

d∑
j=1

Xj(p) · ∂

∂xj

∣∣∣
p
(f)

where by assuming (e), we have that Xj ∈ C∞(V,R).
Consider the map f : U → R induced by X (only, we restrict to the jth component), where

p 7→ ∂

∂xj

∣∣∣
p
(f).

This map satisfies

idR ◦
∂

∂xj

∣∣∣
p
(f) ◦ ϕ−1(x) = ∂(f ◦ ϕ−1)

∂xj
(p),

which is the usual partial derivative in Rd, by Cor. 5.6(1). The partial derivative is smooth, implying that
p 7→ ∂

∂xj |p(f) ∈ C∞(M,R). This implies our claim, where we now consider instead of the jth component,
the sum of all such components from j = 1...d, and take products in order to get Xf .

c⇒ b

Almost immediately, by setting U := M .

b⇒ e

Assume (b); that for all f ∈ C∞(M,R), that Xf ∈ C∞(M,R). Let p ∈ M , and chose a chart of M ,
ϕ : U → ϕ(U), with p ∈ U . Write X =

∑d
j=1X

j · ∂
∂xj |. Let f j ∈ C∞(U,R) given by f j(x) = (ϕ(x))j . By

lemma 18 in section 5.4, there exists a smooth extension f̃ j ∈ C∞(M,R) such that for p ∈ V ⊂open U , f j

and f̃ j agree; f̃ j |V = f j |V . Then, we claim that on V , that

Xf̃ j =
d∑
`=1

X` · ∂

∂xj

∣∣∣
x
(f̃ j) 5.6(1)=

d∑
`=1

X` · ∂(f̃ j ◦ ϕ−1)
∂x`

◦ ϕ

which implies that on ϕ(V ),

idR ◦Xf̃ j ◦ ϕ−1 =
(

d∑
`=1

X` · ∂(f̃ j ◦ ϕ−1)
∂x`

◦ ϕ

)
◦ ϕ−1
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=
d∑
`=1

X` ·
∂
(
ϕ(ϕ−1(x))

)j
∂x`

= ∂xj

∂x`
= δj`

which is smooth. This calculation shows that Xf̃ j ∈ C∞(V,R) so by taking sums and products we have
shown that Xf ∈ C∞(U,R) for all p ∈M .

6.6 Smooth vector fields, and real-valued smooth maps.

Lemma 23. Let Z : C∞(M,R)→ C∞(M,R). Then, there exists X, a smooth vector field, with Z(f) = Xf
if and only if

1. Z is R-linear, and

2. Z(f · g) = Z(f) · g + f · Z(g).

Proof. We proceed as follows:

(⇒)

This part of the proof follows quickly by 6.4(1), or definition, because Xf(p) = Xp(f) satisfies both (1)
and (2).

(⇐)

Assume Z satisfies (1) and (2). Define X : M → TM , Xp ∈ TpM , Xp(f) := Z(f)(p). Then Xp is a linear

derivation, e.g., Xp(f · g) = Z(f · g)(p) (2)= Z(f)(p)g(p) + f(p) · Z(g)(p) = Xp(f) · g(p) + f(p) · Xp(f).
Lastly, X is smooth by Lemma 6.5(b⇒ a), and we are done.

6.7 A module over the C∞ structures; Lee brackets

Definition. Let M be a smooth manifold.

(a) Denote by X(M), the set of all smooth vector fields on M .

(b) For X,Y ∈ X(M), then X + Y ∈ X(M), by (X + Y )(f) = Xf + Y f .

(c) For X ∈ X(M), f ∈ C∞(M,R), we have that f ·X ∈ X(M), where (f ·X)(g) = (f)(Xg) ∗.

(d) If X,Y ∈ X(M), f ∈ C∞(M,R). Define Z : C∞(M,R) → C∞(M,R) by taking Z(f) := X(Y (f)).
Note that Z /∈ X(M), because the derivation property (2) is not satisfied:

Z (f · g) (p) = Xp (Y (fg)) (p) = Xp (Y (f) · g + f · Y (g)) (p) = Xp(g · Y (f))(p) +Xp(f · Y (g))(p)
= Xp (Y (f)) (p) · g (p) + Y (f) (p) ·Xp (g) +Xp (f) · Y (g) (p) + f (p) ·Xp (Y (g)) (p)

= (Z (f) · g) (p) + (f · Z (g)) (p) + (Ypf) (Xpg) + (Xpf) (Ypg)︸ ︷︷ ︸
6=0

∗My notation was slightly misleading, as at first it looked like I was trying to take the image of Xg under f . I added the extra
parenthesis to emphasize that this is incorrect - it might be more clear to consider this at a point on the manifold; for example,

(fX)p(g) = fp︸︷︷︸
∈R

(Xg)p︸ ︷︷ ︸
∈R

,

so, we still have something that is a smooth vector field.
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But, defining W (f) := X(Y (f)) − Y (X(f)), W : C∞(M,R) → C∞(M,R) satisfies (1) and (2), so
W ∈ X(M); by the three lines above, we would get

W (fg)(p) = X(Y (fg))(p)− (Y (X(fg))(p)
= X(Y f)(p) · g(p) + f(p) ·X(Y (g))(p) + (Ypf)(Xpg) + (XpF )(Ypg)− (Y (Xf)(p) · g(p)

+ f(p) · Y (X(g))(p) + (Xpf)(Ypg) + (Ypf)(Xpg))
= W (f)(p) · g(p) + f(p) ·W (g)(p)

and linearity is clear. We call [X,Y ] := W ∈ X(M) the Lee bracket of X and Y .

6.8 Properties of the Lee bracket

(a) X(M) is a module over C∞(M,R) with module structure X + Y and f ·X from section 6.7 (b) and
(c).

(b) [, ] is bilinear over R, i.e., for any r, s ∈ R, we have that [rX + sY, Z] = r[X,Z] + s[Y,Z], and
[X, rY + sZ] = r[X,Y ] + s[X,Z].

(c) [, ] is anti-symmetric, i.e.,
[X,Y ] = −[Y,X]

(d) [, ] satisfies the Jacobi-identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

(e) For all f, g ∈ C∞(M,R),

[fX, gY ] = fg[X,Y ] + (fX(g)) · Y − (gY f) ·X

Proof. (a) Clear

(b)

[rX + sY, Z](f) = (rX + sY )(Zf)− Z((rx+ sY )(f))
= rX(Zf) + sY (Zf)− rZ(Xf)− sZ(Y f)

= r[X,Z](f) + s[Y,Z](f)

(c) [X,Y ](f) = X(Y f)− Y (Xf) = −[Y,X](f)

(d)

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]]
= XY Z−XZY −Y ZX+ZY X+ZXY −ZY X−XY Z+Y XZ+Y ZX−Y XZ−ZXY +XZY = 0

(e)

[fX, gY ](h) = fX(gY (h))− gY (fX(h)) =
fgX(Y )(h) + fX(g)(Y )(h)− gY (f)X(h)− gfY (X)(h) = fg[X,Y ] + fX(g) · Y − f · Y (f)X(h)
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6.9 Diffeomorphisms and X(M).
Let F ∈ Diff∞(M,N), then F∗ : X(M)→ X(N) is given by X ∈ X(M), F∗(X) ∈ X(N), y ∈ N such that

F∗(N)(y) ∈ TyN

if F ∈ C∞(M,N) is not injective and surjective, then F∗ cannot be defined.
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7
Immersions, Submersions, Embeddings, and Submanifolds

This chapter follows the discussion in Lee’s book, mainly from chapters 4,5, and 6.

7.1 Introductory Definitions

Example. Let Mk and Nd be two manifolds of dimensions k and d respectively. Let f ∈ C∞(M,N) be a
smooth function.

(a) Let a ∈ M . We call rank(dFa : TaM → TF (a)M) the rank of F at a. We say that F has constant
rank if there exists an r such that r is the rank at a for every a ∈M .

(b) F is called a smooth immersion if for all a ∈M , dFa is inejctive; i.e., F has constant rank k.

(c) F is called a smooth submersion if for all a ∈M , dFa is surjective; i.e. F has constant rank d.

7.2 Local parameterizations of smooth immersions

Proposition 24. Let F : Mk → Nd be a smooth immersion∗. Then, for all a ∈ M , there exist charts
ϕ : U → Rk of M where a ∈ U , and ψ : V → Rd of N with F (a) ∈ V and F (U) ⊂ V such that

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(F (U)); (x1, ..., xk) ∈ Rk 7→ (x1, ..., xk, 0 . . . 0︸ ︷︷ ︸
d−k

) ∈ Rd

Proof. Let ϕ̃ : Ũ → Rk be a chart of M at a, a ∈ Ũ and ψ : Ṽ → Rd be a chart of N at F (a), F (a) ∈ Ṽ ,
F (Ũ) ⊂ Ṽ . Without loss of generality, assume that ϕ̃(a) = 0 ∈ Rk, and ψ(F (a)) = 0 ∈ Rd. Since

d(ψ̃ ◦ F ◦ ϕ̃−1)0 = dψ̃F (a)︸ ︷︷ ︸
isomorphism

◦ dFa︸︷︷︸
injective

◦ dϕ̃−1
0︸ ︷︷ ︸

isomorphism

is injective (rank k), we may assume after a rearrangement of the basis of Rd that(
∂(ψ̃ ◦ F ◦ ϕ̃−1)i

∂xj
(0)
)
i=1...k
j=1...k

(7.2.1)

is invertible, i.e., it has rank k. Write

ψ̃ ◦ F ◦ ϕ̃−1(x) = (g(x)︸︷︷︸
∈Rk

, h(x)︸︷︷︸
∈Rd−k

) ∈ Rd

∗This notation only indicates that M is of dimension k, and N is of dimension d.
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By what we just mentioned in equation 7.2.1 above, Dg(0) is invertible. Then by the inverse function
theorem, there exist open subsets of Rk, U0, U1 such that that 0 ∈ U0, 0 ∈ U1 and g|U0 → U1 is a C∞
diffeomorphism. Let U := ϕ̃−1(U0), and let

ϕ := g|U0 ◦ ϕ̃|U : U
ϕ̃

−−−−−→ U0
g

−−−−−→ U1, ∈ C∞ − diffeomorphism

Let V1 := ψ̃(Ṽ ) ∩ (U1 × Rd−k), and define a map,

ρ : V1 → Rd; ρ(x, y) := (x, y − h(g−1(x))).

Note that ρ is well-defined, since for (x, y) ∈ V1, we must have that x ∈ U1, and as such g−1(x) ∈ U0,
and h(g−1(x)) makes sense. Furthermore, ρ is smooth, since g and h are smooth and ρ : V1 → ρ(V1) is
invertible with (smooth) inverse ρ−1(x, y) := (x, y+h(g−1(x))) (it is easy to check that ρ◦ρ−1 = ρ−1◦ρ =
id). With this, set V = ψ̃−1(V1), and define ψ : V → Rd by ψ := ρ◦ ψ̃|V . Observe that F (U) ⊂ V , because

ψ̃(F (U)) = ψ̃(F (ϕ̃−1(U0))) ⊂ ψ̃(F (Ũ)) ⊂ ψ̃(Ṽ ) ⊂ V1.

Now, ψ ◦ F ◦ ϕ−1 = (ρ ◦ ψ̃|V ) ◦ F ◦ ((ϕ̃|U )−1 ◦ g−1) : U → Rd is given by

U1
g

−−−−−→ U0
(ϕ̃|U )−1

−−−−−→ ϕ̃−1(U0) ⊂ Ũ
F

−−−−−→ Ṽ
ψ̃|V

−−−−−→ ψ(Ṽ ) ⊂ V1
ρ

−−−−−→ Rd

and for x ∈ U1 ⊂ Rk,

ψ ◦ F ◦ ϕ−1(x) = ρ ◦ ψ̃ ◦ F ◦ ϕ̃−1︸ ︷︷ ︸
(g,h)

◦g−1(x) = ρ(g(g−1(x)), h(g−1(x)))

= ρ(x, h(g−1(x))) = (x, h(g−1(x))− h(g−1(x))) = (x, 0)

7.3 Inverse Function Theorem for Manifolds

Theorem 25. (a) (Local Version) Let F ∈ C∞(M,N), a ∈ M , and let dFa : TaM → TF (a)N be invertible.
Then, there exist sets U, V such that a ∈ U ⊂open M , F (a) ∈ V ⊂open N where F |U : U → V is a
smooth diffeomorphism (this means that F is a local diffeomorphism if and only if dFa is invertible for
all a ∈M).

(b) (Global Version) Let F ∈ C∞(M,N), dFa is invertible for every a ∈ M , and assume that f is injective.
Then, F : M → F (M) is a smooth diffeomorphism.

Proof. (a) Well for starters,

dim(M) = dim(TaM) = dim(TF (a)N) = dim(N) = d

Let ϕ : Ũ → ϕ(Ũ) be a chart at a ∈ Ũ ⊂ M , and ψ : Ṽ → ψ(Ṽ ) be a chart at F (a) ∈ Ṽ ⊂ N with
F (Ũ) ⊂ Ṽ . Since ϕ,ψ are smooth diffeomorphisms (by 4.3(h)), we have that

d(ψ ◦ F ◦ ϕ−1)|ϕ(a) = dψF (a) ◦ dFa ◦ dϕ−1
ϕ(a)

is invertible. By the inverse function theorem in Rd, there exist ˜̃U, ˜̃V ⊂open Rd such that

ψ ◦ F ◦ ϕ−1 : ˜̃U → ˜̃V

is a smooth diffeomorphism. Set U := ϕ−1( ˜̃U), V := ψ−1( ˜̃V ). Then,

F = ψ−1 ◦ (ψ ◦ F ◦ ϕ−1) ◦ ϕ : U
ϕ

−−−−−→ ˜̃U
(ψ◦F◦ϕ−1)
−−−−−→ ˜̃V

ψ−1

−−−−−→ ψ−1( ˜̃V )

and as ψ−1, ϕ, and (ψ ◦F ◦ϕ−1) are all smooth diffeomorphisms, we have that F |U is also a smooth
diffeomorphism.
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(b) Note that F (M) is open in N (because for all F (a) ∈ N , there exists a ⊂ U ⊂open M such that there
exists F (a) ∈ V ⊂open N where F |U : U → V is a diffeomorphism, and F (a) ∈ V ⊂ F (M), implying
that F (M) is open). Then, F : M → F (M) is bijective. F is smooth, F−1 : F (M) → M is smooth
(since for all F (a) ∈ N , there exist U, V as above, where F−1 : V → U is a diffeomorphism.)

7.4 Smooth Embeddings

Definition. Let F ∈ C∞(M,N). Then, F is called a smooth embedding if F is a smooth immersion and
F : M → F (M) is a homomorphism, where F (M) ⊂ N has the subspace topology.

Remark. Recall that F : M → N between topological spaces is a topological embedding if and only if
F : M → F (M) is a homomorphism. Now, smooth embeddings occur if and only if we have a topological
embedding and a smooth immersion.

7.5 Examples

(a) Let U ⊂open M where M is a manifold Then, the inclusion i : U →M is a smooth embedding.

(b) Let F :
(
π
2 →

5π
2
)
→ R2, F (t) = (sin(2t), cos(t)). Clearly, F is injective, dFa is injective, and so

F is a smooth immersion. However, Im(F ) is compact, where the domain of F is not compact, so
F :

(
π
2 →

5π
2
)
→ F

(
π
2 →

5π
2
)

is not a smooth embedding.

(c) Let F ∈ C∞(M,N) be injective and a smooth immersion. Assume that M is compact, then F−1 :
F (M) → M is continuous (since for a closed subset A of M , we have that since M is closed that A
is compact, and so F (A) is compact in N , and by N being Hausdorff we have that F (A) is closed in
N ; (F−1)−1 maps closed sets to closed sets, so F−1 is continuous). We conclude that F is a smooth
embedding.

(d) For manifolds M,N , a ∈ M, b ∈ N , the inclusion ib : M ↪→ M × N ; x 7→ (x, b) and ia : N ↪→
M × N ; x 7→ (a, x) are smooth embeddings (similarly, the projection maps projM : M × N →
M,projN : M ×N → N are smooth submersions)

(e) The composition of smooth immersions (or smooth embeddings) are smooth immersions (or smooth
embeddings).

Proof. We have that d(F ◦G) = dF︸︷︷︸
injective

◦ dG︸︷︷︸
injective

and so we have injectivity for smooth immersions.

For embeddings, working in the situation where M
G

−−−−−→ N
F

−−−−−→ P , we have that if M is
homeomorphic to G(M) ⊂ N and N is homeomorphic to F (N) ⊂ P , that M is homeomorphic to
F (G(M)).

7.6 Immersed and embedded submanifolds

Definition. Let M be a manifold, and let S ⊂ M be a subset. Then, (S,AS) is called an immersed
submanifold (embedded submanifold) if there is a manifold structure (S,AS) such that the inclusion
i : S ↪→M is a smooth immersion (smooth embedding).
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7.7 Topologies of embedded submanifolds

Remark. Note that if S ⊂ M is an embedded submanifold, then the topology of S coming from (S,AS)
and from the subspace topology S ⊂ M must coincide, because the inclusion i : (S,AS) ↪→ i(S) ⊂ M is
a homeomorphism. For immersed submanifolds, this is not the case (see the example of the figure 8, as
discussed last time).

7.8 Immersed & embedded submanifolds as images of injective smooth
immersions and smooth embeddings

Proposition 26. Let M and P be two manifolds, let F ∈ C∞(P,M) and let S := F (P ).

(a) If F is an injective, smooth immersion, then S is an immersed submanifold.

(b) If F is an smooth embedding, then S is an embedded submanifold.

In other words: (immersed)/(embedded) submanifolds are exactly the images of (injective, smooth immer-
sions)/ (smooth embeddings).

Proof. In both cases, we have that F : P → S is a bijection. For any chart ϕ : U → ϕ(U) of P , define a
chart for S: ϕS : F (U) → ϕ(U), ϕS := ϕ ◦ (F |F (U))−1. We claim that AS := {ϕS |ϕ ∈ AP } defines an
atlas for S.

• ϕS is a chart: (chart 1) since ϕS = ϕ ◦ F−1, ϕS is injective. (chart 2) We have that

ϕS(F (U)) = ϕ(U) ⊂open Rdim(P )

and we have that ϕS is a chart.

• ϕS , ψS are compatible: (compatibility 1) We have ϕS : F (U)→ ϕ(U), ψS : F (V )→ ψ(V ), and so

ϕS(F (U) ∩ F (V )) = ϕS(F (U ∩ V )) = ϕ(U ∩ V ) ⊂open Rdim(P )

and (compatibility 2)

ψS ◦ ϕ−1
S = ψ ◦ F−1 ◦ (ϕ ◦ F−1)−1 = ψ ◦ F−1 ◦ F ◦ ϕ−1 = ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is a smooth diffeomorphism, because ψ and ϕ are charts in the atlas of P .

• AS is an atlas: (atlas 1) We have that ∪ϕS∈ASF (U) = S, (atlas 2) ϕ2, ψS are compatible.

With this, we have that F : (P,AP )→ (S,AS) is a smooth diffeomorphism (since ϕS ◦ F ◦ ϕ−1 = idϕ(U)
and ϕ ◦ F−1 ◦ ϕ−1

S = idϕ(U)) and the inclusion i : (S,AS) ↪→ (M,AM ) is the composition

i : (S,AS)
F−1

−−−−−→ (P,AP )
F

−−−−−→ (M,AM )

where F−1 is a smooth diffeomorphism, and F is a smooth immersion/embedding. As their composition
is a smooth immersion (case (a))/smooth embedding (case (b)), we are done.

Note. For (a), the topology from (S,AS) and from S ⊂M do not coincide (in general).
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7.9 A property of embedded manifolds

Proposition 27. Let M be a d-dimensional manifold and let S ⊂ M be a subset of M . Then, S is an
embedded submanifold if and only if there exists k ≤ d such that for all a ∈ S, there exists a chart ϕ : U → Rd
of M with a ∈ U such that

ϕ(U ∩ S) = ϕ(U) ∩ (Rk × {0}︸︷︷︸
∈Rd−k

).

M
U

a
S

U ∩ S
Rd

R k

ϕ(U)

ϕ(U) ∩ (Rk × {0})

ϕ
πRk

R k

Remark. In the above situation, S has the atlas: AS = {πRk ◦ϕ|U∩S : U ∩ S → Rk|ϕ : U → Rd ∈ AM , for
ϕ as in the statement of our proposition, }, where πRk is the projection from Rd to Rk.

7.10 Equivalence between embedded submanifolds and submani-
folds from definition 2.4(a)

Corollary 28. A submanifold in the sense of definition 2.4(a)is the same as an embedded submanifold of
(Rn, {idRn}), in the sense of definition 7.6.

Proof. (⇐) Let AS be as in the statement. We need to show two things, (1) that AS is an atlas, and (2)
that the inclusion i : (S,AS)→ (M,AS) is a smooth embedding.

1. For ϕ : U → Rd with ϕ as in the second statement of the proposition, denote

ϕS = πRk ◦ ϕ : U ∩ S → Rk.

• ϕS is a chart: (chart 1) ϕS is injective, since ϕ(U ∩ S) ⊂ Rk × {0}; (chart 2)

ϕS(U ∩ S) = πRk ( ϕ(U)︸ ︷︷ ︸
open in Rd

∩(Rk × {0})

︸ ︷︷ ︸
open inRk×{0}

⊂open Rk

• compatibility: take ϕS : U ∩ S → Rk, ψS : V ∩ S → Rk. (compatibility 1) we have that

ϕS((U ∩ S) ∩ (V ∩ S)) = πRk(ϕ(U ∩ V ) ∩ ϕ(U ∩ S)) = πRk(ϕ(U ∩ V ) ∩ ϕ(U)︸ ︷︷ ︸
⊂openRd

∩ (Rk × {0}︸ ︷︷ ︸
⊂openRd

))

and (compatibility 2),

ψS◦ϕ−1
S : ϕS((U∩S)∩(V ∩S)) ↪→x 7→(x,0) ϕ(U∩V )

ψ◦ϕ−1

−−−−−→ ψ(U∩V )
πRk

−−−−−→ ψS((U∩S)∩(V ∩S))
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the inclusion is smooth, the map ψ ◦ ϕ−1 is smooth, the projection map is smooth, and so
ψS ∩ ϕ−1

S is smooth and (ψS ◦ ϕS)−1 = ϕS ◦ ψ−1
S is also smooth, so ψS ◦ ϕ−1

S is a smooth
diffeomorphism.

• Proving that these make up an atlas: (atlas 1) We have that ∪ϕ(U ∩ S) = S by assumption,
and (atlas 2) is true; ϕS , ψS are compatible as was just shown.

2. Let i : S ↪→ M , and consider ϕ ∈ AM as in the second statement of our proposition with corre-
sponding ϕS . Then,

ϕ ◦ i ◦ ϕ−1
S = ϕ ◦ i ◦ (πRk ◦ ϕ)−1 : πRk(ϕ(U))→ ϕ(U); x 7→ (x, 0)

This implies that i is a smooth immersion. It remains to show that i−1 : i(S) → S is continuous.
Let V ⊂open S (in the AS topology). We need to show that V ⊂open i(S) where i(S) ⊂ M has the
subspace topology. Let a ∈ V ⊂open (S,AS). This implies that there exists ϕS : U ∩ S → Rk such
that a ∈ U ∩ S ⊂ V . Therefore, ϕ : U → Rd ∈ AM , and a ∈ U , which is an open subset of M .
Then, a ∈ U ∩ S ⊂open S (under the subspace topology of M). Since we can do this for all a ∈ S,
we have that V ⊂ S is open in the subspace topology of M .

(⇒) Let i : (S,AS) ↪→ (M,AM ) be a smooth embedding, and let a ∈ S. By proposition 7.2, there
are charts ϕ : U → Rd of M , a ∈ U , and ψ : V → Rk of S where a ∈ V , with V = i(V ) ⊂ U such
that for all x ∈ ψ(V ), the composition ϕ ◦ i ◦ ψ−1(x) = (x, 0). If necessary, restrict U and V such that
Im(ϕ ◦ i ◦ ψ−1) = Im(ϕ) ∩ (Rk × {0}). Since S has the subspace topology of M , this implies that there
exists a subspace Ṽ ⊂open M such that V = Ṽ ∩ S. Let Ũ := U ∩ Ṽ . Then ϕ|Ũ : Ũ → ϕ(Ũ) is a chart of
M such that

ϕ|Ũ (Ũ ∩ S) = ϕ(U ∩ Ṽ ∩ S) = ϕ(Ũ ∩ V ) = ϕ(Ũ) ∩ Im(ϕ ◦ i ◦ ψ−1) = ϕ(Ũ) ∩ (Rk × {0})

7.11 Properly embedded submanifolds

Definition. Let S ⊂M be an embedded submanifold. Then, S is a properly embedded submanifold, if
the inclusion i : S ↪→M is a proper map, i.e., for every compact subset K of M , i−1(K) ⊂ S is a compact
subset of S. Recall from topology that if you have any map F : S → M which is continuous, if S is
compact and M is Hausdorff, then F is a proper map. Therefore, if S ⊂M is an embedded submanifold,
and S is compact, then S is a properly embedded submanifold.

As an exercise, let S ⊂M be an embedded submanifold. Then, S is a properly embedded submanifold
if and only if S ⊂M is closed.

7.12 Whitney Embedding Theorem

Theorem 29. (Whitney Embedding Theorem) Let M be a smooth manifold, and assume that M is compact.
Then, there exists an integer n such that there exists a proper smooth embedding F : M → Rn.

Proof. For a ∈ M , let ϕa be a chart ϕa : Ua → Rd of M (of dimension d) at a, i.e. a ∈ Ua. WLOG,
assume that ϕa(a) = 0. Let ε(a) > 0 be such that Bε(a) ⊂ ϕ(Ua). Denote by Ea := ϕ−1

a (Bε(a)) and
Da := ϕ−1

a (Bε(a)/2). Note that the {Da}a∈M is an open cover of M . Since M is compact, there exist
a1, ..., ar such that Da1 ∪ ... ∪Dar = M . Let f1, ..., fr be functions, fj ∈ C∞(M,R) such that 0 ≤ fj ≤ 1,
and supp(fj) ⊂ Eaj , fj |Daj = 1. Note that fj · ϕaj : M → Rd is a smooth map (where ϕaj is extended to

M by 0 outside of Uaj ). Now let n = r · d+ r and define F : M → Rrd+r,

F (x) := (f1(x) · ϕa1(x), f2(x) · ϕa1(x), . . . , fr(x) · ϕar (x), f1(x), ..., fr(x)).
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(if you get confused, just look at it until you remember that f1(x) · ϕa1(x) : M → Rd.) We claim that F
is a proper smooth embedding, which if we can prove, we are then done.

Is F injective? Let F (x) = F (y). Since x ∈ Daj for some aj , it follows that 1 = fj(x) − fj(y) (since
F (x) = F (y)), and so y ∈ Eaj ⊂ ϕaj (Uaj ). Also, ϕaj (x) = faj (x) · ϕaj (x) = faj (y) · ϕaj (y) (again, since
F (x) = F (y)) = ϕaj (y). But since ϕaj is injective, and both x, y ∈ Uaj , it follows that x = y.

Is dFa injective? For x ∈ Daj , we have that fj
∣∣Daj = 1, implying that d(fj · ϕaj )x = d(ϕaj (x).

To see this, apply v ∈ TxM to this, and use 5.2(c). Now, d(ϕaj )x is an isom. by 5.4(e), implying that
dFx = (..., d(fj · ϕaj )x, ...) = (..., d(ϕaj )︸ ︷︷ ︸

injective

, ...), so dFx is injective. As such, F is an injective smooth

immersion.
This implies by 7.5(c) that F is a smooth embedding, which implies by 7.11 that F is a proper smooth

embedding (both of these use the fact that M is compact).

7.13 Whitney’s theorems

Theorem 30. (a) (Whitney’s Embedding Theorem; general version (see Lee)) Let M be a smooth manifold
of dimension d ≥ 0. Then there exists a proper smooth embedding F : M → R2d+1.

Remark. Remarks on the Proof: The proof of the above uses:

(a) The notion of a manifold with boundary.

(b) Sards’ Theorem, which says: let F ∈ C∞(M,N), where M,N are smooth manifolds (with or
without boundary). Let C := {x ∈ M |dFx is not surjective } be the set of critical points of F .
Then, F (C) has measure 0 in N .

(b) (Whitney Embedding Theorem - Strong Version) Let M be a smooth manifold of dimension d > 0. Then,
there exists a smooth embedding F : M → R2d.

Remark. Remark on the Proof: In proving above, you first find a smooth immersion F : M → R2d,
and use the ‘Whitney trick’ to remove self-intersection. This is the starting point for surgery theory,
which classifies manifolds of dimension ≥ 5. In fact, M2 ↪→ R4 and M4 ↪→ R8 are the best possible
dimensions to embed 2-manifolds and 4-manifolds, respectively. But, every 3-manifold M3 ↪→M5.

(c) (Strong Whitney Embedding Immersion Theorem) Let M be a smooth manifold of dimension d > 1.
Then there exists a smooth immersion F : M → R2d−1.

(d) Generalization of (c) (Ralph Cohen, ’85): Let M be a smooth manifold of dimension d > 1. Assume that
M is compact, then there exists a smooth immersion F : M → R2d−a(d) where a(d) is the number of ’1’s
in the binary expansion of d.†

†See also, the Nash Embedding Theorem.
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8
Cotangent Vector and Tensors

This chapter is modeled after Lee’s book, chapters 11 and 12.

8.1 Dual Spaces

• Let V be a finite dimensional vector space (over R). Then, the dual vector space V ∗ is the set of
maps

V ∗ := {α : V → R|α is a linear map }

• If {e1, ..., ed} is a basis for V , then there is a dual basis {e∗1, ..., e∗d} of V ∗ given by e∗j (e`) = δj,`,
e∗j : V → R, induced linearly to all of V . Note that the isomorphism V → V ∗, ej 7→ e∗j is not
canonical, i.e., it depends on the chosen basis {ej}.

• However, the map θ : V → V ∗∗,

θ(v) : V ∗ → R, θ(v)(α) := α(v)
is a canonical isomorphism, and is given by the evaluation map.

• If A : V → W is a linear map, then there is an induced linear map, A∗ : W ∗ → V ∗, where
A∗(β)(v) = β(Av) for v ∈ V , as illustrated below.

W v ∈ V

R

β∈W∗

A

Av

β(Av)∈V ∗

8.2 The Cotangent space of a manifold

Definition. Let M be a manifold of dimension d, and let a ∈M . Then, the cotangent space of M at a is
the dual space of TaM , denoted by T ∗aM := (TaM)∗.

Take M to be a manifold of dimension d, and a ∈ M : Let ϕ : U → Rd be a chart, and denote (as

usual) by { ∂
∂xj

∣∣∣
j
}j=1...d the basis of TaM given by the chart ϕ. Denote by dxj |a :=

(
∂
∂xj

∣∣∣
a

)∗
a member

of the dual basis, given by (
dxj |a

)( ∂

∂xk

∣∣∣
a

)
:= δjk
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Remark. For another chart ψ : V → Rd of M at a, with induced basis { ∂
∂x̃j

∣∣∣
a
} of TaM and {dx̃j}j of

T ∗aM , we have the transformation rules:

dx̃k
(

∂

∂xi

)
5.6(2)= dx̃k

 d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
· ∂

∂x̃j

 =
d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xi
δkj = ∂(ψ ◦ ϕ−1)k

∂xi

summarizing,

dx̃k
∣∣∣
a

=
d∑
j=1

∂(ψ ◦ ϕ−1)k

∂xj
(ϕ(a)) · dxj

∣∣∣
a

(8.2.1)

If F ∈ C∞(M,N), then there is an induced map dFa : TaM → TF (a)N , implying

dF ∗a : T ∗aN → T ∗aM ; dF ∗a (βF (a))(Xa) = βF (a)(dFa(Xa))

in diagram form, this looks something like this:

Xa ∈ TaM TF (a)N

R

dFa

βF (a)(dFa(Xa))
βF (a)∈T∗F (a)N

If ϕ : U → Rd is a chart of M at a, and ψ : V → Rk is a chart of N at F (a), and F (U) ⊂ V , then take
basis { ∂

∂xj } of TaM , {dxj} basis of T ∗aM , basis { ∂
∂x̃j } of TF (a)N , {dx̃j} basis of T ∗F (a)N . Then, we have

dF ∗a

(
dx̃j
∣∣∣
F (a)

)(
∂

∂xi

∣∣∣
a

)
= dx̃j

(
dFa

(
∂

∂xi

))
5.6(3)= dx̃j

(
k∑
`=1

∂
(
ψ ◦ F ◦ ϕ−1)`

∂xi
(ϕ (a)) · ∂

∂x̃`

)

= ∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a))

summarizing again,

dF ∗a
(
dx̃j |F (a)

)
=

d∑
i=1

∂
(
ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ (a)) · dxi

∣∣∣
a

(8.2.2)

8.3 Cotangent bundles, 1-forms

(a) Let T ∗M := {(a, β)|a ∈M,β ∈ T ∗aM}, called the cotangent bundle, and let

π : T ∗M →M, (a, β) 7→ a.

For a chart ϕ : U → Rd of M , define a chart ϕT∗M : π−1(U)→ R2d,

ϕ

a, d∑
j=1

βi · dxj |a

 =
(
ϕ(a), β1, ..., βd

)
where

∑d
j=1 β

i · dxj |a is in T ∗aM , and βi ∈ R.

Claim. Chart of this form define an atlas AT∗M , giving T ∗M a 2d dimensional manifold structure,
such that π ∈ C∞(T ∗M,M).
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Proof. Similar to the proof of 6.1, so it is left as an exercise.

(b) A covector field, or 1-form on M is a section β : M → T ∗M of π, i.e., π ◦ β = idM (this is what it
means to be a section). The set of all smooth 1-forms is denoted by X∗(M). , and we call β smooth
if β ∈ C∞(M,T ∗M).

Claim. The following are equivalent:

(a) β is smooth.

(b) For every X ∈ X(M) (smooth vector fields on M), the map (which are now defining) (β,X) :
M → R, (β,X)(a) := βa(Xa) is smooth.

(c) For ϕ : U → Rd a chart of M , β|U : U → T ∗M , β|U (y) =
∑d
j=1 β

j(y)(dxj |y), βj ∈ C∞(U,R).

Proof. Similar to the proof of 6.5, so left as an exercise.

Remark. If we take β ∈ X∗(M), f ∈ C∞(M,R), and X ∈ X(M), then

β(f ·X)(a) = βa((f ·X)|a) = βa(f(a) ·Xa) = f(a) · βa(Xa) = (f · β(X))(a)

But, we had
X(fg)(a) = Xa(f)g(a) + f(a) ·Xa(g) = (X(f) · g + f ·X(g))(a)

I am not entirely sure why this was pointed out, other than it may prompt the discussion of differentials
below.

8.4 Differentials

Definition. Let f ∈ C∞(M,R), then we define the differential of f at a, dfa ∈ T ∗aM , by setting

dfa(Xa) := Xa(f)

for Xa ∈ TaM .

Claim. df ∈ X∗(M) is a smooth 1-form.

Proof. By 8.3(b), df is smooth if and only if dfa(Xa) ∈ C∞(M,R) for all smooth vector fields X. But, if
f ∈ C∞(M,R) and X ∈ X(M), this implies that X(f) ∈ C∞(M,R), and X(f)(a) = Xa(f) = (dfa(Xa)).
Hence, df is smooth.

Remark. (a) Let ϕ : U → Rd be a chart. Then,

dfa

(
∂

∂xj

∣∣∣
a

)
= ∂

∂xj

∣∣∣
a
(f) 5.6(1)= ∂(f ◦ ϕ−1)

∂xj
(ϕ(a)) ∈ C∞(U,R)

(b) Recall that for f ∈ C∞(M,R), there is an induced map dfa : TaM → Tf(a)R whereas now, dfa :
TaM → R. In 5.3, we had for g ∈ C∞(R,R) that

dfa : TaM → Tf(a)R,

⇒ dfa

(
∂

∂xj

∣∣∣
a

)
(g) = ∂

∂xj

∣∣∣
a
(g ◦ f)

= ∂(g ◦ f ◦ ϕ−1)
∂xj

(ϕ(a)) chain rule= dg

dx
(f ◦ ϕ−1(ϕ(a))) · ∂(f ◦ ϕ−1)

∂xj
(ϕ(a))

= ∂(f ◦ ϕ−1)
∂xj

(ϕ(a)) · d
dx

∣∣∣
f(a)

(g)

In summary,
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TaM Tf(a)R

R

dfa as in 8.4

dfa as in 5.3

(c) if ϕ : U → Rd is a chart of M , denote by ϕj the jth component of ϕ in Rd, i.e., ϕ = (ϕ1, ϕ2, ..., ϕd),
where ϕj : M → R. Then,

dϕja

(
∂

∂xk

∣∣∣
a

)
= ∂(ϕj ◦ ϕ−1)

∂xk
(ϕ(a))

= ∂xj

∂xk
(ϕ(a)) = δjk

⇒ dϕja = dxj |a

8.5 Maps between smooth 1-forms on manifolds

Definition. Let F ∈ C∞(M,N), (where F is not necessarily a diffeomorphism) then there is an induced
map dFa : TaM → TF (a)N , so we get

dF ∗a : T ∗F (a)N → T ∗aM

Claim. This implies that F ∗ : X∗(N)→ X∗(M) where F ∗(β)a := dF ∗a (βF (a)).
For β ∈ X∗(N), X ∈ X(M), it is

F ∗(β)a(Xa) = dF ∗a (βF (a))(Xa) = βF (a)(dFa(Xa)︸ ︷︷ ︸
∈TF (a)N

)

Proof. For charts ϕ : U → Rd of M , a ∈ U , and ψ : V → Rk of N , F (a) ∈ V, F (U) ⊂ V , let

β =
k∑
j=1

βjdx̃j |F (a) ∈ X∗(V ).

Then,

F ∗(β) = dF ∗a

 k∑
j=1

βj(F (a))dx̃j |F (a)

 dF∗a llinear, 8.2(2)
=

k∑
j=1

βj(F (a)) ·
d∑
i=1

∂(ψ ◦ F ◦ ϕ−1)j

∂xi
(ϕ(a)) · dxi|a

=
d∑
i=1

 k∑
j=1

βj(F (a)) · ∂(ψ ◦ F ◦ ϕ−1)j

∂xi
· (ϕ(a))


︸ ︷︷ ︸

smooth, U→R

·dxi|a

8.6 Lemma

Lemma 31. Let F ∈ C∞(M,N), let f ∈ C∞(N,R) so that df ∈ X∗(N). Then,

F ∗(df) = d(f ◦ F ) ∈ X∗(M)

Proof. For a ∈M,Xa ∈ TaM , it is,

F ∗(df)a(Xa) = dF ∗a (dfF (a))(Xa) = dfF (a)(dFa(Xa)) = (dFa(Xa))(f) = Xa(f ◦ F ) = d(f ◦ F )a(Xa)
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8.7 Tensors

Definition. (a) let V1, ..., Vk,W be R-vector spaces of finite dimension. A map α : V1×V2× ...×Vk →W
is called multilinear if it is linear in each component:

α(v1, v2, ..., rvj + sṽj , ..., vk) = r · α(v1, ..., vj , ..., vk) + s · α(v1, ..., vk)

for all r, s ∈ R and j = 1, ..., k (note that rvj + svj ∈ Vj). The space of all multilinear maps
α : V1 × ...× Vk → W is denoted by L(V1, ..., Vk;W ). Note that L(V1, ..., Vk;W ) is an R-vector space
(you define the sum of maps in the way you think you would, and scalar multiplication is similarly
natural).

(b) Let V be a finite dimensional R-vector space (later, we’ll set V := TaM). Then, a tensor of type
(k, l) is a multilinear map

V ∗ × . . .× V ∗︸ ︷︷ ︸
k

×V × ...× V︸ ︷︷ ︸
l

→ R

The space of tensors of type (k, l) is denoted by

T (k,l)(V ) := T `k(V ) := L(V ∗, ..., V ∗︸ ︷︷ ︸
k

, V, ..., V︸ ︷︷ ︸
`

;R)

In particular,

T (0,0) = R, T (0,1)(V ) = L(V ;R) = V ∗, T (1,0) = L(V ∗;R) = V ∗∗ ∼= V

where in the third equation, we send v from V into V ∗∗ by sending v 7→ eval(v).

8.8 α1 ⊗ α2 ⊗ ...⊗ αk ∈ L(V1, ..., Vk;R)
Lemma 32. (a) If α1 ∈ V ∗1 , α2 ∈ V ∗2 , αk ∈ V ∗k , then

α1 ⊗ α2 ⊗ ...⊗ αk ∈ L(V1, ..., Vk;R)

given by
(α1 ⊗ ...⊗ αk)(v1, ..., vk) := α1(v1) · α2(v2) · ...αk(vk)

(b) If {αj1}j is a basis of V ∗1 , {αj2}j is a basis of V ∗2 , ..., {αjk}j is a basis of V ∗k , then

{αj1
1 ⊗ α

j2
2 ⊗ ...⊗ α

jk
k }j1,j2,...,jk

is a basis of L(V1, ..., Vk;R). In particular, if dim(V1) = d1, then dim(L(V1, ..., Vk;R)) = d1 · d2 · ... · dk,
and therefore,

dim(T k,`(V )) = dim(L(V ∗, ..., V ∗, V, ..., V ;R)) = dim(V )k+l.

Proof. (a) We have,

(α1 ⊗ ...⊗ αj ⊗ ...⊗ αk)(v1, ..., rvj + sṽj , ..., vk) = α1(v1) · ... · (αj(rvj + sṽj)) · ... · αk(vk)

and since αk is linear, and multiplication is linear,

= r(α1 ⊗ ...⊗ αk)(v1, ..., vj , ..., vk) + s(α1 ⊗ ...⊗ αk)(v1, ..., ṽj , ..., vk).
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(b) Let {vjp}j be a basis of Vp such that αjp(vip) = δij . In showing the span, let β ∈ L(V1, ..., Vk;R), and
define βj1,...,jk := β(vj1

1 , ..., v
jk
k ) ∈ R. Claim:

β =
∑

j1,...,jk

βj1,...,jk α
j1
1 ⊗ ...⊗ α

jk
k

To show this, we apply the right hand map to (vj1
1 , ..., v

jk
k ), and get∑

j1,...,jk

βj1,...,jk α
j1
1 ⊗ ...⊗ α

jk
k (vj1

1 , ..., v
jk
k ) =

∑
j1,...,jk

βj1,...,jkα
j1
1 (vj1

1 ) · ... · αjkk (vjkk ) = βj1,...,jk

which is equal to β(vj1
1 , ..., v

jk
k ), by definition. Hence, as multilinear maps are determined by their

image of a basis, and from their equality, we conclude that our claim must hold. We perform a similar
check to show linear dependence, if∑

j1,...,jk

cj1,..,jkα
j1
1 ⊗ ...⊗ α

jk
k = 0

to show that cj1,...,jk = 0, we have

0 =
∑

j1,...,jk

cj1,...,jkα
j1
1 ⊗ ...⊗ α

jk
k (vi11 , ..., v

ik
k ) =

∑
j1,...,jk

cj1,...,jk αj1
1︸︷︷︸

δj1,i1

(vi11 )...αjkk (vikk ) = ci1,...ik

8.9 Defining the tensor product V1 ⊗ V2

Definition. Let V1, ..., Vk be finite dimensional R-vector spaces. Denote by F the free R-vector space
generated by V1×V2× ...×Vk (i.e., elements of F are finite sums

∑
j cjβj , where each βj ∈ V1× ...×Vk).

Let R ⊂ F be the linear subspace generated by elements of the form{
(v1, ..., rv`, ..., vk)− r · (v1, ..., v`, ..., vk) ∈ F

(v1, ..., v` + ṽ`, ..., vk)− (v1, .., v`, ..., vk)− (v1, ..., ṽ`, ..., vk) ∈ F

then define the tensor product of V1, ..., Vk as

V1 ⊗ V2 ⊗ ...⊗ Vk := F/R

we claim that there is a canonical (independent of choices) isomorphism

V1 ⊗ ...⊗ Vk ∼= L(V ∗1 , V ∗2 , ..., V ∗k ;R)

In particular,

T (k,`)(V ) = L(V ∗, .., V ∗, V, ..., V,R) ∼= L(V ∗, ..., V ∗, V ∗∗, ..., V ∗∗;R) = V ⊗ ...⊗ V ⊗ V ∗ ⊗ ...⊗ V ∗

Proof. Since V` ∼= V ∗∗` via a canonical isomorphism, setting W` := V ∗` , the claim is equivalent to proving
W ∗1 ⊗ ...⊗W ∗k ∼= L(W1, ..,Wk;R). Define Φ : W ∗1 × ...×W ∗k → L(W1, ...,Wk;R),

Φ(α1, .., αk)(w1, ..., wk) := α1(w1) · ... · αk(wk)

in other words, Φ(α1, ..., αk) = α1 ⊗ α2 ⊗ ... ⊗ αk. Since F is generated by the set W ∗1 × ... ×W ∗k , we
can extend Φ by linearity to ΦF : F → L(W1, ..Wk;R). We claim that ΦF |R = 0. This implies that
ΦF : F → L(W1, ...,Wk;R) induces a map (which happens to be an isomorphism,)

Φ⊗ : F/R → L(W1, ...,Wk;R)
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given by

[α1, ..., αk] 7→ α1 ⊗ ...⊗ αk.

we need to show that Φ⊗ is an isomorphism. Let {αjp} be a basis of W ∗p . Then (by definition) a basis of
the free vector space F is given by {(

∑
j1
c1j1
αj1

1 , ...,
∑
jk
ckjkα

jk
k )}c1

j1
,...,ck

jk

. On F/R, we have

[∑
c1j1
αα1

1 , ...,
∑

ckjkα
jk
k

]
=

∑
j1,...,jk

c1j1
...ckjk

[
αj1

1 , ..., α
jk
k

]

so that [αj1
1 , ..., α

jk
k ] span F/R. First, we show that Φ⊗ is surjective: we have

Φ⊗[αj1
1 , ..., α

jk
k ] = αj1

1 ⊗ ...⊗ α
jk
k

which is a basis of L(W1, ..,Wk;R) by 8.8(b). Now, we show that Φ⊗ is injective: assume that

Φ⊗
 ∑
j1,...,jk

cj1,...,jk [αj1
1 , ..., α

jk
k ]

 = 0.

We need to show cj1 , ..., cjk = 0. Let {wipp } be a basis of Wp such that αjpp (wipp ) = δjpip . Then,

0 = Φ⊗
 ∑
j1,...,jk

cj1,...,jk [αj1
1 , ..., α

jk
k ]

 (wi11 , ..., w
ik
k )

=
∑

cj1,...,jkα
j1
1 ⊗ ...⊗ α

jk
k (wi11 , ..., w

ik
k )

=
∑

j1,...,jk

cj1,...,jkα
j1
1 (wi11 ) · ... · αjkk (wikk )

since the α’s are just δjk,ii , we have

= ci1,...,ik = 0

for all i1, ..., ik.

The summary of the rest of the proof is that V1 ⊗ ... ⊗ Vk ∼= L(V ∗1 , ..., V ∗k ,R), given by [v1, .., vk] 7→
θ(v1)⊗...⊗θ(vk) where θ(v1) ∈ V ∗∗, and we have [v1, ..., rvj+sṽj , ..., vk] = r[v1, ..., vk, .., vk]+s[v1, ..., ṽj , ..., vk].
Under this identification, we simply write: v1⊗ ...⊗ (rvj + sṽj)⊗ ...⊗ vj = rv1⊗ ...⊗ vj ⊗ ...⊗ vk + sv1⊗
...⊗ ṽj ⊗ ...⊗ vj , and we have our claim.

8.10 Linear maps and T (0,`)

Definition. Let A : V → W be a linear map between finite dimensional R-vector spaces. Then, there is
an induced map A∗ : T (0,`)(W )→ T (0,`)(V );

A∗ : L(W, ...,W︸ ︷︷ ︸
`

;R)→ L(V, ..., V︸ ︷︷ ︸
`

;R)

A∗(α)(v1, ..., v`) := α(A(v1), ..., A(v`))
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8.11 Tensors in the context of manifolds.

Definition. Let M be a smooth manifold of dimension d, and let a ∈M . A tensor of type (k, `) on M at
a is an element of T (k,`)(TaM) which by definition, is a multilinear map

T ∗aM×, ...,×T ∗aM︸ ︷︷ ︸
k

×TaM×, ...,×TaM︸ ︷︷ ︸
`

→ R.

For a chart ϕ : U → Rd of M with a ∈ U , we can write αa ∈ T (k,`)(TaM) as (by 8.8(b), 5.6(a), 8.2(b)):

αa =
d∑

i1...ik,j1,...,jk

αi1,...,ikj1,...,jk

∣∣∣
a

(
∂

∂xi1

∣∣∣
a

)
⊗ ...⊗

(
∂

∂xik

∣∣∣
a

)
⊗ (dxj1 |a)⊗ ...⊗ (dxjk |a)

we call αi1,...,ikj1,...,jk
∈ R the components (or component functions) of αa ∈ T (k,`)(TaM).

8.12 Tensor Bundles

Let M be a smooth manifold of dimension d.

(a) Let
T (k,`)(TM) := {(a, α)|a ∈M,αa ∈ T (k,`)(TaM)},

let π : T (k,`)(TM) → M where π(a, αa) = a, and call it the tensor bundle of M of (mixed) type
(k, `). Then, T (k,`)(TM) is a manifold of dimension d + dk+`, given by charts as follows: for each
chart ϕ : U → Rd of M , define ϕT (k,`)(TM) : π−1(U)→ Rd+dk+`

, by mapping

(a,
d∑

i1...ik,j1,...,jk

αi1,...,ikj1,...,jk

∣∣∣
a

(
∂

∂xi1

∣∣∣
a

)
⊗...⊗

(
∂

∂xik

∣∣∣
a

)
⊗(dxj1 |a)⊗...⊗(dxjk |a)) 7→ (ϕ(a), α1,...,1

1,...,1, ..., α
d,...,d
d,...,d︸ ︷︷ ︸

dk+` components

)

Then, AT (k,`) = {ϕT (k,`) |ϕ ∈ AM} is an atlas of T (k,`)(TM) such that π is smooth.

Proof. Similar to 6.1 and 8.3(a)

(b) A tensor field of mixed type (k, `) is a section α : M → T (k,`)(TM) of π, i.e.,

π ◦ α = idM

The following are equivalent:

(1) α is smooth

(2) α ∈ C∞(M,T (k,`)(TM))
(3) For all ρ1, ..., ρk ∈ X∗(M), and for all X1, ..., X` ∈ X(M), the following is also smooth:

αa(ρ1
a, ..., ρ

k
a, X

1
a , ..., X

`
a) ∈ C∞(M,R),

(4) For all charts ϕ : U → Rd, the component functions a 7→ αi1,...,ikj1,...,j`
|a are smooth; ∈ C∞(M,R)

Proof. Similar to the proof of 6.5.

The set of all smooth tensor fields of type (k, `) is denoted by

T (k,`)(M) = {α ∈ C∞(M,T (k,`)(TM))|π ◦ α = idM}.
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8.13 Tensor fields and multilinear maps

Lemma 33. (a) Tensor fields α ∈ T (k,`)(M) are precisely the C∞(M,R)-multilinear maps

α : X∗(M)× ...× X∗(M)︸ ︷︷ ︸
k

×X(M)× ...× X(M)︸ ︷︷ ︸
`

→ C∞(M,R)

i.e. for all ρ1, ..., ρk ∈ X∗(M), x1, ..., x` ∈ X(M), for all f ∈ C∞(M,R),

α(ρ1, ..., f · ρj , ..., ρk, x1, .., x`) = f · α(ρ1...., ρj , ..., ρk, x1, ..., x`)

and
α(ρ1, ..., ρj + (ρj)′, ..., x`) = α(ρ1, ..., ρj , ..., x`) + α(ρ1, ..., (ρj)′, ..., x`)

(and similarly for xi’s).

(b) T (k,`)(M) is a C∞(M,R) module given by taking α, α̃ ∈ T (k,`)(M), then (α+ α̃)a := αa + α̃a, and for
f ∈ C∞(M,R),

(f · α)a = f(a) · αa

(c) The map ⊗ : T (k,`)(M)× T (k′,`′) → T (k+k′,`+`′),

(α⊗ β)(ρ1, ..., ρk+k′ , X1, ..., X`+`′)

= α(ρ1, ..., ρk, X1, ..., X`) · β(ρk+1,...,k+k′ , .X`+1, ..., X`+`′)

is C∞(M,R)-linear and is associate.

Proof. (a) If α ∈ T (k,`)(M), then α maps into C∞(M,R) by 8.12(b). It is C∞(M,R) multilinear, because
α is defined point-wise:

α(ρ1, ..., X`)(a) = αa(ρ1
a, ..., X

`
a)

and this implies the claim. Conversely, if α : X∗(M)k×X(M)` → C∞(M,R) is C∞(M,R)- multilinear,
then we claim that α ∈ T (k,`)(M). To see this, we need to show that

α(ρ1, ..., ρk, X1, .., X`)(a)

only depends on ρ1
a, ..., ρ

k
a, X

1
a , ..., X

`
a. First, we show that it only depends on a local neighborhood

of a: assume that ρj |U = ρ̃j |U for a ∈ U , where U is an open neighborhood of M . Choose a bump
function f ∈ C∞(M,R) such that f(a) = 1, and f |M−U = 0. Then, the function f · (ρj − ρ̃j) = 0.
Therefore, 0 = α(.., f(ρj − ρ̃j), ...)(a), and by C∞(M,R),

= f(a)︸︷︷︸
=1

·α(..., ρj − ρ̃j , ...)(a) = α(..., ρj)(a)− α(..., ρ̃j , ...)(a)

Second, α only depends on ρ1
a, ..., ρ

k
a, X

1
a , .., X

`
a. Let ϕ : U → Rd be a chart of M at a ∈ U . Fix j. On

U , ρj =
∑d
i=1 gidx

i, gi ∈ C∞(U,R).
Then, there exists fi ∈ C∞(M,R), i = 1, ..., d such that there exists a neighborhood V of a where

wj |V =
d∑
i=1

fidx
i

and
∑
i fidx

i can be extended to a global covector field as in Lemma 5.4(?). Then,

α(..., ρj , ...)(a) = α(...,
∑
i

fidx
i, ...)(a) =

∑
fi(a) · α(..., dxi, ...)(a)︸ ︷︷ ︸

G(a)
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and fi, G ∈ C∞(M,R). Therefore, αa given by

αa(ρ1
a, ., .., ρ

k
a, X

1
a , ..., X

`
a)

is well defined. Note that αa : M → T (k,`)(TM) is smooth by criterium 8.12(b). This implies the
claim (realize that this is less of a hard proof, and more of a sketch).

(b) clear

(c) clear

8.14 Covariant Tensors

We now restrict to covariant tensors, i.e., tensors of type (0, `).
(a) For F ∈ C∞(M,N), and a ∈M , there is an induced pullback map

dF ∗a : T (0,`)(TF (a)N)→ T (0,`)(TaM)

given by
(dF ∗a (αF (a)))(X1

a , ..., X
`
a) := αF (a)(dFa(X1

a), ..., dFa(X`
a))

(b) There is also an induced map F ∗ : T (0,`)(N)→ T (0,`)(M) by

F ∗(α)a := dF ∗a (αF (a))

(c) We have: F ∗(f · α) = (f ◦ F ) · F ∗(α) for f ∈ C∞(M,R), α ∈ T (0,`)(N).

Proof.

F ∗(f · α)a(X1, ..., X`) = dF ∗a ((f · α)F (a))(X1, ..., X`) = (f |F (a) · αF (a))(dFa(X1), ..., dFa(X`))

= f(F (a)) · dF ∗a (αF (a))(X1, ..., X`) = ((f ◦ F ) · F ∗(α))a(X1, ..., X`)

(d) For α ∈ T (0,`)(N), β ∈ T (0,`′)(N), we have α⊗ β ∈ T (0,`+`′)(N), and it is

F ∗(α⊗ β) = F ∗(α)⊗ F ∗(β)

Proof.

F ∗(α⊗β)a(X1, ..., X`+`′) = (α⊗β)F (a)(dFa(X1), ..., dFa(X`+`′)) = αF (a)(dFa(X1), ..., dFa(X`))·βF (a)(dFa(X`+1), ..., dFa(X`+`′)

= F ∗(α)a(X1, ..., X`) · F ∗(β)(X`+1, ..., X`+`′)
= (F ∗(α)⊗ F ∗(β))a(X1, ..., X`+`′)

(e) In local coordinates for some chart ψ : V → ψ(V ) of N ,

α =
∑

j1,...,j`

αj1,...,j`dx̃
j1 ⊗ ...⊗ dx̃j` ∈ T (0,`)(V )

then
(1) F ∗(α) (c),(d)=

∑
j1,...,j`

(αj1,...,j` ◦ F ) · F ∗(dx̃j1)⊗ ...⊗ F ∗(dx̃j`)

by 8.6,
=

∑
j1,...,j`

(αj1,....,j` ◦ F ) · d(x̃j1 ◦ F )⊗ ...⊗ d(x̃j` ◦ F )
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8.15 8.15 Important Tensors in Differential Geometry

Remark. • Riemannian metric,

g =
∑

gijdx
i ⊗ dxj ∈ T (0,2)(M)

• Riemannian curvature, R ∈ T (1,3)(M)

• Ricci curvature Ric ∈ T (0,2)(M)

• Scalar curvature S ∈ T (0,0)(M) = C∞(M,R)

• Einstein Field equations,

Ric− 1
2S · g = T

where T is the energy-stress tensor. These are the field equations for general relativity, and this
latest equation lives in T (0,2)(M).
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9
Differential Forms

This chapter is based on Lee’s book, chapter 12 and 14 (mainly 14, and a little bit of 12).

9.1 Symmetric tensors

Definition. Let V be a finite dimensional vector space of dimension d.

(a) Denote by T `(V ∗) := T (0,`)(V ) = L(V, ..., V︸ ︷︷ ︸
`

;R) ∼= V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
`

(b) α ∈ T `(V ∗) is called symmetric if and only if

α(v1, ..., vi, .., vj , ..., v`) = α(v1, .., vj , ..., vi, ..., v`) ∀i, j

The space of symmetric tensors is denoted by S`(V ∗) ⊂ T `(V ∗).

(c) α ∈ T `(V ∗) is called anti-symmetric or alternating if

α(v1, ..., vi, .., vj , ..., v`) = −α(v1, .., vj , ..., vi, ..., v`) ∀i, j

The space of alternating tensors is denoted by Λ`(V ∗) ⊂ T `(V ∗). Λ` := ⊕`≥0Λ`(V ∗) is called the
exterior algebra of V ∗, and we will see later that it is indeed, an algebra.

Claim. The following are equivalent:

1. α is alternating

2. For all v, α(, ..v, ..., v, ...) = 0

3. If v1, ..., v` are linearly dependent, then α(v1, ..., v`) = 0.

Proof. (1) ⇐⇒ (2)

We think that 1⇒ 2 is clear, because ‘it is its own negative’. Also, the⇐ direction of the proof is similarly
easy, in that

0 = α(, ..., vi + vj , ..., vi + vj , ...) = α(, ..., vi, ..., vi) + α(..., vi, ..., vj) + α(, ..., vj , ..., vj) + α(, ..., vj , ..., vi)

as two of the above are 0 by assumption, we have our claim.

69



CHAPTER 9. DIFFERENTIAL FORMS

(2) ⇐⇒ (3)

Again, we say that the ⇐ direction is clear. In the other direction, assume v1 =
∑
j≥2 cj · vj (which we

can do without loss of generality). Then,

α(v1, v2, ..., v`) = α(
∑̀
j=2

cjvj , v2, ..., v`)

by multilinearity,

=
∑̀
j=2

cj · α(vj , v2, ..., v`) = 0

since (vj , v2, ..., v`) = 0.

9.2 A basis for Λ`(V ∗)
Proposition 34. Let {ej}dj=1 be a basis of V and let {εj}dj=1 be the dual basis of V ∗, i.e., εj(ei) = δij . For a
multindex I = (i1, ..., i`) (where 1 ≤ ij ≤ d), we define εI ∈ T `(V ∗) by

εI(v1, ..., v`) := det

ε
i1(v1) ... εi1(v`)

...
...

εi`(v1) . . . εi`(v`)

 = det(εij (vk))j,k

Claim. 1. εI ∈ Λ`(V ∗)

2. {εI |I = (i1, ..., i`) with i1 < i2 < ... < i`} forms a basis of Λ`(V ∗).

3. dim(Λ`(V ∗)) =
(
d
`

)
= d!

`!(d−`)! for 1 ≤ ` ≤ d, dim(Λ(V ∗)) = 0 whenever ` > d.

Proof. 1.

εI(..., v, .., v, ..) = det

... εi1(v) ... εi1(v) ...
...

...
... εi`(v) ... εi`(v) ...


as this matrix has the same column twice, and hence the determinant is equal to 0. This implies the
claim, by 9.1(c)(3).

2. We need to show that {εI |I = (i1, ..., i`) with i1 < i2 < ... < i`} spans the exterior algebra,
and is linearly independent. For the span, let α ∈ Λ`(V ∗). Then for any I = (i1, ..., i`) (not
necessarily increasing) define αI := α(ei1 , ei2 , ..., ei`) ∈ R. Note by 9.1 that α(...,i,...,i,...) = 0, and
for a permutation σ ∈ Σ` (the symmetric group), we have that

α(iσ(1),...,iσ(`)) = α(eiσ(1) , ..., eiσ(`)) = sign(σ)α(ei1 , ..., ei`)

where sign(σ) ∈ {±1} is the sign of the permutation. Then we claim that the following is true,
where the sum on the right is the sum over all such multindexes J ,

α =
∑

J=(j1<...<j`)

αJ · εJ . (9.2.1)

To see this, apply (ei1 , ..., ei`) for some multindex I = (i1 < i2 < ..., i`). Then α(ei1 , ..., ei`) = αI ,
and ∑

J=(j1<...<j`)

αjε
J(ei1 , ..., ei`) =

∑
J=(j1<...<j`)

αj · det

ε
j1(ei1).....εj1(ei`)

...
εj`(ei1)...εj`(ei`)


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The claim is that the determinant on the right is equal to δj1i1 · δj2i2 · ... · δj`i` . For a general
I = (i1, ..., i`), note that both sides of 9.2.1 are alternating, (and both sides applied to (..., v, ..., v, ...)
give us 0), so that 9.2.1 holds when applies to any (ei1 , ..., ei`). As such, we have the span condition.
Now, we show linear independence: assume that∑

J=(j1<...<j`)

cJ · εJ = 0,

we need to show that every cJ = 0. Apply ∑
J incr.

cj · εJ

to (ei1 , ..., ei`) for i1 < ... < i`, then∑
J incr.

cj · εJ(ei1 , ..., ei`) =
∑
J incr

·det
((
εj(eis)

)
j,s

)
and the determinant is equal to δj1i1 · ... · δj`i` , so the sum is equal to cI .

3. Note that increasing indicies (i1 < i2 < ... < i`) correspond to `-element subsets {i1, ..., i`} ⊂
{1, ..., d}. There are

(
d
`

)
many `-element subsets of {1, ..., d}. If ` > d, then Λ`(V ∗) = {0} by

9.1(c)(3).

9.3 The wedge product

Definition. (a) Define the alternation map

Alt : T `(V ∗)→ Λ`(V ∗)

given by

(Alt(α))(v1, ..., v`) := 1
`!
∑
σ∈Σ`

sign(σ) · α(vσ(1), ..., vσ(`))

As an exercise, check that Alt(α)(..., vi, ..., vj , ..) = −Alt(α)(, ..., vj , ..., vi, ...), and therefore, Alt(α) ∈
Λ`(V ∗) is well defined.

(b) The wedge product or exterior product is a map

∧ : Λ`(V ∗)× Λ`
′
(V ∗)→ Λ`+`

′
(V ∗)

where α ∈ Λ`(V ∗), β ∈ Λ`′V ∗, given by

α ∧ β := (`+ `′)!
`!`′! ·Alt(α⊗ β) ∈ Λ`+`

′
(V ∗)

where α⊗ β ∈ T `+`′(V ∗).

(c) We have
ε(i1,...,i`) ∧ ε(j1,...,j`′ ) = ε(i1,...,i`,j1,...,j`′ )

(d) The wedge product is bilinear; for all r, s ∈ R,

(rα+ sβ) ∧ γ = r(α ∧ γ) + s(β ∧ γ)

and
α ∧ (rβ + sγ) = r(α ∧ β) + s(α ∧ γ)
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(e) The wedge product is associative,

(α ∧ β) ∧ γ = α ∧ (β ∧ γ)

(f) The wedge product is anti-commutative, if α ∈ Λ`(V ∗) and β ∈ Λ`′(V ∗), then

α ∧ β = (−1)`·`
′
· β ∧ α

Proof. We have

Alt(α⊗ β)(v1, ..., v`+`′) =
∑

σ∈Σ`+`′

sign(σ) · α(vσ(1), ..., vσ(`)) · β(vσ(`+1), ..., vσ(`+`′)) ∈ R

=
∑

σ∈Σ`+`′

sign(σ) · β(vσ(`+1), ..., vσ(`+`′)) · α(vσ(1), ..., vσ(`))

=
∑

σ∈Σ`+`′

sign(σ) · β(v ˜σ(1), ..., v ˜σ(`′)) · α(v ˜σ(`′+1), ..., v ˜σ(`+`′))

where σ and σ̃ are related by σ̃ = σ ◦ τ , where

τ(j) =
{
j + `, j ≤ `′
j − `′, j > `′

Note that sign(τ) = ` · `′. Therefore, this gives us that the sum above is equal to

= (−1)`·`
′
·Alt(β ⊗ α)

(g) For all ρ1, ..., ρ
` ∈ V ∗ = T 1(V ∗) = Λ1(V ∗),

(ρ1 ∧ ... ∧ ρ`︸ ︷︷ ︸
∈Λ`(V ∗)

)(v1, ..., v`) = det
((
ρj(vi)

)
i,j

)

Proof. The formula is true for ρj = eij ∈ V ∗ by definition 9.2. The claim follows, since both sides are
multi-linear in ρj ’s (by (d) above, and the determinant is also multi-linear).

Proof. Though select properties were proven, this will be on the next homework sheet.

9.4 The interior product

Definition. Let v ∈ V . Then, we can define the interior product,

iv : Λ`(V ∗)→ Λ`−1(V ∗)

given by
(iv(α))(v1, ..., v`−1) = α(v, v1, ..., v`−1)

Notationally, we also write iv(α) = v¬α (this should be upside down) It has the following properties:

(a) iv ◦ iv = 0

(b) For α ∈ Λ`(V ∗), β ∈ Λ`′(V ∗):

iv(α ∧ β) = iv(α) ∧ β + (−1)` · α ∧ iv(β)

Proof. (a) clear

(b) exercise
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9.5 Linear maps, exterior algebras, and the wedge product

Lemma 35. (a) If A : V →W is a linear map, then there is an induced map

A∗ : Λ`(W ∗)→ Λ`(V ∗)

where Λ`(W ∗) ⊂ T (0,`)(W ), and Λ`(V ∗) ⊂ T (0,`)(V ) given by

(A∗(β))(v1, ..., v`) = β(Av1, ..., Av`)

It is true that A∗(β ∧ γ) = A∗(β) ∧A∗(γ).

Proof. A∗ is defined on T (0,`) by 8.10 (and is anti-symmetric), A∗(β⊗γ) = A∗β⊗A∗γ, and Alt◦A∗ =
A∗ ◦Alt, which you can check on β and some (v1, ..., v`).

(b) If A : V →W and B : W → Z are linear maps, then (B ◦A)∗ = A∗ ◦B∗ : Λ`(Z∗)→ Λ`(V ∗).

Proof.

(A∗◦B∗)(γ)(v1, .., v`) = A∗(B∗γ)(v1, ..., v`) = (B∗γ)(Av1, ..., v`) = γ(BAv1, .., BAv`) = (B◦A)∗(γ)(v1, ..., v`)

9.6 A manifold structure on the exterior bundle, Λ`(T ∗M)
Definition. Let M be a manifold of dimension d. Let

Λ`(T ∗M) := {(a, α)|a ∈M,α ∈ Λ`(T ∗aM)}.

be the exterior bundle of M , and let π : Λ`(T ∗M)→M where π(a, α) = a.

Claim. Λ`(T ∗M) is a manifold of dimension d+
(
d
`

)
.

Proof. Let α : M → Λ`(T ∗M) be a section of π, i.e.,

π ◦ α = idM

Let ϕ : U → R be a chart of M . Then, {dxi|a}i=1,...,d is a basis of T ∗aM so that{
(dxi1)|a ∧ ... ∧ (dxi`)|a

}
I=(i1<...<i`)

forms a basis of Λ`(T ∗aM) (recall that dxi ∧ dxj = −dxj ∧ dxi, and so dxi ∧ dxi = 0). Then α can be
written (locally) as

α =
∑

I=(i1<...<i`)

αi1...i`dx
i1 ∧ ... ∧ dxi`

For any ϕ : U → Rd in the atlas of M , AM , define

ϕΛ` : π−1(U)→ Rd+(d`)

by
ϕλ`(a, α) = (ϕ(a), {αi1,...,i`}i1<...<i`)

then AΛ` = {ϕΛ` |ϕ ∈ AM} is an atlas and π ∈ C∞(Λ`(T ∗M),M).
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9.7 Differential `-forms

Definition. (a) Let α : M → Λ`(T ∗M) be a section of π. Then the following are equivalent:

(a) α is smooth.

(b) α ∈ C∞(M,Λ`(T ∗M)).

(c) αi1,...,i` ∈ C∞(M,R) for all multi-indices I = (i1, .., i`).

Proof. We have the corresponding property for tensors, see 8.12(b).

A smooth section α ∈ C∞(M,Λ`(T ∗M)) is called a (differential) `-form of M , the set of all `-forms
is denoted by,

Ω`(M) = Ω`DR(M) := {α ∈ C∞(M,Λ`(T ∗M))|π ◦ α = idM} =: Γ(M,Λ`(T ∗M)∗

The wedge product gives us a map,

∧ : Ω`(M)× Ω`
′
(M)→ Ω`+`

′
(M)

Remark. Ω`(M) is a R-vector space.

Define,

Ω∗(M) = Ω∗DR(M) := ⊕`≥0Ω`(M)

which is called the deRhamn algebra of M , where the algebra structure given by

∧ : Ω∗(M)× Ω∗(M)→ Ω∗(M)

Remark. It was asked that we better flesh-out the map that the wedge product induces, so for all a ∈M ,

∧ : Λ`(T ∗aM)× Λ`
′
(T ∗aM)→ Λ`+`

′
(T ∗aM),

(∑
I

αi1,...,i`dx
i1 ∧ ... ∧ dxi`

)
∧

(∑
J

βj1,...,j`dx
j1 , ..., , dxj`

)
=
∑
I,J

(αi1,...,i` · βj1,...,j`) · dxi1 ∧ ... ∧ dxi` ∧ dxj1 ∧ ... ∧ dxj
′
`

(b) For a smooth map F ∈ C∞(M,N), we have an induced map

F ∗ : Ω`(N)→ Ω`(M)

such that

F ∗(α ∧ β) = F ∗(α) ∧ F ∗(β) (9.7.1)

Proof. Pullbacks exist for tensors T (0,`)(M) by 8.14. The alternating property is preserved (point-
wise) by 9.5(a), and 9.7.1 follows pointwise from 9.5(a).

∗I cannot find this notation elsewhere, so I fear that I made a typo. I have allowed it to remain, for the time being.
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9.8. THE EXTERIOR DERIVATIVE DDR

9.8 The exterior derivative dDR
(a) Let U ⊂ Rn be an open subset. Define the exterior derivative d = dDR,

dDR : Ω`(U)→ Ω`+1(U)

as follows: for α ∈ Ω`(U), write

α =
∑

I=(i1...i`)

αi1...i`dx
i1 ∧ ... ∧ dxi` =

∑
I

αIdx
I

where αI = αi1,...i` and dxI = dxi1 ∧ ... ∧ dxi` (here, I is just an index, and need not be increasing).
Let

dα = d

(∑
I

αIdx
I

)
:=
∑
I

(dαI) ∧ dxI

Note that this is well defined, because

αI ∈ C∞(U,R)⇒ dαI ∈ X∗(U) = T (0,1)(U) = Ω1(U),

and the definition is independent of your choice of multi-indices, since for dxI = (−1)εdxJ , we have

d(α · (−1)ε · dxJ) = d((−1)ε · α) ∧ dxJ = dα ∧ dxI = d(α · dxI)

(b) Example: U is still an open subset of Rn. If f ∈ Ω0(U) = C∞(U,R):

df
8.4=
∑
j

∂f

∂xj
dxj

α ∈ Ω1(U) implies α =
∑n
i=1 fidx

i. Then,

dα = d

(∑
i

fidx
i

)
=
∑
i

dfi ∧ dxi =
∑
i

∑
j

∂fi
∂xj

dxj ∧ dxi =
∑
i<j

∂f

∂xj
dxj ∧ dxi +

∑
i>j

∂fi
∂xj

dxj ∧ dxi

=
∑
i>j

(
∂fi
∂xj
− ∂fj
∂xi

)
dxj ∧ dxi

Lastly, take α ∈ Ω2(U), so α =
∑
i<j fijdx

i ∧ dxj , giving us

dα = d

∑
i<j

fijdx
i ∧ dxj

 =
∑
i<j

dfij ∧ dxi ∧ dxj =
∑
i<j

∑
k

∂fij
∂xk

dxk ∧ dxi ∧ dxj

=
∑
k<i<j

(...) +
∑
i<k<j

(...) +
∑
i<j<k

(...) =
∑
k<i<j

(
∂fij
∂xk

− ∂fkj
∂xi

+ ∂fik
∂xj

dxk ∧ dxi ∧ dxj
)

9.9 Properties of the exterior derivative.

Proposition 36. With notation from 9.8, we have the following:

(a) d is R-linear

(b) For all α ∈ Ω`(U), β ∈ Ω`′(U), we have

d(α ∧ β) = dα ∧ β + (−1)` · α ∧ dβ
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(c) d ◦ d = 0

(d) For all U ⊂ Rn open, V ⊂ Rm open, and for all F : U → V smooth with all α ∈ Ω`(V ):

F ∗(dα) = d(F ∗(α))

Proof. (a) Note that d(r · f) = r · d(f) for all r ∈ R, and f ∈ C∞(U,R).

(b) First, for f, g ∈ Ω0(U) = C∞(U,R), we have

d(f · g) =
∑
j

∂(f · g)
∂xi

dxi =
∑
i

(
∂f

∂xi
· g + f · ∂g

∂xi
dxi
)

=
(∑

i

∂f

∂xi
dxi

)
· g + f ·

(∑
i

∂g

∂xi
dxi

)

= (df)g + f(dg) = (df) ∧ g + f ∧ (dg)

In general, α ∈ Ω`(U), α =
∑
i αidx

i, β ∈ Ω`′ , β =
∑
J βJdx

J , we have

d(α ∧ β) = d(
∑
I,J

αI · βJdxI ∧ dxJ) =
∑
I,J

d(αI · βJ) ∧ dxI ∧ dxj

so from the previous case,

=
∑
I,J

(dαI · βJ + αI · dβJ) ∧ dxi ∧ dxJ =
∑
I,J

(dαI ∧ dxI ∧ βJ ∧ dxJ + (−1)`αI · dxI ∧ dβJ ∧ dxI)

=
(∑

I

dαI ∧ dxI
)
∧

(∑
J

βJdx
J

)
+ (−1)` ·

(∑
I

αIdx
I

)
∧

(∑
J

dβJ ∧ dxJ
)

= dα ∧ β + (−1)`α ∧ dβ

(c) For f ∈ C∞(U,R) = Ω0(U), we have that

d2(f) = d(df) = d

(∑
i

∂f

∂xi
dxi

)
=
∑
i,j

∂2f

∂xi∂xj
dxj∧dxi 9.8(b)=

∑
j<i

(
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
dxj∧dxi = 0

For
α =

∑
I

αIdx
I ∈ Ω`(U),

we have that

d2(α) = d

(∑
I

dαI ∧ dxi1 ∧ ... ∧ dxi`
)

(b)=
∑
I

d2αI︸︷︷︸
0

∧dxi1 ∧ ... ∧ dxi` −
∑
I

dαI ∧ d2xi1︸ ︷︷ ︸
0

∧... ∧ dxi` + ...+
∑
I

dαI ∧ dxi1 ∧ ... ∧ d2xi`︸ ︷︷ ︸
0

= 0

(d)

F ∗ ◦ d(fdxi ∧ ... ∧ dxi`) = F ∗(df ∧ dxi ∧ ... ∧ dxi`) 9.5(a)= (F ∗df) ∧ (F ∗dxi1) ∧ ... ∧ (F ∗F ∗dxi`)

8.6= d(f◦F )∧d(xi◦F )∧...∧d(xi`◦F ) = d((f◦F )·d(xi1◦F )∧...∧d(xi`◦F )) 9.5(a)= d(F ∗(f ·dxi1∧...∧dxi`))

The claim then follows by the R-linearity of F ∗ and d.
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9.10 The local definition of the exterior derivative

Definition. Let M be a smooth manifold. Define d : Ω`(M) → Ω`+1(M) as follows: for α ∈ Ω`(M),
dα ∈ Ω`+1 is defined locally on a chart ϕ : U → ϕ(U) by setting dα|U ∈ Ω`+1(U) to be

dα|U := ϕ∗ ◦ d ◦ (ϕ−1)∗(α|U )

This is well defined, since for another chart ψ : V → ψ(V ) we have

ψ∗ ◦d◦ (ψ−1)∗(α) = ϕ∗ ◦ (ϕ−1)∗ ◦ψ∗ ◦d◦ (ψ−1)∗(α) = ϕ∗ ◦d◦ (ψ ◦ϕ−1)∗ ◦ (ψ−1)∗(α) = ϕ∗ ◦α◦ (ϕ−1)∗(α).

where some of these equalities are taken from 9.5(b) and 9.9(d).

9.11 More properties of the exterior derivative

Proposition 37. The map d satisfies the following:

(a) d is R-linear

(b) d(α ∧ b) = dα ∧ β + (−1)` · α ∧ dβ for α ∈ Ω`(M)

(c) d2 = 0

(d) ∀f ∈ Ω0(M), x ∈ X(M), df(x) = X(f),

(e) ∀F ∈ C∞(M,N), α ∈ Ω`(N): F ∗(dα) = d(F ∗α)

Proof. (a) Clear from 9.9(a)

(b)

d(α ∧ β) def= ϕ∗d(ϕ−1)∗(α ∧ β) =9.7(b)= ϕ∗d((ϕ−1)∗α ∧ (ϕ−1)∗β)
9.9(b)= ϕ∗((d(ϕ−1)∗α) ∧ (ϕ−1)∗β) + (−1)`((ϕ−1)∗α) ∧ d((ϕ−1)∗β))

9.7(b)= dα ∧ β + (−1)`α ∧ dβ

(c)
d2 = ϕ∗d(ϕ−1)∗ϕ∗d(ϕ−1)∗ = ϕ∗d2(ϕ−1)∗ = 0

(d) Locally:

df

(
∂

∂xi

)
= ϕ∗d((ϕ−1)∗f)( ∂

∂xi
) = ϕ∗

∑
j

∂(f ◦ ϕ−1)
∂xj

dxj

( ∂

∂xi

)
= ∂(f ◦ ϕ−1)

∂xi
◦ ϕ

(e) Locally: for charts ϕ of M , ψ of N , F (U) ⊂ V (again, I’m just using the normal notation here):

F ∗(dα) = F ∗◦ψ∗◦d(ψ−1)∗(α) = ϕ∗◦(ϕ−1)∗◦F ∗◦ψ∗◦d◦(ψ−1)∗(α) 9.9(d)= ϕ∗◦d◦(ψ◦F◦ϕ−1)∗◦(ψ−1)∗(α) = ϕ∗d(ϕ−1)∗F ∗α = dF ∗(α)

Remark. d is the unique map satisfying (a)− (d).
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9.12 Person addendum

The notes above have now covered a significant number of different manifold structures, all of which
are deeply inter-related. I thought it might be worth it (for my personal perspective) to draw a ‘chart’
of some kind, which simply summarizes some of these ideas. The graph below isn’t supposed to be
taken as anything that follows conventional notation, rather, I was hoping it might provide some kind of
mnemonic device. If you’re not me, you probably want to skip this.

a ∈M TaM TM X(M)

T ∗aM T ∗M X∗(M)

T (k,`)(TaM) T (k,`)(M) T (k,`)

T `(T ∗aM) ⊃ Λ`(T ∗aM) Λ`(T ∗aM) Ω`(M) = Ω`DRM

∗ ∗ ∗
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10
Orientation and Integration

10.1 Orientations

Definition. Let V be a vector space of dimension d ≥ 1. An ordered basis is a d-tuple (e1, ..., ed) such
that {ei}i=1,...,d is a basis of V . Two ordered bases (e1, ..., ed) and (f1, ..., fd) are called equivalent if the
linear map A : V → V , A(ei) = fi for all i = 1, .., d satisfies det(A) > 0 (it can be shown that this is an
equivalence relation). An orientation on V is an equivalence class of ordered bases [(e1, ..., ed)]. A vector
space V has exactly two orientations: [(e1, ..., ed)], and [(−e1, ..., ed)] = [(e2, e1, e3, ..., ed)].

10.2 Linear maps and induced maps on exterior algebras

Lemma 38. Let V be a vector space of dimension d, so that Λd(V ∗) has dimension
(
d
d

)
= 1. If A : V → V is

a linear map, then the induced map A∗ : Λd(V ∗)→ Λd(V ∗) from 9.5.;

A∗(β)(v1, .., vd) = β(Av1, ..., Avd)

is given by
A∗(β) = det(A) · β ∈ Λd(V ∗)

Proof. Let {ei}di=1 be a basis of V with dual basis {αi}di=1 of V ∗. Then, α1 ∧ ...∧αd spans Λd(V ∗), so that

β = c · α1 ∧ ... ∧ αd.

Then,

β(e1, ..., ed) = c · α1 ∧ ... ∧ αd(e1, ..., ed) = c · det((αi(ej))ij)
9.3(g)= c,

and if A(ej) =
∑n
`=1A

`
je`,

A∗ (β) (e1, ..., ed) = β (Ae1, ..., Aed) = c · det
((
αi (Aej)

)
ij

)
= c · det

(∑
`

A`jα
i (e`)

)
i,j

 = c · det (A)

We claim that this is true when applied to (e1, .., ed). Since both sides are alternating, this implies true
for when applied to (eσ(1), ..., eσ(d)). Since both sides are multilinear, this implies the claim when applied
to any (v1, ..., vd).
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10.3 Determining an orientation with Λd(V ∗)− {0}
Corollary 39. Let d ≥ 1. An orientation consists of a choice of component of Λd(V ∗) − {0}. In fact,
β ∈ Λd(V ∗)− {0} determines the orientation [(e1, ..., ed)] so that β(e1, ..., ed) > 0.

Proof. If A(ei) = fi, then

β(f1, ..., fd) = β(Ae1, ..., Aed) = (A∗β)(e1, ..., ed) = det(A) · β(e1, ..., ed)
<
> 0

where the inequality is determined by the sign of A’s determinant. Thus, β determines a well-defined
orientation. If β′ is in the same component as β, then β′ = c·β, c > 0. thus β′(e1, ..., ed) = c·β(e1, ..., ed) >
0. This implies that β′ determines the same basis, while −β determines [(−e1, ...., ed)].

10.4 Equivalent conditions for being orientable

Proposition 40. Let M be a manifold of dimension d. The following three conditions are equivalent:

1. There exists a choice of orientations [(ea1 , ..., ead)] of TaM for each a ∈M such that for all a ∈M there
exist Ua ⊂open M , a ∈ Ua, such that there exist X(a)

1 , ..., X
(a)
d ∈ X(Ua) such that for all x ∈ Ua,

X
(a)
1 |x, ..., X

(a)
d |x are linear independent and

(X(a)
1 |x, ..., X

(a)
d |x) ∼ (ex1 , ..., exd)

2. There exists a nowhere vanishing d-form ω ∈ Ωd(M)

3. There exists a non-maximal atlas Aa = {ϕ : U → Rd} of M such that for all (ϕ,U), (ψ, V ) ∈ Aa,

det

(
∂(ψ ◦ ϕ−1)j

∂xi

∣∣∣
ϕ(U∩V )

)
i,j

> 0

If M satisfies one of these conditions, then M is called orientable. A choice of [(ea1 , ..., ead)] (or of ω, or of
Aa) is an orientation of M . Furthermore, we call a chart ϕ : U → Rd positively oriented if(

∂

∂x1

∣∣∣
p
, ...,

∂

∂xd

∣∣∣
p

)
induces the chosen orientation at each p ∈ U . Also, Aa is called an orienting atlas.

Proof. We approach this proof by showing that 1⇒ 2⇒ 3⇒ 1.

(1⇒ 2)

Let Ua, Xa
1 , ..., X

a
d as in (1). Define ρa ∈ Ωd(Ua),

ρ(Xa
1 , ..., X

a
d ) = 1

This is smooth, because in local coordinates, write

Xa
i =

d∑
i=1

Aji
∂

∂xj
∈ X(Ua)

with Aji ∈ C∞(Ua,R), if A : ∂
∂xi 7→ Xa

i , then

ρa(Xa
1 , ..., X

a
d ) = 1 = ρa

(
A

∂

∂x1 , ..., A
∂

∂xd

)
= A∗(ρa)

(
∂

∂x1 , ...,
∂

∂xd

)
= det(A) · ρa

(
∂

∂x1 ...,
∂

∂xd

)
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⇒ ρa

(
∂

∂x1 , ...,
∂

∂xd

)
= 1
det(A) ∈ C

∞(U0,R)

implying ρa is smooth by 8.13(a). Let χa be a partition of unity subordinate to {Ua}a∈M . Then define,

ω :=
∑
a∈M

χa · ρa

where χa · ρa is a d form on M (is in Ωd(M)), because supp(χa) ⊂ Ua. We have that ω ∈ Ωd(M) is
nowhere vanishing, from the following reasoning: consider

ω(ey1, ..., e
y
d) =

∑
a∈M

χa · ρa(ey1, ..., e
y
d),

and let Aa : TyM → TyM , Aa : Xa
i |y → eyi , where Xa

i ∈ X(Ua). Then det(A) > 0, which implies that

ω(ey1, ..., e
y
d) =

∑
a∈M

χa · ρa(ey1, ..., e
y
d)

=
∑
a∈M

χa · ρa(Aa ·A−1
a eyi , ..., AaA

−1
a eyi )

=
∑
a

χaA
∗
a(ρa)(Xa

1 |y, ..., Xa
d |y)

=
∑
a

χa · det(A) · ρa(Xa
1 , ..., X

a
d ) =

∑
a

χa︸︷︷︸
≥0

· det(A(a))︸ ︷︷ ︸
>0

and there exists a χa(y) > 0, so this sum is not equal to 0. �

(2⇒ 3)

Let the orienting atlas be Aa = {ϕ ∈ a|ω
(
∂
∂x1 , ...,

∂
∂xd

)
> 0} where ∂

∂x1 are induced by the chart ϕ (this
is the oriented atlas, and I may have meant to write this as, OA). This is an atlas; in fact it covers all of
M (because if ϕ is a chart, write ω in the basis given by the chart implying that ω = f · dx1 ∧ ... ∧ dxd,
f ∈ C∞(U,R), f 6= 0). Assuming that U is connected, then f > 0 or f < 0. This implies either

ω

(
∂

∂x1 , ...,
∂

∂xd

)
= f · dx1 ∧ ... ∧ dxd

(
∂

∂x1 , ...,
∂

∂xd

)
︸ ︷︷ ︸

=1

= f > 0

implying that ϕ is in the orienting atlas, or take a chart ϕ# : U → Rd, ϕ#(x) = (−ϕ1(x), ϕ2(x), ..., ϕd(x),
implying

ω

(
− ∂

∂x1 , ...,
∂

∂xd

)
= −f < 0

which would imply that ϕ# is in the orienting atlas. We now need to check the determinant property of
(3): for ϕ,ψ ∈ AA ,

ωa

(
∂

∂x1

∣∣∣
a
, ...,

∂

∂xd

∣∣∣
a

)
= ωa

(
A

∂

∂x̃1

∣∣∣
a
, ..., A

∂

∂x̃d

∣∣∣
a

)
where A : TaM → TaM , A

(
∂
∂x̃i

)
= ∂

∂xi |a. By 5.6(2), A has matrix representation

Aij =
(
∂(ψ ◦ ϕ−1)j

∂xi
ϕ(a)

)
ij

this implies that

ωa

(
∂

∂x1 |a, ..., .
∂

∂xd
|a
)

10.2= det(A) · ωa
(
A

∂

∂x̃1 |a, ..., A
∂

∂x̃d
|a
)

︸ ︷︷ ︸
>0

implying det(A) > 0, which is the claim.
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(3⇒ 1)

Let a ∈M , let ϕ : U → Rd be a chart of M , a ∈ U . Then define

[(ea1 , ..., ead)] :=
[(

∂

∂x1

∣∣∣
a
, ...,

∂

∂xd

∣∣∣
a

)]
This is well-defined, because for another chart ψ ∈ OA , we have

∂

∂xi

∣∣∣
a

5.6(2)=
((

∂
(
ψ ◦ ϕ−1)j
∂xi

)
ϕ(a)

)
i,j

·
(

∂

∂x̃j

)
j

= A ·
(

∂

∂x̃j

)
j

and by the assumption in (3),

det (A) = det

(∂ (ψ ◦ ϕ−1)j
∂xi

)
i,j

 > 0

⇒
[(

∂

∂x1

∣∣∣
a
, ...,

∂

∂xd

∣∣∣
a

)]
=
[(

∂

∂x̃1

∣∣∣
a
, ...,

∂

∂x̃d

∣∣∣
a

)]
Clearly Xa

i := ∂
∂xi ∈ X(U) is a smooth vector field giving the correct orientation (by construction).

10.5 Recall (Integration in Rn)

10.5.1 Domains of integration

If D ⊂ Rn is a bounded subset of Rn such that the boundary ∂D := D −Do has measure 0 in Rn (i.e.,
for every ε > 0 there exist countable open rectangles R1, ..., : ∂D ⊂ ∪∞j=1Rj and

∑∞
j=1 vol(Rj) < ε), and

if f : D → R is a continuous function, then one can show that∫
D

f(x)dx1...dxn

is defined. In this case, D is called a domain of integration,

10.5.2 Examples

(1) If B ⊂ Rn is an n-ball, then the boundary of B is Sn−1, which has measure 0 in Rn. So, B is a
domain of integration.

(2) If R ⊂ Rn is an n-dimensional rectangle, then R is also a domain of integration.

(3) If D is a finite union and or intersection of domains of n-balls or rectangles, then D is a domain of
integration.

(4) Let D = t∞j=1Uj , where Uj ⊂ (0, 1) is open. We set up these Uj ’s such that D is some kind of crazy
Cantor set. This set is not a domain of integration.

10.5.3 Change of variables formula

Let D,E ⊂ Rn be domains of integration. Let φ : Do → Eo be a smooth diffeomorphism such that
φ extends to a neighborhood U of D and a neighborhood V of E as a smooth diffeomorphism. Let
f : D → R be continuous. Then,∫

E

f(x)dx1...dxn =
∫
D

(f ◦ ψ) · |det(Dφ)|dx1...dxn
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where

Dφ =
(
∂φi

∂xj

)
ij

is the Jacobian. Note that this is equal to

±
∫
D

(f ◦ φ) · det(Dφ)dx1 . . . dxn

where + when det(A) is positive, and − when det(A) is negative.

10.6 Integrating differential forms

Let E ⊂ Rn be a domain of integration. Let E ⊂ V open, and let ω ∈ Ωn(V ). Then, we can write
ω = f · dx1 ∧ ... ∧ dxn︸ ︷︷ ︸

in this order

. We define,

∫
E

ω :=
∫
f · dx1 ∧ ... ∧ dxn :=

∫
E

f dx1...dxn

which sort of feels like cheating. Let φ : D → E be as in 10.5(c). Then,

φ∗(ω) ⊂ Ωn(V )

Claim. ∫
E

ω = ±
∫
D

φ∗(ω)

where we get + if det(Dφ) > 0 and 0 if det(Dφ) < 0.

Proof.

(φ∗ω)
(

∂

∂x1 , ...,
∂

∂xn

)
= φ∗(f ·dx1∧ ...∧dxn)

(
∂

∂x1 , ...,
∂

∂xn

)
= f ◦φ ·φ∗(dx1∧ ...∧dxn)

(
∂

∂x1 , ...,
∂

∂xn

)

= f ◦ φ · det(Dφ)dx1 ∧ ... ∧ dxn
(

∂

∂x1 , ...,
∂

∂xn

)
︸ ︷︷ ︸

=1

= f ◦ φ · det(Dφ)

therefore, φ∗ω = f ◦ φ · det(Dφ) dx1 ∧ ... ∧ dxn, and the claim follows from 10.5(c).

10.7 Integrating differential forms with compact support

Let M be an oriented manifold of dimension d ≥ 1.

(a) Let ω ∈ Ωd(M) such that supp(ω) = {x ∈M |ωx 6= 0} ⊂ M , is compact. Assume that there exists a
chart ϕ : U → Rd such that ϕ(U) = B, a d-dimensional ball in Rd, and such that supp(ω) ⊂ U . Then
define, ∫

M

ω := ±
∫
B

(ϕ−1)∗(ω)

where we have + if ϕ is positively oriented, and − if ϕ is negatively oriented. Note: the integral over
B is defined, and this definition is independent of the chosen chart, expanding on this, take another
chart ψ : V → Rd, supp(ω) ⊂ U ∩ V . Then there exist domains of integration D and E such that

ϕ(supp(ω)) ⊂ D ⊂ ϕ(U ∩ V )
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ψ(supp(ω)) ⊂ E ⊂ ψ(U ∩ V )

because ϕ(supp(ω)) is compact, implying ϕ(supp(ω)) ⊂ ∪ki=1Bi, which is a domain of integration
(similarly with ψ). Then for φ := ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ), we have∫
ψ(V )

(ψ−1)∗ω =
∫
E

(ψ−1)∗(ω) 10.6= ±
∫
D

φ∗(ψ−1)∗ω = ±
∫
ϕ(U)

(ϕ−1)∗ψ∗(ψ−1)∗ω = ±
∫
ϕ(U)

(ϕ−1)∗ω

where we get + when ϕ and ψ have the same orientation, and get − when ψ and ϕ have the opposite
orientation.

(b) Let ω ∈ Ωd(M) such that supp(ω) is compact. Let ϕi : Ui → Bi ⊂ Rd be charts of M covering
supp(ω). Since supp(ω) is compact, there exist finitely many of these, ϕ1, ..., ϕk such that the support
sits inside of their union. Let χi be a partition of unity subordinate to this cover, U = {U1, ..., Uk, U0}
where U0 = M − supp(ω). Then, χi · ω ∈ Ωd(M), supp(χiω) ⊂ Ui which is a single chart. Then
define, ∫

M

ω :=
k∑
j=1

∫
M

χi · ω

This is well-defined, meaning each ∫
M

χiω ∈ R

was defined in (a). This is a finite sum of elements in R, so there isn’t a convergence issue. Also,
∫
M
ω

is independent of the chosen cover and partition of unity. For another cover V1, ..., V`, and partition
of unity ρ1, ..., ρ` subordinate to V1, ..., V`, it is

∫
M
ρj · χiω is well-defined (since supp(ρiχiω) ⊂ Ui

and of Vj). Therefore,

k∑
i=1

∫
M

χiω =
k∑
i=1

∫
M

∑̀
j=1

ρj · χiω =
k∑
i=1

∑̀
j=1

∫
M

ρjχiω =
∑̀
j=1

∫
M

k∑
i=1

χi · ρjω =
∑̀
j=1

∫
M

ρj · ω

10.8 Regular domains

Let M be a manifold of dimension d ≥ 1. A regular domain D ⊂ M is a subset such that for all
a ∈ ∂D = D −Do, there exists a chart ϕ : U → Rd such that for some 2r ∈ R,

1. ϕ(U) = (−r, r)d (the open d-dimensional cube with side length 2r)

2. ϕ(U ∩D) = (−r, r)d−1 × [0, r).

3. ϕ(U ∩ ∂D) = (−r,−r)d−1 × {0}.

In particular, ϕ(U ∩ (M −Do)) = (−r, r)d−1 × (−r, 0]. Note:

1. D = Do ∪ ∂D, Do ⊂ openM , and if D 6= ∅ then Do 6= ∅, and ∂D is an embedded submanifold of M
of dimension (d− 1), by proposition 7.9.

2. If ω ∈ Ωd(M) with compact support, then we can still define
∫
D
ω.

(a) If supp(ω) ⊂ U ⊂ Do, where ϕ : U → ϕ(U) = (−r, r)d is a chart of M , then
∫
D
ω =

±
∫
ϕ(U)(ϕ

−1)∗(ω), which is well-defined as in 10.7(a).

(b) If supp(ω) ⊂ U for some chart ϕ : U → (−r, r)d, as in the three conditions above, then define∫
D
ω = ±

∫
ϕ(U∩D)(ϕ

−1)∗ω. By (2), this (I think I mean the domain of integration) is the same
as (−r, r)d−1 × [0, r), and the ± is given by ϕ having positive or negative orientation. This is
well-defined, because if we take another chart ψ : V → (−r, r)d also as in the 3 conditions

84



10.8. REGULAR DOMAINS

above, with supp(ω) ⊂ U ∩V , then there exist D̃, Ẽ which are domains of integration such that
ϕ(supp(ω) ∩D) ⊂ D̃ ⊂ ϕ(U ∩D) and ψ(supp(ω) ∩D) ⊂ Ẽ ⊂ ψ(V ∩D). ∗

This implies ∫
ψ(V ∩D̃)

(ψ−1)∗(ω) =
∫
E

(ψ−1)∗(ω) = ±
∫
D̃

(ψ ◦ ϕ−1)∗(ψ−1)∗ω

= ±
∫
D̃

(ϕ−1)∗(ω) = ±
∫
ϕ(U∩D̃)

(ϕ−1)∗(ω)

where the ± comes from whether ψ ◦ ϕ−1 is positively or negatively oriented.

(c) For supp(ω) ⊂cpt M , let ϕi : U → Rd be charts as in (a) or (b) covering supp(ω) ∩ D. Since
supp(ω) ∩ D is compact, there are finitely many ϕ1, ..., ϕk. Let {χi}j be a partition of unity
subordinate to {U1, ..., Uk, U0} where U0 = M − (supp(ω) ∩D). Then define, as before,

∫
D

ω :=
k∑
j=1

∫
D

χi · ω

This is well-defined, as in 10.7 (i.e., it is independent of the chosen cover and partition of
unity).

3. If M has an orientation, then ∂D has an induced orientation as follows: let v = − ∂
∂xd
|a ∈ TaM

for some chart ϕ : U → Rd as in the first three conditions of this section. We call v an outward
pointing tangent vector. Let eai ∈ Ta(∂D) for i = 1, ..., d−1 be a basis. Then, (ea1 , ..., ead−1) represents
the orientation of Ta(∂D) if and only if (v, ea1 , ...., ead−1) represents the orientation of TaM . This is
well-defined: i.e., it is independent of the chosen chart. Let ψ : V → Rd be another chart as s in
this discussion, satisfying the 3 conditions at the beginning of this section. Recall from 5.6(2) that
the change of variable

∂

∂xd
|a =

d∑
j=1

∂(ψ ◦ ϕ−1)j

∂xd
(ϕ(a)) · ∂

∂x̃j

∣∣∣
a

Since ψ : ∂D → (−r, r)d−1 × {0}, we have for all j < d that

∂

∂x̃j

∣∣∣
a
∈ Ta(∂D) = span(ea1 , ..., ead−1)

Now for j = d, note that ψ ◦ ϕ−1 : (−r, r)d−1 × [0, r)→ (−r, r)d−1 × [0, r), therefore

ψ ◦ ϕ−1(ϕ(a) + (0, ..., t)) ∈

 (−r, r)d−1 × (0, r) for t > 0
(−r, r)d−1 × {0} for t = 0

(−r, r)−d1 × (−r, 0) for t < 0

this implies
∂(ψ ◦ ϕ−1)d

∂xd
(ϕ(a)) = d

dt
(ψ ◦ ϕ−1(ϕ(a) + (0, ..., 0, t)) > 0⇒

∂

∂xd
|a =

d−1∑
j=1

ri · eai︸ ︷︷ ︸
∈Ta(∂D

+c · ∂

∂x̃d
|a

∗these D̃, Ẽ can be constructed as in 10.7, e.g. for D̃ there exist finitely many B1, ..., Bk that cover ϕ(supp(ω)) and Bj ⊂
(−r, r)d. Then take D̃ := (B1 ∪ ... ∪Bk) ∩ ((−r, r)d−1 × [0, r)), which is indeed, a domain of integration.
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where c > 0. This implies that if A : TaM → TaM , A(e0
j ) = eaj , A(− ∂

∂x̃d
|a) = − ∂

∂xd
|a, then A has a

matrix representation given by

A =


c r1 . . . rd−1
0 1 0
... 1
0 1


implying that det(A) = c > 0, and so

[(− ∂

∂x̃d
|a, ea1 , ..., ead−1)] =

[(
− ∂

∂xd

∣∣∣
a
, ea1 , ..., e

a
d−1

)]

10.9 10.9 Example

M = Rn, D = {x ∈ Rn|xn ≥ 0}, implying that ∂D = Rn−1 × {0} ⊂ Rn. Let a ∈ ∂D. Denote by
[(e1, ..., en)] the standard orientation of TaRn given by ej = ∂

∂xj |a. We claim that the induced orientation
of TaRn−1 is [(−1)n · e1, ...., en−1)].

Proof. Let v = − ∂
∂xn = −en be the outward pointing tangent vector. Then: [(v, (−1)ne1, e2, ..., en−1)] =

[(−en, (−1)ne1, ..., en−1)] = [((−1)n−1 · (−1)ne1, e2, ..., en−1,−en)] = [(e1, ..., en−1, en)].

10.10 Stoke’s Theorem

Let M be an oriented manifold of dimension d. Let D be a regular domain of M . Let ω ∈ Ωd−1(M) with
compact support. Then: ∫

D

dω =
∫
∂D

ω

where ω on the right is interpreted as i∗(ω) ∈ Ωd−1(∂D), with i being the inclusion i : ∂D ↪→M .

Proof. Transcribing this proof became difficult, so I omit it due to a large number of anticipated errors.
This proof can be found in Lee’s book.

10.11 Proposition

Let M be an oriented manifold of dimension d, ω ∈ Ωd(M) with compact support, let D ⊂M be a regular
domain. We want to calculate

∫
D
ω. Let (ϕi, Ui) be positively oriented charts of M for i = 1, ..., k such

that

1. For all i = 1, ..., k, ϕi(Ui) is a domain of integration,

2. There exists a continuous extension of ϕ−1:

ϕ̃i
−1 : ϕi(Ui)→ Ui

3. supp(ω) ⊂ U1 ∪ ... ∪ Uk

4. For all i 6= j, Ui ∩ Uj = ∅

Then: ∫
D

ω =
k∑
i=1

∫
ϕi(Ui)

(ϕ−1
i )∗(ω)
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Proof. This is a sketch of the proof: first, assume there exists ϕ : U → Rd positively oriented such that
supp(ω) ⊂ U and that ϕ(U) is a domain of integration and that U is compact, and ϕ(U) is compact, and
that ϕ extends to a diffeomorphism ϕ̃ : V → Rd with U ⊂ V . Then: ∂(U ∩ Ui) has measure 0 (because
∂(ϕ(U ∩ Ui)) = ϕ(∂(U ∩ Ui)) by assumption on the extension of ϕ, and ∂(U ∩ Ui) ⊂ ∂U ∪ ∂Ui (U,Ui
open), and ∂U and ∂Ui have measure 0 since ϕ,ϕi are domains of integration.) This implies that∫

D

ω =
∫
ϕ(U)

(ϕ−1)∗ω =
k∑
j=1

∫
ϕ(U∩Uj)

(ϕ−1)∗(ω)

because ϕ(supp(ω)) ⊂ ϕ(U ∩ U1)∪ ...∪ϕ(U ∩ Uk), while for all i 6= j, ϕ(U ∩Ui)∩ϕ(U ∩Uj) = ∅ (by (4)
). These images are open, and so

ϕ(U ∩ Ui) ∩ ϕ(U ∩ Uj) ⊂ ∂(ϕ(U ∩ Ui)) ∪ ∂(ϕ(U ∩ Uj))

but either set on the right has measure 0, and so it follows that the left hand side has measure 0 as well.
Then, ∫

ϕ(U∩Uj)
(ϕ−1)∗ω =

∫
ϕj(U∩Uj)

(ϕ ◦ ϕ−1
j )∗(ϕ−1)∗ω =

∫
ϕj(Uj)

(ϕ−1
j )∗(ω)

where the last equality follows from supp(ω) ⊂ U implying that ϕj(supp(ω)) ⊂ ϕj(U ∩ Uj).

10.12 Example

Let ϕ−1 : (0, π)× (0, 2π)→ S2, given by

ϕ−1(α, β) = (sinα sin β, sinα cosβ, cosβ)

Note: ϕ−1((0, π), (0, 2π)) = S2, and this implies∫
S2
ω =

∫ π

0

∫ 2π

0
(ϕ−1)∗(ω)dαdβ
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11
DeRham Theory

YES OH SWEET LORD WE’RE BACK TO TOPOLOGY (Lee, chapter 17 and 18).

11.1 Cochains

(a) A cochain complex complex over R consists of R-vector spaces Cj , j ∈ Z and linear maps dj :
Cj → Cj+1 such that dj ◦ dj−1 = 0 for all j ∈ Z.

(b) α ∈ Ck is called closed if dk(α) = 0, in this case, α is called a cocycle, and the space of all cocycles
is denoted by Zk.

(c) α ∈ Ck is called exact if α = dk−1(β) for some β ∈ Ck−1. In this case, α is called a coboundary, the
space of all coboundaries is denoted by Bk.

(d) We define the cohomology in degree k as Hk := Zk/Bk.

(e) A map of chain complexes {Cj , dj} and {C̃j , d̃j} consists of linear maps Fj : Cj → C̃j such that
d̃j ◦ Fj = Fj+1 ◦ dj .

11.2 Definition

Let M be a smooth manifold. Let Ck := Ωk(M) for k ≥ 0, Ck = 0 for k < 0, and let dk : Ck → Ck+1 be
the DeRham exterior derivative from 9.10: d : Ωk(M)→ Ωk+1(M). Define,

Hk
DR := Zk/Bk = {α ∈ Ωk(M)|dα = 0}/{α ∈ Ωk(M)|∃β ∈ Ωk−1(M) : α = dβ}

called the DeRham cohomology of M in degree k.
Note:

(a) Hk
DR(M) = {0} for k < 0, and Hk

DR(M) = {0} for k > dim(M), because Ωk(M) = {0} for k > m.

(b) If F ∈ C∞(M,N), then this gives us that

F ∗ : Ωk(N)→ Ωk(M)

by 9.7(b). We have d(F ∗α) = F ∗dα by 9.11(c), and this implies that F ∗ gives a morphism of chain
complexes, which therefore maps F ∗ : Zk(N) → Zk(M) (since dα = 0 ⇒ dF ∗α = F ∗dα = 0) and
similarly F ∗ : Bk(N)→ Bk(M) (since α = dβ ⇒ F ∗α = F ∗dβ = dF ∗β). Hence, we get a map

F ∗ : Hk
DR(N)→ Hk

DR(M); given by: F ∗([α]) := [F ∗(α)]
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which is well defined, i.e., independent of representative α, because for [α] = [α′], then α − α′ ∈
Bk(N), if and only if α − α′ = dβ for some β ∈ Bk−1(N), but this implies that F ∗α − F ∗α′ =
F ∗dβ = dF ∗β, and so F ∗α − F ∗α′ ∈ Bk(M), which is equivalent to saying that [F ∗α] = [F ∗α′].
Note: id : M → M is a trivial map on the DeRham cohomology, and the composition of these maps
on cohomology works out well; (F ◦G)∗ = G∗ ◦ F ∗.

11.3 11.3 Definition

Definition. 1. For v0, ...., vk ∈ Rn let

[v0, ..., vk] := the affine span of v0, ..., vk = {
k∑
i=0

tj · vj
∣∣∣tj ∈ [0, 1] and

k∑
j=0

tj = 1}

2. Let e0 := 0 ∈ Rk, and for j = 1, ..., k let ej := (0, ..., 1, .., 0) ∈ Rk, where the 1 is of course, in the jth

coordinate. Define the standard k-simplex to be

σk := [e0, ..., ek]

3. There are face maps fkj : σk → σk+1, for j = 0, ..., k + 1 given by

fkk [e0, ..., ek]→ [e0, ..., êj , ..., ek+1];

e0 7→ e0, ..., ej−1 7→ ej−1, ej 7→ ej+1, ..., ek 7→ ek+1

extending fkj linearly over e0, ..., ek,

fkj

(
k∑
i=0

tiei

)
:=

k∑
i=0

tif
k
j (ei)

4. Let M be a manifold. A k-simplex in M is a continuous map σ : σk →M . A k-chain in M is a finite
linear combination of k-simplicies:

c =
∑̀
i=1

ckσi, ci ∈ R, σi a k- simplex.

Denote by Ck(M,R) := {c|c is a k-chain in M}. This is the free R-vector space generated by
all k-simplicies called the singular chain complex of M . Denote by CY (M,R) := Ck(M,R)∗ =
Hom(Ck(M,R),R) called the singular cochain complex.

5. There is a map ∂k : Ck(M,R)→ Ck−1(M,R) given by

∂k(σ) :=
k∑
i=1

(−1)iσ ◦ fk−1
j

and for

c =
∑̀
i=1

ciσi,

∂k

(∑̀
i=1

ciσi

)
=
∑̀
i=1

ci · ∂k(σi)

Claim. ∂k−1 ◦ ∂k = 0.
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Proof. I’ve done this before, so I won’t copy this one down. Basically, the signs all cancel out—it’s a
fun exercise to do.

Dualizing ∂k gives us δk−1 := ∂∗k : Ck−1(M,R) → Ck(M,R). This gives us two chain complexes,
one which uses the boundary map, and the other uses the coboundary map.

6. Let Zk(M,R) = Ker(δk), Bk(M,R) = Im(δk−1). Define Hk(M,R) := Zk(M)/Bk(M,R), called
the kth singular homology.

7. If F ∈ C∞(M,N), then for a k-simplex σ : ∆k → M , F ◦ σ : ∆k → N , and F ◦ σ is a k-
simplex in N . This gives us an induced map F∗ : Ck(M,R) → Ck(N,R), and so it’s dual gives us
F ∗ : Ck(N,R)→ Ck(M,R).

11.4 Definition and Proposition

Definition. Let M be a smooth manifold. A k-simplex σ : ∆k → M is called smooth if for all x ∈ ∆k,
there exists U ⊂open Rk, x ∈ U such that σ has a smooth extension σU : U →M , i.e., σ|U∩∆k = σU |U∩∆k .
Denote by C∞k (M,R) the R-vector space generated by smooth k − simplicies, i.e.,

c ∈ C∞k (M,R) if c =
∞∑
i=1

ciσi

where σi is a smooth k-simplex. Note that ∂k preserves smoothness, i.e., if σ is smooth then ∂σ is smooth.
Denote by ∂∞k : C∞k (M,R)→ C∞k−1(M,R) the induced boundary map ∂∞k (c) = ∂k(c). More precisely, if

i : C∞k (M,R) ↪→ Ck(M,R)

then i ◦ ∂∞k (c) = ∂k ◦ i(c), for all c ∈ C∞k (M,R). This implies that i is a chain map. Define Ck∞(M,R) :=
(C∞k (M,R))∗ with induced differential δ∞ := (δ∞)∗, then there is an induced map

ρ := i∗ : Ck∞(M,R)→ Ck∞(M,R)

Since i is a chain map, so is ρ. Define,

Hk
∞(M,R) := ZK∞(M,R)

Bk∞(M,R)

to be the kth smooth singular cohomology of M . This implies the existence of an induced map ρ∗ :
Hk(M,R)→ Hk

∞(M,R).

Claim. ρ∗ is an isomorphism.

Proof. Not done.

11.5 Definition and Proposition

Let M be a smooth manifold. Let ρk : Ωk(M) → Ck∞(M,R) be given by: for ω ∈ Ωk(M), σ a smooth
k-simplex, let

(ρ(ω))(σ) :=
∫
σ

ω :=
∫

∆k

σ∗(ω)

For c =
∑`
i=1 ciσi ∈ C∞k (M,R) where σi is a smooth k-simplex, let

(Ik(ω))(c) :=
∫
c

ω :=
∑̀
i=1

ci ·
∫
σi

ω =
∑̀
i=1

ci ·
∫

∆k

σ∗ω
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Claim. (a) Ik is well-defined.

(b) Ik is a cochain map:
Ik ◦ dk = δ∞k ◦ Ik

(c) If F ∈ C∞(M,N), then:
F ∗ ◦ Ik = Ik ◦ F ∗

Proof. (a) Note that for a smooth k-simplex σ(∆k) is not a regular domain as we defined it. However,
each point x ∈ ∆k has a ‘nice neighborhood’ U , containing x, and without loss of generality assume
that U = Bo (open ball), such that σU : U → M is smooth. Then sigma∗Uω|σU (U) is defined,
and since ∆k is compact, there are finitely many U1, ..., U` which cover ∆k in that way. Then for a
partition of unity χ1, ..., χ` subordinate to U1, ..., U`, define∫

σ

ω :=
∑̀
j=1

∫
∆k∩Uj

χj · σ∗Uj (ω)

This is independent of the chosen cover, ad partition of unity (exercise).

(b) We need to show that ∫
C

dω = I(dω)(c) ?= δ∞(Iω)(c) = I(ω)(∂∞c) =
∫
∂c

ω

It is enough to show this for smooth k-simplicies, since both sides are R-linear in c. We need to show
the following: ∫

σ

dω =
∫
dσ

ω

for a smooth k-simplex σ : ∆k →M . We have∫
σ

dω =
∫

∆k

σ∗(dω) = σ∆kdσ∗ω =
∫
∂∆k

σ∗ω

Now, ∂∆k = ∪kj=0f
k−1
j (∆k−1), and ∆k ⊂ Rk has standard orientation. This implies that the orienta-

tion induced on fk−1
j (∆k−1) is

((−1)je1, ..., êj , ..., ek), for j > 0

(because (−ej , (−1)je1, ..., êj , ..., ek) ∼ (e1, ..., ej , ..., ek)). This implies that fk−1
j : ∆k−1 → fk−1

j (∆k−1)
is positively oriented if and only if j is even (j > 0) and fk−1

0 : ∆k−1 → fk−1
0 (∆k−1) is also positively

oriented - because

(e1 + ...+ ek−1︸ ︷︷ ︸
outward pointing

, e2 − e1, .e3 − e2, ..., ek − ek−1) ∼ (e1, ..., ek).

This implies that

∫
∂∆k

σ∗ω =
k∑
j=0

∫
fk−1
j

(∆k−1)
σ∗ω =

k∑
j=0

(−1)j
∫

∆k−1

(
fk−1
j

)∗
σ∗(ω) =

k∑
j=0

(−1)j
∫

∆k−1
(σ ◦ fk+1

j )∗ω

=
k∑
j=0

(−1)j
∫
σ◦fk−1

j

ω =
∫∑k

j=0
(−1)jσ◦fk−1

j

ω =
∫
∂σ

ω.
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(c)

(I ◦ F ∗(ω))(σ) =
∫
σ

F ∗ω

(where ω ∈ Ωk(N), F ∗ω ∈ Ωk(M), σ is a smooth k-simplex in M)

=
∫

∆k

σ∗F ∗ω =
∫

∆k

(F ◦ σ)∗ω =
∫
F◦σ

ω = I(ω)(F ◦ σ) = (F ∗ ◦ I)(ω)(σ)

11.6 The DeRham theorem

Theorem 41. By 11.5, we have an induced map J∗ : H∗DR(M)→ Hk
∞(M,R).

Claim. J∗ is an isomorphism, thus H∗DR(M) ∼= Hk
∞(M,R) ∼= Hk(M,R).

Proof. Cite: Lee, Theorem 18.14.

11.7 Corollaries of the DeRham theorem

Corollary 42. H∗DR(M) has properties similar to that of singular cohomology:

1. Homotopy equivalence: if M and N are homotopy equivalent, then H∗DR(M) ∼= H∗DR(N) are iso-
morphic.

2. Dimension: Hk({∗}) = {0}, for all k 6= 0 (I’m not entirely sure what he means by this, this is not a
typo - it almost appears that he’s saying that the cohomology groups of EVERYTHING are zero, which
is of course, not true). Then, (1) and (2) imply that if M is contractible, that Hk(M) = {0} by the
Poincaré Lemma. Thus: every closed form is locally exact; more precisely, if dω = 0 then for all p ∈M ,
there exists a contraction p ∈M : ω|U = dλ, λ ∈ Ω∗(U) .

3. Additivity: Hk(ti∈IMi) = ⊕i∈IHk(Mi)

4. Mayer-Vietoris Property: if M is a manifold, U,B ⊂ M are open, U ∪ V = M , then there exists a
long exact sequence

...→ Hk
DR(M)

f∗⊕g∗

−−−−−→ Hk
DR(U)⊕Hk

DR(V )
p∗−q∗

−−−−−→ Hk
DR(U ∩ V )

τ
−−−−−→ Hk+1

DR (M)→ ...

where f, g, p, q are the inclusions f : U ↪→ M, g : V ↪→ M,p : U ∩ V ↪→ U, q : U ∩ V ↪→ V , and τ is
some map.

11.8 Examples

1. Since Rn is contractible,

Hk
DR(Rn) =

{
0 k 6= 0
R k = 0

2. When ` is the number of connected components of a manifold M ,

H0
DR(M) ∼= R`

Taking [f ] ∈ H0
DR(M), we have in local coordinates that df = 0→ 0 =

∑ ∂f
∂xi dx

i
(
∂
∂xj

)
= ∂f

∂xj ⇒ f
is locally constant, and so f = ci, where ci ∈ R is chosen for each connected component of M . One
can show that if M is simply connected, that this implies H1

DR(M) = {0}.
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3. We have the following equalities, the middle one will then be proven:

H0
DR(S1) ∼= R, H1

DR(S1) ?= R, Hk
DR(S1) = 0 ∀k 6= 0, 1

Proof. We now prove equality ?:

...→ {0} → Ω0(S1)→ Ω1(S1)→ {0} → ...

implies that for all a ∈ Ω1(S1) that dα = 0 ⇒ Z1(S1) = Ω1(S1) (by the exact-ness, I think). What
is B1(S1)? Well, let ρ := dxy − ydx ∈ Ω1(R2). Let i : S1 ↪→ R2 be the inclusion map, and let
ω = i∗(ρ) ∈ Ω1(S1).

Claim. (a) ω /∈ B1(S1)
(b) For all α ∈ Ω1(S1), there exists a c ∈ R, ζ ∈ Ω0(S1) such that α = c · ω + dζ. Thus, [α] =

[cω − dζ] = c[ω] − [dζ], but as dζ = 0 in H1(S1), [α] = c · [ω] ∈ H1(S1). This implies that
H1(S1) ∼= R is generated by [ω].

Proof. In proving our first claim, we now prove this claim:

(a) Let ρ : S1 − {(−1, 0)} → (−π, π) be given by ϕ−1(t) = (cos(t), sin(t)) ∈ S1 ⊂ R2. This
implies that (ϕ−1)(ω) = (ϕ−1)∗i∗(xdy − ydx) = cos2t dt+ s2t dt = dt. As such,∫

S1
ω =

∫ π

−π
(ϕ−1)∗(ω) =

∫
−π

6πdt = 2π

but for all ζ ∈ Ω0(S1), ∫
S1
dζ =

∫
∂S1

ζ =
∫
∅
ζ = 0

Thus, ω 6= dζ.
(b) We have (ϕ−1)∗(α) = f(t) for some smooth function f : (−π, π)→ R. Define

c := 1
2π

∫ π

−π
f(s) ds

and

ζ ∈ C∞(S1,R); ζ(cos t, sin t) :=
{ ∫ t

0 f(s)ds− c · t t ∈ (−π, π)∫ π
0 f(s)ds− c · π =

∫ −π
0 f(s)ds− c · (−π) t = π

Then, ζ is smooth (consider another chart ψ : S1−{(1, 0)} → (0, 2π), ψ−1(t) = (cos t, sin t)
and check this). Then,

d(ϕ−1)∗ζ = d(
∫ t

0
f(s)ds− c · t) = f(t)dt− c · dt = (ϕ−1)∗α− c · (ϕ−1)∗(ω)

Applying ϕ∗ gives us that α = dζ + c · ω on Im(ϕ), and by the continuity of S1. We have
our claim, and we are done with everything now.

4. We have,

Hk
DR(Sn) =

{
R k = 0 or n
{0} k 6= 0 or n
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Proof. This follows by induction on n. For n = 1, this is true by example (3). Going from n to n+ 1,
assume that the statement is true for H∗DR(Sn). Then, H0

DR(Sn+1) ∼= R, H1
DR(Sn+1) ∼= {0} by (2),

since Sn+1 is connected and simply connected. Covering Sn+1 by two hemispheres, U, V such that
U ∩ V ∼= §n. Then the Mayer-Vietoris sequences gives us for k ≥ 2, that

Hk−1
DR (U)⊕Hk−1

DR (V )︸ ︷︷ ︸
={0}⊕{0}

→ Hk−1
DR (U ∩ V )︸ ︷︷ ︸
Hk
DR

(Sn)

→ Hk
DR(Sn+1)→ Hk

DR(U)︸ ︷︷ ︸
={0}

⊕Hk
DR(V )︸ ︷︷ ︸
={0}

Implying then, that

Hk
DR(Sn+1) ∼= Hk−1

DR (Sn) =
{

R k = n+ 1
{0} k 6= n+ 1
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12
The Lie Derivative

This chapter comes from Lee’s book, chapters 9 and 12 (though more of 9).

12.1 Proposition and Definition

Let M be a manifold, let X ∈ X(M) be a smooth vector field. Then, one can do the following:

1. Let a ∈ M . Then there exists an open interval I, 0 ∈ I, such that there exists a smooth curve
αa : I →M such that αa(0) = a, and for all t ∈ I,

α′a(t) = Xα(t). (12.1.1)

For another curve α̃a : Ĩ →M as above, it is true that

αa
∣∣
I∩Ĩ = α̃a

∣∣
I∩Ĩ .

∗

Any such curve αa is called an integral curve of X.

2. For a ∈M , let Ia be the maximal interval for which αa can be defined, αa : Ia →M . Let

D := ∪a∈MIa × {a} ⊂ R×M

Then D ⊂ R ×M is open, and the map θ : D → M , (t, a) 7→ θ(t, a) := αa(t), is smooth. We call θ
the flow of X.

3. Let θt(a) := θ(t, a) = αa(t). Then, θ0 = idM , θs ◦ θt = θs+t for any s, t for which θt, θs, θs+t is
defined. Let U ⊂M be open such that θt is defined on U ,

θt : U →M

Then θT : U → θt(U) is a smooth diffeomorphism with inverse given by θ−1
t by θ−1

t = θ−t.

Proof. 1. This is actually a local problem. Let ϕ : U → Rd be a chart, a ∈ U . Then, any curve
α : I →M has a velocity of

α′(t) =
d∑
j=1

d(ϕ ◦ α)j

dt
· ∂

∂xj

∣∣∣
α(t)

∗This asserts the uniqueness of integral curves
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(from 5.6(3)) and

Xα(t) =
d∑
j=1

Xj(α(t)) · ∂

∂xj

∣∣∣
α(t)

where Xj ∈ C∞(U,R). Let α̃ := ϕ ◦α and X̃j := Xj ◦ϕ−1 is also smooth, then the equation 12.1.1
is equivalent to: 

dα̃1(t)
dt = X̃1(α̃1(t), ..., α̃d(t))

...
dα̃d(t)
dt = X̃d(α̃′(t), ..., α̃d(t)

We have the initial condition α̃(0) = ϕ(a). Now, (1) follows from the existence and uniqueness of
solutions of O.D.E.’s (see Lee, Appendix D, Theorem D.1(a,b)).

2. Follows from the smoothness condition of O.D.E’.s (Lee, Theorem D.1(c)). We have: for all a ∈M ,
there exists an open subset U ⊂M with a ∈ U such that there exists ε > 0 such that θ|(−ε, ε)×U →
M is defined. This implies that D ⊂ R ×M is open (because if (t, a) ∈ D, then for b := θ(t, a):
there exists an open subset V ⊂ M with b ∈ V and there exists an ε > 0 such that θ is defined
on (−ε, ε) × V . Since θ(t,−)|U : U → M is smooth, and therefore continuous, this implies that
Ũ := (θ(t,−)|U)−1(V ) ⊂ M is open, and a ∈ Ũ . Then θ is defined on (t − ε, t + ε) × Ũ , since
by uniqueness of the integral curve, the flow of θ and the solution of the O.D.E. near b have to
coincide.).

3. θ(0, a) = a, and θt ◦ θs = θs+t by uniqueness of solutions. This implies that θt ◦ θ−t = idM , and so
(θt)−1 = θ−t.

12.2 12.2 Definition

Definition. A vector field X is called complete if the flow of X is defined on all of R, i.e.,

θ : R× →M

12.3 Proposition

Proposition 43. If M is a compact manifold, and X is any smooth vector field on M , then X is complete.

Proof. For every a ∈ M , there exists a neighborhood Ua and there exists an εa > 0 such that θ is defined
on θ|(−εa, εa)×Ua →M . Since M is compact, there exist finitely many Ua1 , ..., Uak such that M is equal
to their union. Let ε := min(εa1 , ..., εak) > 0. Then, θ is defined for (−ε, ε) ×M → M , in particular,
θ|[− ε2 , ε2 ]×M → M . Now, let t ∈ R. Write t as a finite sum, t = ±ε2 ± ε

2 ± ... ±
ε
2 + s where s ∈ [− ε

2 ,
ε
2 ].

Then, θt = θpmε2± ε2±...±
ε
2 +s=

θ±ε/2 ◦ ... ◦ θs
is defined for t ∈ R.

12.4 Definition

Definition. Let M be a smooth manifold. Let X be a smooth vector field on M , and let θ : D → M be
the flow of X. Let (t, a) ∈ D, then there exists an open neighborhood U ⊂ M , a ∈ U such that θt is
defined on U , and is a diffeomorphism

θt : U → θt(U) =: V
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Therefore, θ−t : V → U , and in particular, θ−t(θt(a)) = a. This tells us that

(dθ−t)θt(a) : Tθt(a) → TaM

Now, let W ∈ X(M). Then: (dθ−t)θt(a)(Wθ(a)) ∈ TaM . Therefore, (dθ−t)θt(a)(Wθt(a)) −Wa ∈ TaM . We
define the Lie derivative of W with respect to X to be:

(LXW )a := lim
t→0

(dθ−t)θt(a)(Wθt(a))−Wa

t

Similarly, let α ∈ T (0,`)(M) (a tensor field of type (0, `)), (e.g., α ∈ Ω`(M)). Note that

(dθ∗t )A : T (0,`)(Tθt(a)M)→ T (0,`)(TaM)

Then we define the Lee derivative of α with respect to X:

(LX)aα := lim
t→0

(dθ∗t )a(αθt(a))− αa
t

12.5 Proposition

Let M be a manifold, let X,W ∈ X(M). Then we have:

(LXW )a = [X,W ]a (12.5.1)

where the right hand side is the Lie bracket from Lemma 6.7.e. In particular,

1. LXW ∈ X(M) is smooth (by 6.7e)

2. LXW = −LWX (by 6.8c)

3. For Z ∈ X(M), LX([W,Z]) = [LXW,Z] + [W,LXZ]

4. L[X,Z]W = LX(LZW ) + LZ(LXW ), ((4) and (3) are from 6.8(b))

5. LX(f ·W ) = X(f) ·W + f · LX(W ) (by 6.8(e))

We now prove 12.5.1:

Proof. Let f ∈ C∞(M,R), let a be contained in an open subset U ⊂M . Then,

(LXW )a(f) = lim
t→0

((dθ−t)θt(a)(Wθt(a)))(f)−Wa(f)
t

Let ε > 0 be such that g : (−ε, ε)× U → R given by

g(t, x) := f(θt(x))− f(x)

is defined for t ∈ (−ε, ε), x ∈ U , and g is smooth. Let ϕ be a chart at a, without loss of generality assume
also that ϕ : U → Rd (or otherwise, take the intersection U ∩Domain(ϕ)). Let h : (−ε, ε)×ϕ(U)→ R be
given by

h(t, y) = g(t, ϕ−1(y)).

Note that h is a smooth function, and h(0, y) = 0. By the fundamental theorem of calculus,

h(t, y) =
∫ t

0

∂h(s, y)
∂t

ds
substitute= t ·

∫ 1

0

∂h(t · u, y)
∂t

du = t · k(t, y)
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(the substitution is u = 1
t · s, du = 1

t ds) where k is a smooth function, k : (−ε, ε) × U → R. Now, let
`(t, x) := k(t, ϕ(x)) which is also a smooth map ` : (−ε, ε)× U → R. We have:

f(θt(x))− f(x) = g(t, x) = h(t, ϕ(x)) = t · k(t, ϕ(x)) = t · `(t, x) (12.5.2)

Thus:

`(0, x) = lim
t→0

f(θt(x))− f(x)
t

= lim
t→0

f(αx(t))− f(x)
t

= (α′x(0))(f) = XX(f)

(the equality above is because α is an integral curve of X). Therefore,

(LXW )a(f) = lim
t→0

((dθ−t)θt(a)(Wθt(a)))(f)−Wa(f)
t

= T lim
t→0

Wθt(a)(f ◦ θ−t)−Wa(f)
t

12.5.2= lim
t→0

Wθt(a)(f) +Wθt(a)(−t · `(−t, x))−Wa(f)
t

(and because Wθt(a) is R-linear);

− lim
t→0

Wθt(a)(f)−Wa(f)
t

− lim
t→0

t ·Wθt(a)(`(−t, x))
t

= ∂W (f)(θt(a))
∂t

∣∣∣
t=0
−Wθ0(a)(`(0, x))

= (Xa(W (f))−Wa(X(f)) = X(W (f))−W (X(f)))a = [X,W ]a(f)
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