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Curves in R?

1.1 Basic Definitions

For an open subset U C R™, and a function f : U — R", f = (f1, ..., fm), represented as a column vector,
we have that

) t-ej)— d .
g D7) = O fa) = g HEFL NIy o) - ;
m Bad

where
€; = (01,02, ceey ]-ja ceey Om),

and 2 € R™ We call this function f continuously differentiable, denoted f € C!, if

of of

oxl’ " D

exist and are continuous. We say that f € C¥ if all partial derivatives up to the k*" derivative exist and
are continuous. We say that f is smooth if f is infinitely differentiable (denoted f € C*), i.e. if f € C*
forallk=1,2,.....

The total derivative, or Jacobian of f : R™ — R", € C! is the matrix

ofr df1
9l Dgm
Df(x) = (D1 f(x), - Du(fa) = | 2 - | e gr
Ofn Ofn
ozl " Qx™

The function f is differentiable if there exists a linear map A : R” — R™ such that

1o Jla+0) = (f(@) + 4-v)

v—0 [lol]

=0

Fact. If f is continuously differentiable, this implies that f is differentiable with A = D f(x), which
implies that % exist for all j.

For all f: U — R™, where U is open in R™ and v € R", we have the directional derivative:

Dof(a) = i FEFD =IO &y

*This notation indicates n rows, and m columns
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In particular, for f : U — R where U is open in R™ and f € C!, we have that

Df(e) = (G (0)eves s (@) = grad()

and for v = (v!,...,o") that

1 0f

D,f(x)=v @—i—...—l—v" = (v, grad(f))

For a,b € R™, we say that a is orthogonal to b if (a,b) = 0, denoted ¢ L b. The norm of a vector
v € R" is defined as |[v]| = \/(v,v) = \/D>_._, v2, and the metric in R" between vectors is defined as
d(v,w) == ||lv —w]|.

of
ox™

1.2 Curves

Definition. A curve is a map o : I — R™ where I = (a,b) C R and a € C'. We write

o = D, (t) = lim w

h—0 h € R

A curve is called regular if o/(t) # 0 for all ¢ € I (in other words, the parameterization of the curve
‘never stops moving’). We say that « has unit speed if ||o/(¢)|| = 1 forall ¢ € I.

The arc length of « from «a to b is defined as

b b
«wi/nwmw:/wawww

Letr : J — I, where J and I are open intervals in R, and call 5 = aor: I — J — R" a reparameteri-
zation of a.

1.3 Regular Curves and unit speed

Lemma 1. If o : I — R"™ is a regular curve, then there exists a reparameterization 3 of o such that § has
unit speed.

Proof. Let
s@z/W@Wu

Since « is assumed to be regular, this implies that 0 < ||&/(¢)|| = §'(¢). By the inverse function
theorem, we get that s is invertible, i.e., r := s~! is a function r : J — I. Define 3 := a o r. Since
a=pfor ! =pfos, we have

o/ (1) = B (s(0))s/ (1) = 18 (s = |

wll=lizgal=




1.4. VECTOR FIELDS

1.4 Vector Fields

Definition. A vector field on the curve o : I — R™ is a function X : I — R" that assigns a vector to each
point a(t).

X(t2)
a(tr)
X(t1)
For a curve a, we have the tangent vector field, 7' := o/(t) = %—j‘(t) (depicted with gray arrows on the

diagram above). A frame field on « consists of vector fields E4, ..., E,, of « such that

0,077

for all ¢t € I. In this case, any vector v € R™ at «(t) can be written as

v = (0, EQ))E1(t) + .. + (v, Ep () En (t)

1.5 Curvature

For this section, we restrict our discussion to R3.

Definition. Let o : I — R? be a curve with both unit speed, and infinitely differentiable. Let T := o/ be
the tangent vector field. Note that

(T, T®) = ITO)* =l ®)I* =1 (1.5.1)
Remark. You can show that the following is true with the product rule:

2 (w0, 0(0) = { ro(0.00)) + {o(0), o))

Differentiating (1.5.1) gives us that
_4
Codt
The curvature of « is then defined as x(t) := ||77(¢)||. We assume that x(t) # 0Vt, and then define

the principal normal vector, N (t) := i/((tt)). Finally, we define the binormal vector field to be B(t) :=

T(t) x N(t), where "<’ is the cross-product in R3. Recall,

€1 €9 €3
vxw:=det | v; vy w3 | €R3

wp w2 w3

0= (T(t), T(t)) = (T'(t), T(t)) + (T, T'(t)) = 2(T"(t), T(t)) = (T',T) = 0 (1.5.2)
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1.6 The Frenet Formulas

Proposition 2. For a unit-speed curve o with k > 0, T, N, B is a frame field. Additionally, there exists a
function 7 : I — R called the torsion of «, such that the following formulas are true:

T = K- N
N = —k-T +7-B (1.6.1)
B = —7-N

Proof. We'd first like to show that 7', N, B is a frame field. Well, it immediately follows that (T',T) = 1,
from the unit speed of «, and (B,T) = (B,N) = 0, because B = T x N. We then have that (N, T) =

(L T) = 11", T) = 0, as we saw in (1.5.2). Then,

K7

1

I = = || = 210 = 7 = 1 () = N = 1
= e = — = — = A = frnd
wll T ] SRR

From the definition of the cross-product, we have that
[[Bl| = [T x N[ = |[T|| - [IN]] - sin(¢)

where ( is the angle between 7" and N. However, this angle is 90°, so ||B|| = 1 ~ (B,B) = 1. We
conclude that T', N, B is a frame field, and we now aim to show equality in the the three equations from
(C.6.7). ,

We immediately have the first identity in because N = L by definition. Next, we’ll show that
B’ is colinear to N, in order to show the third identity in (1.6.1). In fact, we'll show that B’ 1 T, and
that B’ | B. We have

d/dt
(B,T) =0 —— 0= (B, T)+ (B,T") = (B, T) + (B,kN) = B' LT
0

Also,
djdt
(B,By=1——0=2(B'B)=B 1L B
As B’ is orthogonal to both 7" and B, and since B, N, and T make up a frame field, there exists some 7
such that B’ = —7N. For the second equation in (1.6.1]), remember that we can write any vector v as a
linear combination of the vector in our frame field, v = (v, T)T + (v, N)N + (v, B) B. Applying this to
v = N’, we’ll show
N =(N'.T)T+(N',N)N+(N',B) B
—— —— ——

—K =0 =7
We have that
d/dt
(N,T) =0 ——— 0= (N",T) + (N, T") = (N',T) = —(N,kN) = —k(N,N) = —x

and additionally,
djdt
(N,N)=1——0=2(N',N)

(N,B)=0 & 0=(N',B)+(N,B') = (N',B) = —(N,—7N) = —(—7)(N,N) =71

1.7 Frenet Frame for Reparameterizations

If « is a regular curve, let 5(t) = a(v(t)) be a reparameterization of « with unit speed. Then, the Frenet
frame for « is defined to be the Frenet frame for 3 at the corresponding points: if a(s) = 3(r~1(s)), then

To(s) :=Tp(r™1(s)), Na(s) := Na(r~'(s)), Ba(s) = Bs(r~'(s)).

8



1.8. ISOMETRIES

1.8 Isometries

Definition. A map F : R®™ — R™ is called an isometry of R" if it preserves the distance function,
d(F(z), F(y)) = d(z,y).

1.9 Examples
1. Let T, : R™ — R" be the translation map by a € R", T, (z) = x+a. Of course, note that 7, ! = T_,,
and that translation maps preserve distances (and i.e., are isometries).

2. Let A be an invertible matrix with A=! = A’ (an orthogonal matrix) written A € O(n) := the set of
all orthogonal matrices in R™". Interpret A as a linear map R” — R", A(z) = Ax. Then,

(Az, Ay) = (z, A'Ay) = (z,y)
Which implies that || Az|| = ||z|| = d(Az, Ay) = d(z, y).
3. If f and g are isometries, so is their composition, because

d(fog(z), fogly) =d(g(x),9(y)) = d(z,y)

1.10 Orthogonal Matrices and Isometries

Claim. Let F' be an isometry. Then, there exists a unique ¢ € R™ and A € O(n) such that F =T, o A.

Proof. Take a := F(0), and define the isometry A to be A := T, ! o F. We now must show that 4 is an
orthogonal matrix, i.e., that:

1. (Az, Ay) = (z,y)( = A~1 =AY
2. Ais alinear map
We show this as follows:
(1) We have that A(0) = T, 1(F(0)) = F(0)—a = F(0)— F(0) = 0, and that d(Az, Ay) = d(x,y) because
A is an isometry. Furthering this idea,
JA(@)]] = d(A(x),0) = d(A(2), A(0)) = d(x,0) = |||
= d(Azx, Ay) = d(z,y)

using this,
[|[Az — Ay|| = ||z — y|| = (Az — Ay, Av — Ay) = (v —y,x — y)

the bilinearity of the inner product then implies,
and so,

| Az||? — 2(Az, Ay) + [|Ay|* = [J«|* — 2z, y) + [[y]]* ~ (Az, Ay) = (z,y)
and we have (1).

(2) For (2), we want to show that A is linear, e.g. that A(x + y) = A(z) + A(y), and A(cz) = cA(z) for
c € R. Writing z = Z?zl rle; and noticing that (Ae;, Aey) = (ej, er) = &, it follows that {Ae;}
form an orthonormal basis of R™. Therefore, we can expand A(z) in this basis:

n

Az) =) (Alx), Ale)) Alej) = Y _(w,e)Ale;) = Y a7 Aley)
j=1

Jj=1 Jj=1

and the rest of this proof is simply following through the sums when considering either cz or = + y.

9



CHAPTER 1. CURVES IN R3

The uniqueness of a follows from seeing that if we assume F =T, 0 A = T, o B, then
T,0A(0) =Ty0B(0)=T,(0)=T(0) =a=0

and then
TooA=T,0B~T; ' oT,0A=T,'0oT,0oB=A=B

1.11 Congruent Curves

Definition. Let «, 3 be two curves in R”, o : I — R™, 3 : I — R™. Then, a and 3 are called congruent if
there exists an isometry F' of R” such that 5 = F o a.

Theorem 3. Let «, 5 be curves of unit speed. Then, oo and [ are congruent if and only if kK, = kg, and
Ta = :|:7'5.

Proof. (=) Let F(z) = T, 0 A(z) = Az + a for a € R3, A € O(3) where 8 = F o «. First note that the
Jacobian DF'(z) = A, and this implies that

Ts(t) = B'(t) = (F o) (t) = DF(a(t)) - o'(t) = A- Tu(t).

This implies that
kg = [|Tpll = [A- TL(@®)]| = [IT4 ()] = Ka
and so,

AT

Ng— :A'Na

Rg Ro
= Bs =T x N3 = (AT, x AN,,) = +A(T, x N,)

Where the last equality comes from the cross product of orthogonal matrices, and the + is determined by
the determinant of A, which is +1. This gives us that Bs = +A- B,,, implying (from the Frenet formulas):

B/ﬂ =4A. B:x = —TgNﬂ = ?ATaNa = $TQNB
= Tg = ETq

(<) Assume that k, = kg, T, = £73. We need to show that there exists an isometry F' such that
B = Foa. Fix ty € I. Then, there exists an isometry F' such that ¥ maps the Frenet frame of « at a(¢g) to
the Frenet frame of 3 at 3(t). Indeed, F' = Tp,,) 0 Ao T_,(to) where A € O(3) is the unique orthogonal
matrix that maps the Frenet fields (at 0) to each other. Let @ = F' o a. We claim that @ = 3, and we know
that at ¢o : @(tg) = B(to) and

1. Tx(to) = Ta(to)

2. Ng(to) = Ng(to)

3. Bz(to) = Ba(to)

10



1.12. PERSONAL ADDENDUM

Translate

- —

Translate

Figure 1.1: The idea is to translate the Frenet field to 0, to perform some kind of linear map that maps
the translated Frenet field of o to what the Frenet field of 3 looks like at ¢, and then to translate the
result to S(to).

We have that kg = Kk, = kg, and we first assume that 7, = 7, = 75 at all t € I. We want to show that
@ = [ : I — R3. It's enough to show that 75 = T} for all ¢, and that @(ty) = B(ty) = @ = B (from
calculus. This discussion is in O’Neil’s Book). To this end, define the following function f : I — R as
follows, f(t) = (T(t), Ta(t)) + (Na(t), Ny (1)) + (Ba(t), Bs (1)) € R. So,

f'(t) = (T5,Ts) + (Ts, Tp) + (Ng, Np) + (Na, Np) + (Bg, Bs) + (Ba, By)
Using the Frenet formulas,
= (kagNa, T3)+ (T, kgNg)+{—kala+1aBa, Ng)+(Ng—rsTs+73Bs) +(—7a Nz, Bg) +{(Bx, —13Ng) = 0
where the equality to O follows from the cancellation of all the previous terms. Also,
f(to) = (Ta(to), Ts(to)) + (Na(to), Ns(to)) + (Ba(to), Ba(to)) =1+1+1=3

Recall that (v, w) = |[o]| - [[w]| - cos(<), s0 (Tx(t), Ta()) < 1, (Na(t), Na(t)) < 1, (Ba(t), Bs(1)) < 1,
so f(t) < 3 with equality only when the angle between each component in the inner products is 0; when
coliniarity is present. Since (Tx(t), T5(¢))1, this tells us that T (¢) = T;3(¢) for all ¢, and we have case (1).
Now, when r,, = kg and 7, = —73, we first reflect o to obtain —« : I — R? (note here that —a = —1oq,
where —1 is the isometry that reflects the image of o). We calculate T, = —T, = Kk_o = Kq, and that
N_, = —N,. Therefore, B_, =T_,xN_, = B,, and so B’ , = B/, and by Frenet, —7_,-N_, = -7, N,
implies that 7_, = —7,. Since —« and « are isometric, we can apply the previous case to —« instead of
«. Hence, « is isometric to —«, which is isometric to 3. O

1.12 Personal Addendum

I'm not surprised that we never formally introduced the chain rule, but I thought it might be best to
formally state anyway: The chain rule in higher dimensions: Fix differentiable functions f : R™ — R*
and g : R* — R™, and a point a € R". Let D, g denote the total derivative at g at @ and D, f denote the
total derivative of f at g(a). These two derivatives are linear transformations R” — R™ and R™ — RF
respectively, so we can compose them - the chain rule for total derivatives says that their composite is the
total derivative of f o g at a:

Do(fog) = Dgyayf o Dag

11
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Submanifolds of R"

2.1 The Inverse Function Theorem

Theorem 4. Let U be an open subset of R", F : U — R" be a map of class C*. If the Jacobian DF(a)
is invertible for some fixed a € U, then there exist open sets Uy, Vo C R"™ such that a € Uy C U and
F|UO : Uy — Vi is a C*-diffeomorphism, i.e., F|U is bijective and both F]UO and (F]UO)‘1 are C* maps.

2.2 The Global Inverse Function Theorem

Corollary 5. Let U C R" be open, F : U — R"™ be a C* map. If F is injective and DF(x) is invertible for all
x € U, then F(U) C R™ is open, and F : U — F(U) is a C* diffeomorphism.

Proof. F : U — F(U) is certainly bijective. For = € U, there exist Uy, V; open subsets of R” with

x € Uy, F(z) € Vo C F(U) C R™. This tells us that F(U) is open. We also have that (F|U0)‘1 is a C*
map. Since this is true for all € U, this gives us that F~! € C*. O

2.3 The Implicit Function Theorem

Theorem 6. Let U be an open subset of R™ x R’ with coordinates (x,y) = (z', ..., 2™y, ...,y*) € R® x R’
Let F : U — R’ be a map with F € C*. Let (a,b) € U, call ¢ = F(a,b), and assume that (35 (a,b)) € R" 5
is invertible. Then, there exist an open set V. C R", W C R’ with a € V,b € W and there exists (g : V —
W) € C* such that g(z) =y <= F(z,y) = cforall (x,y) €V x W.

RZ
U
m | _____ —
| |
w | '
b | e (CL, b) :
N !_ _____ |
a
€ ) R™
%
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CHAPTER 2. SUBMANIFOLDS OF R

2.4 Equivalent Conditions for being a Submanifold

Claim. Let M C R™ and let d be a natural number, d < n. The following are equivalent:

(a) For all z € M, there exist open subsets U, V' in R™ with € U and there exists amap ¢ : U — V
such that ¢ is a C*-diffeomorphism, and (M NU) =V N (R? x {(0,...,0)}).
——

— ¢ T
«6 :

(b) Forall z € M there exists U C R™ with z € U, and there exists amap f : U — R"~¢ such that f € C*
and for all z € U, rank(Df(z)) =n—dand M NU = {z € U|f(x) = 0}.

U A Rn—d

/;\

—/ ,,

(c) For all z € M, there exist U c R" with « € U such that there exists an open set W C R? and a
map g : W — U, g € C, such that for all w € W, rank(Dg(w)) =dand g : W — M NU is a

homeomorphism.

Rd
\

h

Y

14



2.4. EQUIVALENT CONDITIONS FOR BEING A SUBMANIFOLD

If M satisfies any of the above conditions, we call M a C*-submanifold of R" of dimension d. For
k = oo, we simply refer to M as a smooth manifold. The maps ¢ in condition (c) are called the local
parameterizations of M at x.

Proof. (a = b) : Denote p(x) = (¢*(x),...,0"(v)), and let f(z) := (1, ..., " (z)). Since ¢ € C*, it
follows that f € C*. Also, f(x) = 0 if and only if ¢(z) € R? x {(04,...,0,_4)}, which by assuming
condition (a) happens if and only if x € M N U. Since ¢ is a C* diffeomorphism, this tells us that
rank(Dy(x)) = n for all z, which implies that rank(f(z)) =n —dforallx € U.

(b = ¢) : We have that rank(D f(z)) = n — d, so without loss of generality, we may assume that

oft
rank <8x-7 (z0)> i=1..n—d =n-—d
Jj= ..n

(after possibly rearranging the basis of R"). By the implicit function theorem, there exists an open set
W C R?, and there exists an open subset W C R"~? such that (z},...,z8) € W, (z3*",...,a}) € W,
w € W C U and there exists a map (§: W — W) € C* such that

glat, . ah) = (24 L 2") = flz!.,2") =0 <= ze MN(W x W) 241
Where the last statement follows from assuming (b). Now, define
g: W — R g(zt, ..., x?) = (2, ... 2% g(zt, ..., z%)).

LetU=W xW,sog: W — U, g€ C*is1-1, and

1
, 0
d
O 1
rank(Dg) = rank(D(idga X §)) = rank =d

9" 8%
Ozt Ozt

: Do : n—d
9" 8%

o S S
L d J

Finally, g(W) = MNU because of (2.4.1), and is onto. Thus, g is a continuous bijection, and g~!(z', ..., 2") =
(x',...,x%) is continuous, which implies that g : W — M N U is a homeomorphism.

(¢ = a): Just to review, we are given that for any z € M there exists U C R”, z € U such that there exists
an open set W C R% and a C* differentiable map g : W — U, where g : W — M NU is a homeomorphism,
and for all w € W, rank(Dg) = d. We need to show that for all z, € M, there exist open sets U,V C R"
andamap p:U — V,p € Ck,o(MNU) =V N (R x {0}).

15
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Rn—d

\

Letz € M NU, and let wy = g~ (). Without loss of generality, we can rearrange things such that

Let g = (¢, ...,g"), define h = (¢',...,¢%), k = (g%, ..., g ) so that g = (h, k). Note that rank(Dh) = d,
and also that h, k € C*. By the inverse function theorem, there exists an open set W, C R?, and an open
set Yy C h(W), and an open subset Z, C R"~% such that zy € Yy x Zy C U, and h|,, : Wo — h(W;) is a
C* diffeomorphism. Let U = Y, x Zy. Define ¢ : U — R™ as follows:

(@t .zt 2 ) = (Wt L 2, (24 2™ — k(R (2 L, 2)))

eU

Note that ¢ € C*, because h=!,k € C* and ¢ is also injective. Define V := I'mage(y). It isn’t hard to
check that rank(Dy) = n for all z € Y, x Zj. By the Global inverse function theorem, ¢(U) = V is open,
and ¢ : U — o(U) is a C* diffeomorphism - we have shown the first part of what we’d like to show.

It remains to show that o(M NU) = o(U) N (R? x {0}).

(C©) Assume that y € (M N U). This gives us that y = o(z), where z € M NU c M NU. As such,
x = g(w) for some w € W, so:

y = () = p(g(w)) = p(h(w), k(w))
— (" (h(w)), k(w) — k(A (h(w)))) = (w, k(w) — k(w)) = (0,0) € B x {0}. (2.4.2)

(
We conclude that o(M NU) C ¢(U) N (RY x {0}).

16



2.5. EXAMPLES

(D) Now, take y € p(U) N (R? x {0}). This tells us that y = ¢(z) € R? x {0}, for some z € U. This
means that the second component of ¢ has to be 0;

(@, 2™ — k(b 2)) = 0= = (2, .., 2") = (2}, ..

Lz, k(hil(arl, ey a:d)))
= (h(h Yt ..., 2, k(h (2!, ..., 2%)) = (h, k) (W (2t ..., z%))

= g(h (2, .., 2%) (2.4.3)
———

eWoCW

Which tells us that z € g(W) =M NU = y = p(z) forz e MNU.

2.5 Examples

(@) R? x {0} is a submanifold of R”. More generally, every linear subspace V of R" is a submanifold of
R™. More generally, every affine subspace V + a (a linear subspace with the adjoinment of a point)
is a submanifold of R™ of dimension dim(V'), and of class C*.

(b) Any open subset of a submanifold of R™ is again a submanifold of R".

(c) Let W be an open subset of R?, and let f : W — R"~¢ with f € C*. Then, graph(f) := {(z, f(z)) €
R™|z € W} is a d-dimensional submanifold of R™. This is true, because we can take g in condition
(c)tobe g: W — W x R4, g(z) := (z, f(x)).

(d) Let S™ be the n-sphere. Then, S™ is a submanifold of R"*! of dimensional n. In showing this,
use condition (b) with f : U — R, U := R**! — {0} is an open subset of R"*! and f(z) =
l|z]|? =1 = (Y% + ... + (2"1)? — 1. Then, Df(x) = (2z%,...,22"*!) = 2x. This tells us that
rank(Df)=1= (n+1) —n. Clearly, S" NU = {x € U|f(x) = 0}.

(e) Define the cylinder ¢ = {z € R3|(z!)? + (2%)? = 1}, and use condition (b) where f(z) = (z1)% +
(r2)? — 1.

® If M c R*, M’ C R™ are submanifolds of R, then M x M’ is a submanifold of R?" of where
dim(M x M) = dim(M) + dim(M’) (as a note, M N M’ doesn’t work in general). To see this, use
condition (c), where

g:W—=(MnU) ¢:W = MnNU)}=gxgd WxW - (MnU) x (M xU')

(g) S' c R? = S! x R? is a submanifold of R* of dimension 3. We call S! x S' ¢ R* the torus, more
specifically,

is called the n-torus.

As an exercise, give a condition on the map f : M N U — R"~4 (for all z € M) such that this guarantees
that M is a product, M = My x Ms.

2.6 Lemma
Lemma 7. Let M be a d-dimensional submanifold of R™. Let ¢, : Uy — Vi, w2 : Uy — V3 be as in section
2.4(a). Denote U = M NUy, VY is the projection of V; to R%, Uy = M NU,, Vy is the projection of Vs to R%.

Also denote by ¢} : U] — V/, ) : Uy — V3. Note that ¢}, !, do not have a notion of C* differentiability,
since U, and U} are not (necessarily) open in R™. However, we do have that

17
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(@) ©,(U{NUS) c R is open fori=1,2

(b) o (ph)~ ! is a Ck-diffeomorphism.

]Rd

Y
Y

Proof.
(a) We have that
QLU NUY) = @i(U1NUz N M) = ¢;(Uy N U2) N (R x {0})

and as ; is a diffeomorphism, we have that ¢;(U; N Us) is open in R™, and as such the whole term on
the right hand side of the equation is open in R?.

(b) We have that ), o (¢})~! is a composition of C¥ maps as follows:

-1

, , , include L2 w2 project , , ,
(pl(UlﬁUQ)—)ng(Ulng)—) UlﬂUz —>¢2(U1HU2)—>¢2(U10U20M)
—_——— —_——— N—— ——— —_————

CR4, open CR™, open CR™, open CR"™, open CR4. open

Which implies that 4o (p}) ! € C*, and (ho(p})71) ™! = ¢ o(ph) ! € C*. We then have our claim. O

2.7 CF -curves

Definition. Let M be a d-dimensional submanifold of R™. Then, a C* curve on M isamap o : I — M,
where I is an open interval of R, such that « is of class C¥, as a map a : I — R". A tangent vector
of M at some point a € M is a vector v € R" such that there exists « : I — M, a C¥-curve such that
a(0) = a,a’(0) = v. The tangent space of M at a (denoted T, M) is the set of all tangent vectors at a.

18



2.8. SUBMANIFOLDS AND TANGENT SPACES

2.8 Submanifolds and Tangent Spaces

Proposition 8. Let M be a submanifold of R™ of dimension d, and let a € M.

(@) If f : U — R" 4 as in definition 2.4@ with a € U, then T,M = Ker(D f(a)).

v J

/;\

N ,,

Figure 2.1: For all x € M there exists U C R™ with 2 € U, and there exists a map f : U — R"~% such
that f € C* and for all x € U, rank(Df(z)) =n —dand M NU = {z € U|f(x) = 0}.

\ Rr—d

(b) If g: W — W as in definition 2.with a € U, then T,M = I'm(Dg(b)) where b = g~(a).

- R4
A

(-
N ‘

Figure 2.2: For all z € M, there exist U c R with # € U such that there exists an open set W C R?
andamapg: W — U, g € C¥, such that for all w € W, rank(Dg(w)) =dand g : W — M NUisa
homeomorphism.

Proof. We have that Df : R” — R"~? is a linear map with rank(Df(a)) = n — d. This implies that
dim(Ker(Df(a))) = d. Hence, it’s enough to show that

Im(Dg(b)) C1y TaM C(2y Ker(Df(a))

1. Let v = Dg(b) - w, for some w € RY. Let € > 0 be such that b+t - w € W, Vt € (—¢, ). Then, define
the curve o : (—e¢,€) — M by, a(t) := g(b+t-w). Then a € C*,a(0) = g(b) = a, and by the chain

rule,
ab+t-
v'(0) = Dg(b+0-w) - %,
but since Dg(b+ 0 - w) - w = Dg(b) - w = v, this implies that v € T, M.

19



CHAPTER 2. SUBMANIFOLDS OF R

2. Letv e T,M, letv = a'(0), a : I - M with «(0) = a. WLOG, assumed that «(I) C U. Since
a(l) C M and f(M)NU = 0, this implies that f(«(t)) = 0 for all ¢ € I. Taking derivatives, we have
that

0= Df(a(0)) -/ (0) = Df(a) - f]|= v € Ker(Df(a))

2.9 Functions of class C*

Definition. Let M be a C*-submanifold of R™. Then, a function f : M — R is of class Ck if, for all
x € M, there exists an open set U C R™ where z € U such that there also exists f : U — R € C* such
that f|yaa = fluna- We denote the set of all such C*-functions by C* (M, R).

2.10 A map C*(M,R) - R

Let a € M, and let v € T, M. We define D, : C¥(M,R) — R by D,(f) := %f o aft=p, where foais a
function from I — R, for any C* curve a with a(0) = a,’(0) = v, and any f € C¥(M,R). Then,

(a) D, is well-defined

(b) D, islinear, Dy (f + g) = Du(f) + Du(9), Du(cf) = ¢ Dy(f) for f,g € C*(M,R) and € R.

Proof.

(a) We need to show that D, is independent of our choice of a. Chose an extension f:U—>RacU.
Then,

d d . .
Dyf = % f oalimo = 5 F o al=o = Df(a(0)) 0a/(0) = Df(a) -

and for other choices of f (eg, f), foa=foa= f: o « is always the same function.

(b)

2 (ef +9)oalmo = ¢ f o alimo + g0 alicg
and
d d d d
S(fgoa=2(fog)(goa) = 2(foa)-(goa)+(foa): S(goa)
Setting ¢ = 0, we have our claim. O

Remark. The properties in Lemma 2.6 and 2.10 will be used below to define general concepts of manifolds
and their tangent spaces without referring to the ambient space R™.

*Note that this isn’t ‘multiplication’, as someone pointed out in class; rather, it’s the linear transform D f(a) acting on v
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Manifolds

3.1 Introductory Definitions

Definition. Let M be a set (we have no topology on this set right now).

(a) A (C*-) charton M is amap ¢ : U — R? where U C M such that
(i) ¢ is injective
(i) p(U) c R? is open

(b) Two charts ¢ : U — p(U) and ¥ : V — 9(V) are called (C*-) compatible if:
(i) p(UNV)andy(UNV) are open in R?

—1

P
(i) vop l:ipUNV) Z sunv—" Y(UNV) is a Ck-diffeomorphism.
(c) A (Ck-) atlas « is a collection of charts ./ = {¢; : U; — R?|i € I'} such that
@) UiertUs =M
(i) Any two charts ¢;, p; € o7 are C*-compatible

(d) An atlas is called maximal if it is not properly contained in any other larger atlas (i.e., there does not
exist any chart ¢ : V' — R™ not in &/ such that v is compatible with all other charts of o).

(e) A (C*¥—) manifold of dimension d is a tuple (M, o/) where M is a set an . is an atlas on M. We
often simply write M instead of (M, o) with the understanding that < is also given.

3.2 Compatibility with an Atlas

Lemma 9. Let M be a set and let o/ = {p; : U; — R?} be an atlas on M. Let p : U — R%and ¢ : V — R?
be any two charts such that ¢ is compatible with any ¢; € <7, and v is compatible with any ¢; € /. Then,
1 and ¢ are also compatible.

Proof. [f|We have to show the two notions of compatibility: let z € UNV. Since .« is an atlas, this implies
the existence of ¢, : U; — R? € & such that 2 € U;. Then,

open .

e(x) € pU;N(UNV))=pop; He(U;NUNV)) = (popi)  (pUinU)Ngi(U;NV)) C R

Ck—dif feomorphism  open in R? open in R?

*Before really jumping into this proof, note that C*-compatibility is not an equivalence relation (it isn’t transitive).

21
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This implies that p(z) € o(U; N (UNV)) C (U N V), which implies that (U N V) is open in RY.
—_——

open in R?
Similarly, we find that ¢»(U N'V') is open in R
Working on the second condition for compatibility, we have that

Yo tipUNV)=UNV =ypUNV)
is bijective. Locally, there is a @, : U; — R,z € U, p; € < so that

eck

T T .

1 . .
pU;NUNV) 2 UnUNV —2 o (U;NUNV) —2 5 UnUNV —2s (U, N U N V)

\_/

eck

Which implies that ¢ o ™!, @,0(wnvy) € C¥, so for all z; € U NV there exists ¢; : U; — R?, and so
we can remove the restriction in our domain and conclude that 1) o ¢=! € C*. Similarly, we show that
Wop ™)t =poy ek O

3.3 Determining </

Corollary 10. Let </ be an atlas on M. Denote by o the collection of all charts {¢ : U — R%|¢ is compatible
with all charts in </ }. Then, </ is the unique maximal atlas covering <. Thus, it is enough to specify any
atlas even if it is non-maximal to determined the manifold (M, <f).

3.4 Examples

(a) Every d-dimensional submanifold of R™ is also a manifold in the sense of definition 3.1, because we
can take the atlas & = {¢} : U/ — V/} as defined in Lemma 2.6. We proved that each ¢/ is a chart
and the first qualification for compatibility follows from lemma 2.6 (a), and the second follows from
lemma 2.6 (b).

(b) We know that (R, & = {idgr}) is the standard C* (smooth) structure on R. But we also have non-
standard smooth structures as follows: let M = R, &/ = {p} where ¢ : R — R, ¢(z) = 2. Note, &/
and <7 are non-equivalent smooth structures because ¢ o idg = x3 has inverse z — z3 which is not
smooth (in fact at 0, it isn’t even C1).

(c) The set of m x n matrices, Mat(m x n,R) = R™" can be identified with R™™, call this p : R™" —
R™™ (which is a bijection), that looks like
1,1
— (al’l, ey am’n)
Am,n

This defines an atlas for the matrices (R™", & = {p}).

(d) The general linear group GL(n,R) C R™™ is the set of matrices A with determinant det(A) # 0.

Mapping GL(n,R) ., R"*, we see that p(GL(n,R)) Copen R™, because det(A) : R” — R
is continuous, implying that det~!(R — {0}) is an open subset of R"*. This defines the manifold
GL(TL, R)v o = {p|GL(n,R)}'
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3.5. PUTTING A TOPOLOGY ON A MANIFOLD

(e) If (M, %) and (M,, o) are two manifolds of dimension d;, dy repectively, then
(Ml X MQ,JZ{l X % = {(pl X pg @ Ul X U2 — Rlerdz})
is a manifold of dimension d; + ds. To see this, note that

(01 X @2) (U1 x Us) = 91(U1) % @a(Uz) Copen RUFE
~—— ——

openin R4t open in R92
(1 X ) o (p1 X 2) " = (Y109 ) X (Y2005 ")
(f) The real projective plane, denoted RP" is defined as the set of lines in R™*!;
RP" =R"" — {0}/ ~, where x~y <= JceRz=c-y.
We define o/ = {¢; : U; = R"|j =1,...,n+ 1} where
Uj = {[z] e RP"|z e R"*! — {0}}, 2’ # 0} C RP",

and point out that Uj_,U; = RP". For z = (z', ..., 2"1),

2! i 1
<pj([x])2< . ey —— >ER"

l'j’- 71’j’. xJ

where the 27 indicates the removal of the jt* coordinate. This map is well defined, because if we
take ¢ -z = (czt, ..., ca™ ™), then

~

cxt cxi cx™ Tt x! xJ pntt "
QOJ([CZ']):<7,,, Cd.] = Ty e eeg TTaseny - =<pj([x])E]R

cx’ cx’ Xt X Xt

Considering the requirements for being a chart, ¢, is clearly injective, and ¢,(U;) clearly open by the
definition of ;.
Take ¢;(U;) = R™ open, <pj_1(x1, ..,x") =[z',...,1;,...,2"]. Considering the first requirement for
being compatible, we have that

0;(U;NU;) ={z € R"|xk #0forj > korapis =0forj <k} Copen R™

The second requirement for compatibility is as follows,

_ x 1 ak x
@kOSDjl(fL'l,..,mn):QDk;([.Tl,...7 1 ,...7(En]): 7k,...7ﬁ,...,ﬁ,...77k

jth ~—~
jth

This implies that ¢ 0} is a C¥ morphism, and similarly we show that (@5 0¢;) ™" is a C* morphism.

3.5 Putting a topology on a manifold

Claim. Let M be a C*-manifold. We define a topology on M by calling V' C M open if and only if for
each 2 € V, there exists a chart ¢ : U — R? with z € U, ¢ € &/ (the maximal atlas) and U C V. This
defines a topology on M such that for each chart ¢ € &7, ¢ : U — ¢(U) is a homeomorphism.

Proof. We have to prove the three basic properties of a topology are held up by this proposal.
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1. First, note that () is open trivially, and M is open because M = U;U;, where U; is the domain of a
chart.

2. Let V; C M be open for all j € J. We need to show that U;V; is open: let z € Ujc sV}, so z € Vj,.
This implies that there exists ¢j, : Uj, = R%, @ € U;, C Vj, C UjesV;, implying that Ujc sV is
open.

3. Lastly, let V; and V5 be open, let € V; N V5. This implies the existence of ¢; € o7, ; : U; — R4,
j =1,2with x € U; C V;. Define ¢ := ¢1|t,nv, : Ur N Uz — RY. It is enough to show that (i) ¢ is
a chart, and (ii) ¢ is compatible with all other charts in </ (this will prove the claim, since then we
would have z € U; N Uy C Vi N Vs, and (¢|y,nu, — R?) € 7). In proving so, we do the following:

(i) In showing that ¢ is a chart, we have to show that ¢ is injective, and ¢(U; N Us) is open. The
injectivity of ¢ is of course true, because ¢ is injective (¢ is, after all, a chart). Also,

e(UrNUz) = p1 (U1 NU2),

which is open since ¢; and ¢» are compatible. We conclude that ¢ is a chart.

(ii) We have the following line of thought: let ¢ : V — R? € &/. For the first compatibility
condition,

e(V N (Ui NUy)) o1 (V NUp) ﬂ e1(U1NUs)  Copen R?
—_——— | S —
open, p1 & 1 compatible open, p1,p2 compatible

and
Y(VNONe) =  »(VNth) (]  »(VNly)
——— ———

open, ¥, p1 compatible open, ¥, p2 compatible

so we have the first compatibility condition. Next, note that

Yot =Yoo vawinw) : p(V N (U1 NU2)) —— (VN (U1 NU2))

Ck—dif feomorphism open open

and as such, ¢ o ¢! is a C* diffeomorphism.

The second part of this proof is to prove that ¢ : U — ¢(U) is a homeomorphismﬂ. Well, we have that
€ o is injective, and so ¢ : U — ¢(U) is bijective. We need to show that,

(1) ¢ is continuous
(2) ¢! is continuous.
And we do so as follows:

(1) Let Y be an open subspace of o(U). We need to show that ¢~*(Y) is open in the topology of M, so
let 2 € (Y. It is enough to show that ¢|,-1(y) : ¢ ' (Y) — Y is (i) a chart, and (ii), that ¢ is
compatible with any ¢ € <.

(i) Since ¢ is injective, it follows that ¢|,-1(y is injective. As Y is assumed open,

Plor ) (7 (Y)) =Y Copen R

TThe equality here follows from ¢, being injective

¥In the initial writing of this section, I was blatantly abusing terminology. It’s worth mentioning that now, I think the point of
this discussion was to remove ourselves from the notion of R™ being the ambient space of our manifold, and instead relying on the
new topology we have shown to exist by part one of the proof to indicate the notion of homeomorphic spaces.
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3.6. RESTRICTING CHARTS TO OPEN SUBSETS IN M

(ii) Let : V — R? € o7. Then, for the first compatibility condition,

PV (Y)) =vop lop(VNe ™ (Y))= dop™ (pUNV) )

ny
~—~
k open; open

dif feomorphism ¥ & are
compatible

and so, we have a C* map of an open set, which is then of course, open in R?. Similarly,

(Ve ' (V) =o(UNV)N_Y  Copen R
open; open

@ & Y are
compatible

For the second compatibility condition, we have that

Ploiay o™ = poul (eI (Y)NV) —— (¢ (V)N V)
k open open

dif feomorphism
which is clearly a C* diffeomorphism. We do something similar when considering 1) o o 1.

(2) It remains to show that ¢! is continuous. Let W be an open subspace of U. We need to show that
©(W) Copen RL Lety € (W), z = ¢~ 1(y). By the open-ness of W, there exists a chart ¢ € 7,
¥ :V — R?such that z € V C W. Since ¢ and ¢ are compatible, o(V N U) is an open subspace of
Re, and y = p(z) € p(UNV) C (W), so (W) is open in R9.

——

open

3.6 Restricting Charts to open subsets in M/

Lemma 11. Less formally, the points below tell us that open subspaces of a manifold are again, manifolds.
(@) Let o : U — p(U) € &. If V Copen M, then ¢|yv is a chart in <.
(b) If V C M open, then the collection </ |y = {¢|v|p € &} is an atlas for V, thus V is also a manifold.

Proof. For Homework, see the exercises at the end of the chapter. O

3.7 Examples and Definitions

(@) Let M =RU{0*}. Let & = {¢1,p2} where p1 : R = R, p(z) =z, and ¢3 : (R — {0} U {0*}) = R,
@ ={y 125
Then 1, @2 are compatible, because RN (R — {0} N {0*}) = R — {0}, which is open, and
propy(x) =2, and @oop;t(z)=x VzeR-{0}
and ¢, (RN (R — {0} U {0*})) = R — {0} for < = 1,2. This implies that (M, {1, ¢2}) is a manifold
under this structure. As a note, notice that there do not exist disjoint open neighborhoods containing

0 and 0* in this topology, and as such, the topology on M is not Hausdorff. We will now restrict our
discussion to manifolds that are Hausdorff.
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CHAPTER 3. MANIFOLDS

(b) Let (M, o) be a manifold and let X be a set. Define a manifold structure on M x X: for each chart
0:U—>Rleco/andz e X,let p, : U x X — R¥by @, (u,z) := @(u). Then, o = {p,|p € &, x €
X}isanatlason M x X, and if X is uncountable, then M x X is not second-countable [ﬂ We will
now restrict our discussion to manifolds that are second-countable.

Definition. From here on in, a manifold is a tuple (M, <) as in definition 3.1 such that the induced
topology of M is Hausdorff and second-countable.

3.8 Compact sets and Manifolds

Proposition 12. Let M be a manifold. Then,

(a) All open sets U C M are locally compact, i.e., for all x € U there exists a compact set K C U such that
re KYCKcCU.

(b) M has an exhaustion by compact sets, i.e., there exist compact sets K1, K»,... C M such that K; C K;,1
and M = Usz

(c) M is para-compact, i.e., every open cover has a locally finite open refinement. Ie., for an open cover U
of M, there exists an open reﬁnementm V of U such that V is locally finite (i.e., for all x € M, there
exists W Copen M such that x € W and V. N W # 0 for only finitely many V € V)

Proof.

(a) Let U C M be open. Let z € U, and let ¢ : V — R< be a chart with 2 € V C U. Since (V) C R?
is open, there exists B Copen, RY such that p(z) € B € B C ¢(V). Since ¢ is a homeomorphism,
¢ 1(B) := K C U, K compact, and K° = ¢~ (B) (because K° = (o'(B))? = o~ (B’) = ¢~ *(B)).
This implies that « € K° C K C U. Hence, we have local compactness.

(b) We want compact sets K, Ko, ...|K; C K;11,U;enK; = M. Let B be a countable base for M. Then,
B' = {B € B|B is compact } is also a countable base for M, since for x € U C,pe, M by (q), there
exists a compact set K suchthatx € K° C K CU = 3B € B:z € B C K° C K, implying that
B C K is compact (closed subsets of compact sets are compact), which implies that B € B/, with
x € B C U. We write B’ = {Bj, Ba, ...}. Then K; = By, and by induction, we assume that we have
K, ..., K, such that B; C K; and K; C K;;;. Since K,, is compact, there exists some s € N such
that K,, C By U ... U B,. Let t = max(s,n + 1) and set K,, 1 := B, U... U By.

(a) n+1§t:>Bn+1 CKn+1
(b) KnCBlu...UBSCBlu...UBt:Kngl

so we have M = U;enB; C U;enK; C M, as we wanted.

(c) Let U be an open cover of M. Let Ki, Ko, ... be as in (b). Then, define C; := K11 — K?, which is
compact, and let W} := K> — K;_;, which is open, and note that C; C W;. Let B be any basis for
the topology on M. We define a cover C; for C; by setting C; :={B e B|3z € C;,3U e U : z € B C
INnWj}. Then C; is a cover of C; since U covers M and since x € W, and B is a basis of M. Since
C; is compact, there exists a finite subcover F; C C; which still covers C;. Now set V = UjenF;.
Note that V is a refinement of ¢/ (by the definition of C;). If z € M, this implies there exists j such
that z € K11 — K; C Kj11 — K¢ = Cj. This implies there exists W € F; : x € W C W;. Now,
W;NW,; =0 forall £ # j—2,..., j+ 2. Thus, we intersect non-trivially only finitely many of the open

sets V C F, C V. Since each Fy, is finite, I¥; intersects finitely many V' € V.
O

§Recall that Z is called second countable if and only if there exists a countable base of its topology, i.e., there exists a countable
set B = {B;|B; Copen Z,t € N} such that for all open sets U C Z, there exists N € N such that U = U,;¢ v B;. The main example
of a second-countable space is Z = R™, with basis B = { open balls of rational radius and center in Q™ }.

9 Forall V € V, there exists U € U such that V C U
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Maps between Manifolds

4.1 C" maps

Definition. Let M and N be two C*-manifolds (not necessarily of the same dimension). A map F : M —
N is called of class C* if and only if for all z € M there exist charts ¢ : U — o(U) of M, where x € U,
and a chart ¢ : V — ¢(V) of N where F(z) € Vand F(U) C V,and ¢ o Fop™! : p(U) — (V) is a C*
map.

_F
C)m
N
4 b

boFop™!
- Co)

We write this as, F € C¥(M,N). F is a C* diffeomorphism, denoted F' € Diff*(M,N), if F is
bijective and if F € C¥(M, N) and F~! € C*(M, M).
4.2 Properties of C* maps
Lemma 13.

(a) If F € C*(M, N), then F is continuous.

(b) IfF €C*(M,N),and ¢ : U — o(U) and vy : V — (V') are any charts on M and N respectively, then
poFop t:oUNFYV))— (V) is of class C*.
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CHAPTER 4. MAPS BETWEEN MANIFOLDS

Proof. (a) If W be an open subset of N. We need to show that F~!(W) is an open subset of M. Let
x € F~Y(W). Since F € C*(M, N), there exists ¢ : U — ¢(U) and v : V — (V) with x € U, F(z) €
V,F(U) C V where ¢po Fop~!: p(U) — (V) is a C* map. Since o and ¢ are homeomorphisms,
this gives us that

Fly= 97} o(oFop ™o o ——V
~ =~
continuous cCck continuous
is continuous. Since W is an open subset of N, there exists ¢ : V — (V) with F(z) € V C W.
Then,
(Fln){(vnV)= ¢ o(WoFop™) op(VNnT)
~~ —_—
continuous cck open, P & ,/;
compatible
which implies that (F|y) ™ (V N V) Copen F~H (W) (recall that F(z) € V NV), and as = is contained
in an open set which itself is contained in F~!(W), it follows that F—!(W) is open.

(b) Now, let ¢ : U — o(U) and ¢ : V — (V') be any charts of M and N, respectively. We need to show
the following composition is a C* map:

SUNFY(V)) —— U N FY(V) ——s F(U) NV ——s (FU) N V) C (V)

Leta € o(UNF*(V)), and let z = ¢~'(a). Also let y = F(z) € V. Since F € C*(M, N), there
exists p: U — ¢(U), and ¢ : V — ¢(V), such that

(o Fo@™):3(U) (V) et
where z € U, F(x) € V,and F(U) C V. Then,

poFop™ = (Yoid No(oFogt)o(poy™)
—_— Y Y
eck eck €ck
and 5o, ¥ o F o o™ yngnp-1(vy) € Ck. As this works for an arbitrary a € (U N F~1(V)), we can
change the restricted domain instead to U N F~1(V), implying that ¢ o Fo o™t : o(UNF~1(V)) —

(V) is of class CF.
O

4.3 Examples

(a) Let M be a manifold. Then, idy, : M — M € CF(M, M).

(b) Let M, N be manifolds, and let n € N. Let F' : M — N denote the constant map F'(xz) = n for all
x € M, then F € CK(M, N).

(c) Let M be a manifold, ¢ : U — ¢(U) be a chart of M. Then, U has an induced manifold structure
(see 3.6(b)) and ¢(U), an open subset of R%, is a manifold (¢(U), {idy1/)}). Then, ¢ : U — ¢(U) is
a C*-diffeomorphism. In proving this note that

idopop? = idyu)y, wow_IOidzidw(U)
(d) Recall the manifolds (R, {idg) and (R, {p :  — z*}). The map F : (R, {id}) — (R,¢), F(z) = z'/3

is a smooth (C*°) map. [| This is actually almost trivially easy to see, we’re in the situation where we
have

*In fact, if M = R, then any smooth structure on R is diffeomorphism to (R, {idr}). More generally, any smooth structure on
R™ with n # 4 is smoothly diffeomorphic to (R™, {idg= ). In contrast, R* has uncountably many smooth structures that are not
diffeomorphic, called fake R*’s. Milno-Kerane showed that S7 has exactly 28 non-diffeomorphic smooth structures.
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4.3. EXAMPLES

(R7 ZdR) a:»—)a:% » (Ra 90)
| |

idr z—z’
+ +

R - (idx)*o(@})o(@™)=idzec= - R

(e) If F € C*(M,N) and G € C*(N, P), then G o F € C*(M, P). This follows from the fact that the
composition of C¥ maps is again, C*.

(f) If F e Ck(M,N) and F € C*(M, N), then F x F € C¥(M x M,N x N). This follows from the fact
that the product of C* maps is again, C*.

(g) Let M, N be manifolds. Then, projy; : M x N — M and projy : M x N — N are C* maps.

Proof. Let (x,y) € M x N. Choose ¢ : U — ¢(U),v : V — (V) such that x € U,y € V. Then,
proja (U x V) C U, and @ o projy o (¢ x )1 = projowy : p(U) x (V) — o(U). O
——

eCk

(h) Let F: M — N x P, then F € C¥(M, N x P) if and only if projy o F' € C*(M, N) and projp o F €
CF(M, P).

(i) Let M be a submanifold of R”, and let F' : M — R where (R, {idr}) has the canonical manifold
structure. Then, the definitions for C¥(M, R) from definition 2.9 and 4.1 coincidem

Proof. (2.9 = 4.1) Take F : M — R, x € M with the conditions conditions from definition 2.9,
namely that there exists a map F:U — R e CFwith F lvam = F \Um M. Since M is a submanifold
of R”, there exist U, V which are open subsets of R", and ¢ : U — V is a C* diffeomorphism. We
have that 2 € U and (M NU) = V N (R? x {0}). By 3.4(a ©|gnas is a chart of M. Then, with
Y : R — R, ¢ = idg, we have
idgpoFop = Fop!t ‘~ -

—— lpUNUNM)
1p(UNU)—RECk S

CopenR

eck

(4.1 = 2.9) Given definition 4.1, we have that ¢ : U — (U) (where of course, U C M, o(U) C R9),
is a chart such that
idg o Fop teCk

Since M is a submanifold of R”, there exists ¢ : U — V € C*-diffeo (by 2. 4(a)' ) with = € U, p(M
U) =V N {R? x {0}}. Since @|;,, is also a chart of M as a manifold, we know that

8009571|¢(UmUmM)

is a C* map. Let W be an open subset of R”~%, V an open subset of R? such that V x W c (U NU).
Note that p : V x W — ¢(U) given by p(z,w) = ¢ o ¢~ (x,0) € C*. Take 3~ (V x W) Copen R,
then define ~

F:p7Y (VxW)=R

TDefinition 2.9: Let M be a C¥-submanifold of R™. Then, a function f : M — R is of class C* if, for all 2 € M, there exists an
open set U C R™ where z € U such that there also exists f : U — R € C* such that f|UmM = flunm-

TEvery d-dimensional submanifold of R™ is also a manifold in the sense of definition 3.1, because we can take the atlas o7 =
{¢} : U] — V/} as defined in Lemma 2.6.

SDefinition [of a submanifold] 2.4(a): For all z € M, there exist open subsets U, V in R™ with z € U and there exists a map
@ : U — V such that ¢ is a C*-diffeomorphism, and (M NU) = V N (R% x {(0, ...,0)}).

n—d
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CHAPTER 4. MAPS BETWEEN MANIFOLDS

by
ﬁufgiifjlo”o\f/b*@&wwgck
eCk eck  eck
and
~|Mm¢rl(f/xW) Fop™o(pog 1)|Mﬂ<p*1(X:/><W) = |Mﬁ¢*1(\:/><W)

4.4 Partitions of Unity

Lemma 14. Let 0 < r < s < oo and let xg € R™. Then, there exists a smooth function f : R™ — R such
that

We call f a bump function.

Proof. We proceed by completing 4 steps:

Step1: Letg: R = R,

o e_%,x>0
9=\ 0,z<0

We claim that g is a smooth map. Clearly, g is smooth for all z > 0, and z < 0. It only remains
to be shown that g is smooth at = = 0. First, we have to show (inductively) for 2 > 0 that the k"
derivative of g is

1

e =
g(k) (z) = pr(z) - —

where pi(x) is a polynomial of degree < k (this is left as an exercise). We want to check that

4 (k) (0) exists and is equal to 0; we want

)0+ h)—0
S e Cla 0 Rl
h
But we have that

lim

et T e
h—0+ h - hli%l+ Pr(h) h2k+1 pr(0) - hli%l+ 2T 0
Which implies that g € C*>° (R, R).

Step 2: [This step covers the next case, of slightly higher complexity - where now n = 1, o = 0, and
f:R—Rsuchthat 0 < f <1, f|§r(0) =1, Flgn_p,(0) = 0.] Let

9(s — )
g(s =) + gz —r)

f@):

9By L’Hopital’s Rule

30
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Since g(z) > 0 (since either s —x > x or z — r > 0), this implies that g(s — z) + g(x —r) > g(s — ),
and so 1 > f(x) after dividing by the left hand side of the previous equation. As g(x) > 0, this tells
us that f(z) > 0. For z — r < 0, this implies thatf(z) = g(gs(:;io =1, and for z > s, we have that
5—x<0:>f(m)—L—
- S 0+g(z—7r)

As such, f € C*(R,R). As a remark, note that our discussion above works for = > 0, to make this
work for all z, simply let f(z) = f(—x) for z < 0.

Step 3: [Now, we let n > 1,29 = 0] Let f be as in Step 2. Then, set f5 : R" — R, fao(x) := f(|z|). It follows
that f, has the required properties, f> is smooth since |.| is smooth at R” — {0}, and fa(z) =1ina
neighborhood of 0.

Step 4: [Now we move up to the general case, for n > 1 and z9 € R"™] Let f5 : R® — R be as in Step 3.
Then, f: R” — R, f(z) = fa(zo — x) has the required properties.

O

4.5 Support of a Manifold, Partitions of Unity

Definition. Let M be a manifold.

(@) Let f : M — R. The set supp(f) := {x € M|f(x) # 0} is called the support of f. By definition, the
support of f is closed.

(b) A partition of unity on M is a collection of functions {x; }icr., xi € C°°(M,R) such that

@ 0< xi(x) <1, Viel,VreM
(b) supp(x;) is locally finite for all : € I (this means that for all x € M, there exists an open subset
U C M with z € U such that supp(x;) N U # () for only finitely many ;).

(© > icrxi(w) =1, for all z € M (this sum makes sense because it is actually a finite sum by the
condition above).

(c) Let U = {U;};jer be an open cover of M and let {x;}ic; be a partition of unity. Then, we call the
partition subordinate to U if for all € I there exists j € J such that supp(x;) C U;.

4.6 Subordinate Partitions of Unity

Proposition 15. Let U = {U,},c1 be an open cover of M. Then, there exists a partition of unity {x;}icr
subordinate to U.

Proof. Let K1, K>, ... be an exhaustion of M by compact sets as in proposition 3.7. This means that K;
is compact, K; ¢ M, K; C K, |, and M = U;K;. Let x € M, let i, = max{ilr € M — K;}, and
choose j, € J such that x € U;,. Then, x € U;, N (K, — Ki,) Copen M. Let o, @ V, — R? be a
chart such that V,, C U;, N (K}, — K;,). Since ¢, (Vi) Copen R?, this implies the existence of s > 0
such that B,(p,(z)) C ¢(V,). Let f: R? - Rsuch that 0 < f < 1, f|p,(p.(x)) = 1 for r = £, and
flra_B,(p, () = 0. Then define ¢, : M — R as,

oty = { 250 v

0, else
Then ¢, € C*(M,R), and v, restricted to some neighborhood W,, is identically equal to 1, with

€W, C supp(v,) C 5 (Bs(pz(z))) C Vo, CUj, N (K}, — Ki,) (4.6.1)
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Since (K41 — K7) is compact, we can cover it by finitely many W, 1), ..., Wy r,). Define
W= U2 {Waiinys oos Watir) }

Note that W is an open cover of M, and W is countable, so relabel these as W = {W,,, W,,,...}. Let
v : M — R be given by

P(y) = Z ta, (y)

Note that 1/ is well-defined, since each 2 € M lies in some z € K¢, , — K;, and supp(x.,) intersects only
finitely many of these K¢, , — K; by[4.6.1] Furthermore, x € W, for some iy, so that ¥;, () = 1, implying
that ¢»(z) > 1. Then, we define the partition of unity x; : M — R by x;(y) = qu(g) € C*(M,R), and
0 < x; <1, supp(xsz) = supp(t,,) is locally finite, and

S () _ ()
o) o)

Zxx(x) = Zwm (2)/(x) =

4.7 Smooth bump functions on manifolds

Corollary 16. Let M be a manifold, let x € M. Then let A C M be a closed subset, U C M be open such
that x € A C U C M. Then, there exists a smooth bump function f € C*°(M,R) such that

1.0<f<1
2. supp(f) c U
3. fla=1

Proof. LetU = {U, M — A}. Note that U is an open cover of M, which implies that there exists a partition
of unity subordinate to U: {XﬁX?FA} such that supp(xY) C U, supp(xjw*A) CM—-Aletf:M—=R
be the following smooth function,

fl) = 3o \¥ () € €= (M. R)

This function satisfies,
Lo<f<1
2. supp(x{') C U = supp(f) CU
3. fla=1- ZX;-VI_J = 1, since supp(x;kM~4) C M — A.
J

—_———
Oon A
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The Tangent Space

This chapter is modeled after chapter 3 in Lee’s book. We now restrict to C*° manifolds.

5.1 Definition

Definition. Let M be a C* manifold, and denote (as usual), by C*°(M,R) the set of smooth functions
from M to R. Let a € M. Then we define the tangent space of M at a to be the following:

ToM = {v:C>*(M,R) — R|(1) v is linear, (2) v is a derivation}

Explicitly, for v € T, M, our conditions are:

1. Forallr,s e R, forall f,g € C*(M,R),v(r-f+s-g)=r-v(f)+s-v(g).

2. For all f,g € C>*°(M,R), we have that

va(fg) = va(f) - g(a) + f(a) - va(g)
Remark. T, M is a R-vector space, because we can define,
(ro)(f)a i =7-0(f) =>rveT,M
which satisfies our two conditions above, and we have
(v+w)(f) == v(f) +w(f) = v+weT.M

which also satisfies our two conditions, and finally satisfies the conditions for being an R-vector space.

5.2 Properties

Lemma 17. Letv € T, M.
(a) Ifc: M — Ris a constant function, c¢(xz) = ¢ for all x € M, then v(c) = 0.

(b) If f(a) = g(a) = 0, then
v(fg) =0

(c) Let f,g € C>°(M,R) such that there exists an open neighborhood U C M with a € U such that
flu = glu, then v(f) = v(g).
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Proof. (a) First,ifc=1: M — R,z ~ 1, then

v(l)=v(1-1)=v(1)-1+1-v(1)=2v(1)=v(1)=0

(b) Similarly,

v(fg) = v(f)gla) + f(a)v(g) =0+0=0

(c) By Cor(4.7) with A := {a} Cciosea M, A C U Copen M. Therefore, there exists a bump function

X € C*(M,R) such that x(a) = 1, and x|y—y = 0. Note that f(a) — g(a) = 0, and 1 — x(a) = 0.
Therefore, by part (b),

v(0) =0=o((f —9)(1 = x)) =v((f —9) = (f = 9)x),
and since f —g=0o0onU, and x =0on M — U, the term (f — g) - x is identically 0 on all of M, so
0=0v(f—g)=v(f)—v(g)
and therefore, v(f) = v(g).

5.3 Differentials and Push forwards.

Definition. Let (F': M — N) € C>*(M, N).

(@

(b)

There is an induced map F* : C*°(N,R) — C>*°(M,R) given by
F(f)i=foF
where f € C*°(N,R). The picture of this is in Lee’s book, chapter 3, within the first few pages.

For a € M, there is an induced map dF, : T,M — Tr(, NN, which maps a linear derivation v to
dF,(v), where for f € C*(N,R), v € T,M,

(dFa(v) )(f) == v(F*(f)) = v(f o F)

——

ETF(Q)N
(check for yourself that this makes sense, v is a map from C*>°(M,R) — R, and since f € C*(N,R)
and F' € C*°(M,N), f o F is in C*(M,R), and we now define a new map dF,(v) : C*°(N,R) by

taking something in C*° (N, R), a smooth map between M and N, and a map v : C*°(M,R) — R to
get something that maps C*°(N,R) — R ).

M—F N C=®(M,R) +X— ¢=(N,R)
| | -
JoF f / Va dFg(v)

3
we L

We also use the notation dF,, = dF = F,, and it is called the differential of F’ at a. Note that dF, (v)
is indeed in T(,) N, because for r,s € R and f,g € C>*(N,R),

W dFa(v)(rf +sg) =v((rf +sg) o F) =v(r-(foF)+s-(goF))
=ro(foF)+sv(goF) =rdF.(v)(f)+ sdFu(v)(g)
2
dFa(0)(f-9) = v((f-g) o F) = v((fo F)(go F)) = v(fo F)(go F)(a) + (f o F)(a) - v(g o F)
= dFa(v)(f) - 9(F(a)) + f(F(a)) - dFa(v)(g)
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5.4 Properties of F,
Let F € C*(M,N),G € C>(N, P).
(@ dF, : T,M — Tpg)N is linear.
() d(G o F)y = dGr(ay 0 dFy : TyM = TriayN = Ta(r(ay P-
(c) d(idps) = idr, pr for all manifolds M and a € M.
(d) If F € Diff>°(M, N)[] then dF, is invertible, and
(dF,) ' =d(F Y@y : TrayN — TuM.
(e) If there exists a € U, which is an open subset of M, and F(a) € V Coper, N such that Fly : U — V
is a C* diffeomorphism, then dF;, : T,M — Tp(,) N is an isomorphism.
Proof. We proceed as follows:

(a) We have that,
dFa(rv+ sw)(f) = (rv+ sw)(f o F) = rv(f o F) + sw(f o F) = rdFa(v)(f) + s - dFa(w)(f),
and so for all f € C*°(N,R), dF,(rv + sw) = rdF,(v) + sdF,(w).
(b) We apply, for v € T,M and f € C*(P,R),
(dG () © dFa)(v)(f) = dFa(v)(f o G) = v(foGo F) = d(G o F)a(v)(f)
which gives us (b).

(c) We have,
didq(v)(f) = v(f oid) = v(f)

and so, v € T, M +— v, which is (¢).
(d) Because F is a diffeomorphism, F o F~! = id, using (c) we have that
dF, 0 dFg, = d(F o F ™) p(y) = d idp(q) = idry, N

and similarly,
dF 7y 0 dFy = idr,

and so therefore, this shows that (dF,)~! = dF;(la).

(e) First note that we only need to show that the inclusions iy : U — M and iy : V — N are maps
whose differentials d;,, and d;, are isomorphisms, because

FOZ'UZZ'VOFlU:U—>N
This gives us that dF o diy = diy o dF |y, which would give us that
dF = diy o dF|y o (diy) ™"

is an isomorphism, since F'|y is an isomorphism from (d). We now show that for U Cgpe,, M,
iy : U — M gives an isomorphism diy : T,U — T, M. We will show that diy is (1) injective, and (2)
surjective.

*Recall that this means that F is a bijection, F' € C>°(M, N), and F~1 € C®(N, M)
TAs a good exercise, consider F' : R — S in the normal covering space way, and apply this property. Which are the neighbor-
hoods on which this works?
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Lemma 18. Let f € C*°(U,R), and a € U. Then, there exists a function f:C>®(M,R), and there exists
V' Copen U such that a € V and flyv = f|v.

We’ll use this lemma to finish the proof of our property, then actually prove the lemma. We have to
show (1) injectivity, and (2) surjectivity:

(1) Injectivity: let diy(v) = 0 for some v € T,U, we would like to show that v = 0. By our
assumption, diy(v)(fo) = 0 for all fo € C>°(M,R) - but we still need to show that for any
f €C=(U,R), v(f) = 0. Using our lemma, there exists f and V' such that f|y, = f|y, and then
v(f) = v(f|vy) because f, f coincide on V (see 5.2(c. Finishing this line of thought,
v(f) =v(flv) = div(v)(f) =0
and it follows that v = 0, as v(f) = 0 for all f € C*>°(U,R).

(2) Surjectivity: let w € T, M. We need to show that there exists v € T,U such that diy (v) = w.
We define this v € T,U as follows, by setting v(f) := w(f) where f € C>(M,R) comes from
our lemma above. Note that v is well defined, since by 5.2(c), it is independent of of the chosen
extension f . Also, v satisfies 5.1 (1) and (2), because w does. Finally:

divy (v)(f) = v(f oiv) = w(f o iv) = w(f),

since f and f|y coincide on some neighborhood, V, and 5.2(c) assures us that if f and f coincide

on a neighborhood, then w(f) = w(f).
O
Now, we prove the lemma.
Proof. Let f € C**(U,R), and let a € M. We need an f € C>°(M,R) and a V C,pe, U such that
flv =flv

Let ¢ : W — R? be a chart with @ € W. Let B, be a ball centered at o(a) such that B, C o(W) of
radius r. Let B, , be the ball of radius § so that B, ,, C B,. By lemma 4.4, there exists a bump function

g : R? — R such that g\B—/z =1,and g|ga_p =0.LetV := <p*1(BT/2), and define f : M — R by

I { S glele)) W

else
Then, 3 R
flv="Ffle-18,,) = flv-9°¢lo-1B,,,) = flv.
——
=1
We now only need to show that f € C*°(M,R).
Case 1: If x € W, then using the chart ¢ : W — ¢(W) shows that
idg o f o™ o) = fle o) - go o o)
€C>, 4.2(b) S

(as a remark, I think you have to say something a little more about W [namely, that U C W], and
© has to be a chart of M. Really it’s not a big deal, and I'm sure everything works out just fine, but
there was some brushing of details under the rug here).

Case 2: If x ¢ W, thenz € M — ¢ '(B;) Copen M, and f=0o0on M — ¢ '(B,). Thus for any chart 1,
idg o foy™t =0¢€C™.
O

fLetv € ToM, f,g € C>°(M,R) such that there exists an open neighborhood U C M with a € U such that f|y = g|v, then
v(f) = v(g)-
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5.5 An isomorphism between R"” and 7T,R"
Proposition 19. Let M = R", a € R™. Define D : R* — T,R", by
D:v— D,

where p
Da(f) = 2 f(a+t-v)

forall f € C°(R™ R). Then, D is a well-defined linear isomorphism between R"™ and T,R". In particular
when v is the canonical unit basis vector e;, we write

t=0

0| _ 0 "
afL'i a - a.’l,'l T Dei a o De’i © TGR
It is,
) _ _d )| =Y
Gl N =De) = flatte)| =75 (a)

where the rightmost expression is the usual partial derivative in R™
Proof. We prove this proposition in a number of steps, whose combination imply our proposition.

e D is well-defined: we want to show that things land where we think they land, i.e., that D, is
actually in 7,,R™. We can show this by proving that D, is (1) linear, and (2) a derivation.

1. Simply,
d
Dy(rf +s5g) = LS + s9)(a+ )],

the linearity of the directional derivative in r f 4+ sg implies (1).
2. From the definition of D, and properties of the directional derivative,

Dy(fg) = S (Fg)(a+ )lemo

d d
= af(a+tv)|t:0~g( a) + fla) - Zrg(a+tv)le—o
= va : g(a) + f(a)Dv(g)>
and we have (2).

e D is linear: We have that, D : R” — T,R", and for f € C*°(R",R),

Devssul ) = 1@+ 1{rv-+ sw)leco = {ro + 5w, D @]

and (,) is linear in each component, so D must be linear.

e D is injective: let D, = 0, i.e., D,(f) = 0 for all f € C>°(R",R). In the hope that we can show
that v = 0, we write v € R™ in terms of its components and the unit basis vectors; v = 2?21 vej,

and let f : R” — R which maps, f(z!,...,2") =2' € COO(R",R). Then, since D, (f) = (v, Df),
‘ . of
0=Du(f) = 0D (1) = v () = 3w 0 Zv% =’
J J J

where 4, ; is the usual Kronecker-delta function. Hence, v =}, vle; = 0, and we have that D is
injective.

8this follows from a very early definition from chapter 1; the definition of the directional derivative.
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e D is surjective: let w € T,R". We want v € R" such that D, = w. Let f € C*(R",R), and expand
f in terms of its Taylor series:

£@) = $@ + Y A (o) — o) + Y0 Ry — )0 — )

for some remainder function R; ;. Note that w(f(a)) = 0, since f(a) is constant, and we have
5.2(a). Note that z — R; j(z' — a'), and @ — (27 — /) are 0 at x = 0. Therefore, by 5.2(b), we
have the product of two functions whose value at a is 0, so

w((Rij(z) (2" —a"))(z’ —a’)) =0
this implies that

——(a)w(z! —d’) = Z ——(a)w(z’)

where the second equality comes from the linearity of w and the fact that w(a?) = 0. Set w(z7) :=
v7. Then,

n

w(f) = 30D (1) = Dy ()

j=1
and this implies that for all f,
w = DZ" vie;

and we’ve constructed an element v € R” such that D, = w.

5.6 Some Important Formulas

Corollary 20. Let M be a C*°-manifold (smooth manifold) of dimension d, and let a € M.

(@) If o : U — Réis achart of M, a € U, then ¢ : U — ¢(U) is a diffeomorphism, and so

dipq : ToM — Ty RYY]

is an isomorphism of R-vector spaces by 5.4(e). In particular, T, M is a d-dimensional R-vector space.

We define (for a € M):
= dp L i
a @w(a) oxt p(a)

so that {-2;| } gives a basis of T, M, i.e. every v € T, M can be written as
a

ozt
.0
= J . _—

9
oz’

a

For f € C>°(M,R):

0 P 0
oxt a(f) N dgo(p(a) (3xi

91f you want to get technical, this is really

o1 — Afop™)
go(a)(f ® )_ 8.131

(p(a)) (5.6.1)

0
) (=

ToM = ToU ———— Ty p(U) = Ty(q)R?
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(b) Let ¢ : U — R% 4 : V — R? be two charts with a € U, a € V. We have the basis of T,M given by
{%‘ } from ¢, and {52 | } coming from 1. Note that for f : (V) — R,
a a

d
w(a)) =5z (a)

d L1
=3 2wt 228 o)

0

oot
d(wow_l)(axi Afovoo™)

ox?

(fovop™)=

(¢(a))

by the chain rule,

o’
A, L 9oty d
1 _ —_
= dwop™) (5 W))—; 22 L o) o,
this implies
0
1
8951 N (8901 (a)> ed(W o )<6xi (a)>

in summary, we have the change of variables formula,

d 1y
P P

j=1

5l (5.6.2)

(c0) If F € C>*(M,N) where M is a d-dimensional manifold and N is a k-dimensional manifold, then let
@ : M — R be a chart of M with a € U, and let 1) : V — R* be a chart of N, where F(a) € V. As in
(b), we have that

~ oFop )i
(P(a)> ZM@(a)).i

Oz [y (F(a))

d(poFo %071)99((1) (8331

j=1
which will be left as an exercise (it’s really the same calculation). Therefore, we get equation (3),
9 g1 -1 i -1 -1 9

dF (axiD — dyp odip o dF <d<p <axi’¢(a))> =yt od(oFop™) (5

@(a))
W(w(a» Cdip ( 8~ ) = ZM(@M)) : g

M-

j=1 O 1y (F(a)) = Oz’ 077 | F(a)
in summary,
k .
0 A(po Fopt) )
aF ' 2T 9p ey 5.6.3
(axz ) g G @) gL (5.6.3)
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5.7 Smooth Curves

(@) Let I = (a,b) C R be an open interval, and let M be a manifold. Then, a smooth curve o: on M is
an element a € C*(I, M). For ¢y € I, we can use

d

(from 5.5 for n = 1) to define

d
o' (to) = da (dt
and we call o/ (¢p) the velocity of « at ¢g.
(1) For f € C>(M,R), we have
d

o (t0)f) = do (]

(2) For a smooth map F': M — N, we have

dF (o (to)) = dF o da (jt‘t:()) —d(Foa) (i’tz()) — (Foa)(t)

where Foa € C*(I,N).

(b) In fact, we claim that for all v € T, M, there exists some ¢ > 0 such that there exists some o €
C>°((—e,€), M) such that a(0) = a, and &/(0) = v.

o)

Proof. Let ¢ : U — R? be a chart of M, and a € U. Let v € T,M, and write v = Zd o7

J 11)]

coming from . Now define ¢ := Z?Zl vVe; € RY, and let € > 0 such that for all t € (—¢,¢€), we
have that p(a) +t -9 € ¢(U). Define a : (—¢,¢) — M by a(t) :== ¢ *(¢(a) +t-9) € U. Clearly,

a(0) = ¢ Hp(a)) = a and a € C®((—¢, €), M). Note, for f € C*(M,R),

(f o a) d(f o~ (p(a) 4 t0))

a’(0)( (0) = gt (0)

HM&
@
&
=
o8
—~
s
—
&
_|_
~
(4
S~—
—~
(s}
=

I By the chain rule
**By 5.6(1)
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Vector Fields

(This section is modeled after Lee, Chapter 3 and 8).

6.1 The Tangent Bundle

Definition. Let M be a d-dimensional manifold. We define the tangent bundle of M to be the space
TM = {(a,v)|la € M,v € T,M}
Note that there is a natural projection map 7 : TM — M which maps (a,v) — a.

Claim. We can give TM the structure of a 2d-dimensional manifold. For (¢ : U — R?) € A, a chart of
M, denote by
©OTrM 7T_1(U) — RQd

the following map: let (a,v) € #=1(U), i.e., v € T, M. Then we can write (by 5.6(a))

d
;0
UZZU ozt

i=1

a

for some v* € R. We define
orm(a,v) = (go(a),vl,'UQ,...,vd) e R%

If we take A := {71 | € A}, this defines an atlas for TM, and = € C>(T' M, M).

Proof. We show that 4 is an atlas in the same way that we’ve done in a number of times before.

e o7 is a chart, i.e., (1) o7, has to be injective, and (2) or),U’ is open, where U’ C 7=1(U).
1. Well, o1 has to be injective, because ¢ is injective, and a?ci is a basis of T,, M- so the v* are
chosen uniquely with respect to v.

2. Is orm (77 HU)) Copen R24? Well,

erm (1)) = p(U) x R? Cpen R
and since p(U) is open in RY, we have our assertion.

e We must show the compatibility of maps in the atlas: Let (¢ : U — ¢(U)), (¢ : V = ¢(V)) € A.
There are 3 compatibility conditions to show,
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1. oram (= 1(U) N7~ (V)) needs to be open in R?, but since
eru(r {({U) N (V) = oru(r (U NV)) = p(UNV) x R?

and as (U NV) is open in R%, the term on the right is open in R??. We do the same thing for
Y-
2. a0y e(UNV) xR — 4(UNV) x RY needs to be a smooth diffeomorphism. Really
inspecting this map,
-1 d a

1 ay ™ i
(ga(a),v ) ) _ <a,;v p a)

using 5.6(2), the change of variable formula, and denoting the coordinate tangent vectors for

b as 52,
d d d _1\k
i 0 _ (Yo ') 0
(“’;“ oz ) - (“; (;” 9zt 07k la

Taking 7 of this, we get

Lawop ) o
“>:<G7ZWZ (3xi ) " Oik

i=1 k=1

Note that

v
D a(wosowk) "
(v ey %) > < o y 3

is a smooth map, which implies that ¢75s o 7.1, is smooth, and

-1

(Yrmoory) = @ra o YoM

is smooth by a similar argument.
e Ais an atlas:

1. We have that
U =0 =JUxTMly =TM
prmMEA peA

2. o1, Y are compatible, which was just shown.

e TM is Hausdorff: Let (a,v) # (b,w) € TM. If a # b, then there exist charts ¢ : U — R?
and ¢ : V — Résuchthata € U, b € V, and UNV = (), because M is Hausdorff. Then,
take o1, YT, and we have satisfied our condition in this case. Considering the other case, if
(a,v) # (a,w) € T,M, then v # w € T,M = R%. Since R? is Hausdorff, there exist neighborhoods
U and V of v and w such that U NV is empty.

e TM is 2"¢-countable: let 1 be a countable base for M. Define
Ba={Be€B[3(p:U — R € Asuchthat B C U}

Then, the B4 is a countable base for M. B4 is a base because: for a € V' Cypen, M, there exists a
chart p : U — R% a € U C V. Since B is a base, there exists B € B such that « € B C U. But then,
Be€By,anda € BCU C V. Write By = {By, Ba, ...}, and choose ¢, : U; — R? with B; C U,.
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Since (¢; )7 are charts of TM, we know that 7~ (U;) is homeomorphic to ¢(U;) x R? (by Lemma
3.5), and (U;) x R9 is 2"? countable. Note that

T™M == (Uy),
i=1
and recall that a countable union of 2"¢ countable space is again, 2"? countable.

e w:TM — M is smooth: for ¢ and @7y,

pomo (p;]l\/[ =pom ((p_l(x), ) = (p((p_l(x)) =xe(C™®

6.2 Induced (smooth) maps on tangent bundles

Corollary 21. If F € C*°(M, N), then there is an induced map dF € C*°(TM,TN) given by
dF(a,v) := (F(a),dFy(v))

where dF, : T,M — Tpq)M.

Proof. For achartof M ¢ :U — R? and ¢ : V — R, a chart of N, we have:

)

d
_ ; 0 i 9
Y © dFO‘PTzlv[(SD(a)’Ul’ ) =vra 0 dF (a’?;’l) ox? a) v (F(a)7;U " <8$i

by (5.6(3)),

4k oo F o1\ P
= rm (F(G%Z“ZW' (W F(a))>

i=1 (=1

d d
woFOw H! ;0o Fop
< ),y v E,U&C>

=1 =1

where ¢ (F(a)) is smooth, and

d
(wonll woFowl)’“ _ (o Fop ) .
(Z Z >_( Oz’ )kz :d

i=1 i=1

which is smooth in (v!, ..., v%). O

6.3 Recognizing tangent bundles as Cartesian products

Remark. Note that if M has a chart ¢ : M — R? where the domain of ¢ is all of M, then 7=1(M) = TM,
so that
(71 X idga) o prar : TM — (M) x RT — M x R?

is a diffeomorphism, by 4.3(c). In this case, T'M is just the Cartesian product M x R?. In general, this
will not be the case, because we cannot identify different tangent spaces at different points of M with
each other without any extra information.

43



CHAPTER 6. VECTOR FIELDS

6.4 Vector Fields

Definition. Let M be a manifold. A vector field X on M is a section
X:M—>TM

of w. In other words, 7 o X (z) = z. We write X : a — (a, X,) where X, € T, M. For a subset S C M, we
define a vector field on S to be a map X : S — T'M such that 7 o X (z) = z.

Remark. If f € C>°(U,R) where U C,p,en, M, and X is a vector field defined on U, then X gives us a map
Xf:U — R given by X f(a) := X,(f); which makes sense, as X € T,M and f € C*(U,R). Note that
the following properties are almost immediate, as X, is a derivation:

1. X(rf+sg)=rXf+s-Xgforr,seR, f,g € C®U,R), and

2. X(f-9)=(Xf) g+ f-(Xg) as functions from U — R.

6.5 What is a smooth vector field?

Proposition 22. Let X be a vector field on a manifold M. Then, the following conditions are equivalent:
() X €C®(M, TM).

(b) Forall f € C*(M,R), Xf € C>®(M,R).

(c) For every open subset U C M and for all f € C°(U,R), X f € C(U,R).

(d) Forp e U, and all charts ¢ : U — o(U), if we write X, as

0 0

p Oz p7

i
Xo =2 Xge
j=1

then X7 € C*°(U,R), j = 1, ...,d, where we call the maps X7 : U — R the coordinate functions.

(e) For every point p € M, there exists a chart ¢ : U — R® with p € U, the coordinate functions X7 : U —
R? are smooth; X7 € C*(U,R) for j =1,...,d

If any of these conditions is satisfied, then X is called a smooth vector field.

Proof. We proceed as follows:
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6.5. WHAT IS A SMOOTH VECTOR FIELD?

a <= d < ¢

First, we have for a chart ¢ : U — R? of M,

d
) ) 3 (o i)
prioX o™ (x) = pru (SD (X W) sol(:z:))
=1

= (2, X (¢ (@), ., XU ()

Now, X € C>°(M,TM) if and only if it turns out that the map above is smooth. This map is smooth if
and only X7 o p~! is smooth for all j = 1, ..., d, which is the case if and only if X7 € C>°(U,R). This is
equivalent to (d) and (e) by definition 4.1 and lemma 4.2.

e=c

Let f € C>°(U,R), and let ¢ : V' — (V') be a chart (as in (e)) with p € V C U. Then,

()

d
, )
X, = ;X](p) iR and X f(p) ZXJ mj
]:

where by assuming (e), we have that X7 € C=(V,R).
Consider the map f : U — R induced by X (only, we restrict to the j** component), where

p= Dzl p(f )-
This map satisfies

0 —1 _O(fo o)

Zdﬂeoﬁ (flop™ (z) = T om

which is the usual partial derivative in R%, by Cor. 5.6(1). The partial derivative is smooth, implying that

D % |,(f) € C>(M,R). This implies our claim, where we now consider instead of the ;" component,
the sum of all such components from j = 1...d, and take products in order to get X f.

(1),

c=b

Almost immediately, by setting U := M.

b=e

Assume (b); that for all f € C*°(M,R), that Xf € C*°(M,R). Let p € M, and chose a chart of M,

0:U — o(U), with p € U. Write X = Z;l:l X7 52|, Let f7 € C>(U,R) given by f7(z) = (¢(z))’. By

lemma 18 in seE:tion 5.4, there exists a smooth extension fj € C>*(M,R) such that for p € V Copen U, f7

and f7 agree; fi|y = f7|y. Then, we claim that on V, that

56(1) ’ A(fiop)
ZX ozt ¥

which implies that on ¢(V),
d

~ J 1
idRonjosﬁl (ZXE 8faoxzo )OQO>O§01
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d — J i
0 (ple~ (@) _ 0’
_ 4 — —
SN T T
=1

which is smooth. This calculation shows that X f7 € C°(V,R) so by taking sums and products we have
shown that X f € C*°(U,R) for all p € M. O

6.6 Smooth vector fields, and real-valued smooth maps.

Lemma 23. Let Z : C*°(M,R) — C>°(M,R). Then, there exists X, a smooth vector field, with Z(f) = X f
if and only if

1. Z is R-linear, and
2.2(f-9)=2(f)-9+ - Z(9)

Proof. We proceed as follows:

=)

This part of the proof follows quickly by 6.4(1), or definition, because X f(p) = X, (f) satisfies both (1)
and (2).

(<)

Assume Z satisfies (1) and (2). Define X : M — TM, X, € T,M, X,,(f) := Z(f)(p). Then X, is a linear
derivation, e.g., X, (f - 9) = Z(f - 9)(») 2 Z(H)p)alp) + [0) - Z(9)p) = X,(f) - 9(0) + F(D) - X, (f).
Lastly, X is smooth by Lemma 6.5(b = a), and we are done. O

6.7 A module over the C* structures; Lee brackets

Definition. Let M be a smooth manifold.

(a) Denote by X(M), the set of all smooth vector fields on M.

(b) For X, Y e X(M),then X +Y € X(M), by (X +Y)(f) =Xf+Y/f.

(c) For X € X(M), f € C>(M,R), we have that f - X € X(M), where (f-X)(g) = (f)(Xg)[]

(@ If X,Y € X(M), f € C=(M,R). Define Z : C>°(M,R) — C>(M,R) by taking Z(f) := X(Y(f)).

Note that Z ¢ X(M), because the derivation property (2) is not satisfied:

Z(f-9) () =X, (Y (f9)(p) =Xp (Y (f) -9+ [ Y (9)(p)=Xy(
=X, Y () (p)-g9(p)+Y (f)(p) Xp(9) +Xp (f)- Y (9)(p) +
=(Z(f)g9) )+ (f Z(9)(

#0

*My notation was slightly misleading, as at first it looked like I was trying to take the image of X g under f. I added the extra
parenthesis to emphasize that this is incorrect - it might be more clear to consider this at a point on the manifold; for example,

(fX)p(9) = fp (Xg)p,
o ——
€R  €R

so, we still have something that is a smooth vector field.
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But, defining W(f) := X(Y(f)) — Y(X(f)), W : C>*°(M,R) — C*>°(M,R) satisfies (1) and (2), so
W € X(M); by the three lines above, we would get

W(fg)(p) = X(Y(f9))(p) — (Y(X(f9))(p)
= XY )P - 9p)

and linearity is clear. We call [X,Y] := W € X(M) the Lee bracket of X and Y.

6.8 Properties of the Lee bracket

() X(M) is a module over C*° (M, R) with module structure X + Y and f - X from section 6.7 (b) and
(o).

(b) [,] is bilinear over R, i.e., for any r,s € R, we have that rX + sY,Z] = r[X, Z] + s[Y, Z], and
[X,rY +sZ] =r[X,Y] + s[X, Z].

(c) [,] is anti-symmetric, i.e.,
(X, Y] = —[Y, X]

(d) [,] satisfies the Jacobi-identity:
(X, [V, 2]+ [V, [Z, X]| + [Z,[X,Y]] = 0
(e) Forall f,g € C=(M,R),
[fX.gY] = fglX, Y]+ (fX(9))-Y = (gYVf)- X
Proof. (a) Clear
(b)

[rX +sY, Z)(f) = (r X +sY)(Zf) — Z((rz + sY)(f))
=1 X(Zf)+ sY(Zf) —rZ(X[f) —sZ(Y])
= r[X, Z](f) + s[Y, Z](f)

@ [X,Y](f) = X(YVf) - Y(Xf) = -[¥, X](f)
(d

(X [V, 2] + (2, [X, Y] + [V, [Z, X]]
= XYZ-XZY ~YZXAZYXAZXY ~ZYX - XYZAYXZAYZX-YXZ-ZXY+XZY =0

(e)

[f X, gY](h) = fX(gY (h)) — gY (fX(h)) =
fFaX(Y)(h) + fX(9)(Y)(h) — gY (/)X (h) — gfY(X)(h) = fg[X, Y]+ fX(9)- Y = f- Y ()X ()

O
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6.9 Diffeomorphisms and X(M).
Let F € Dif f*(M,N), then F, : X(M) — X(N) is given by X € X(M), F.(X) € X(N),y € N such that
F.(N)(y) € T,N

if F € C>°(M, N) is not injective and surjective, then F, cannot be defined.
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Immersions, Submersions, Embeddings, and Submanifolds

This chapter follows the discussion in Lee’s book, mainly from chapters 4,5, and 6.

7.1 Introductory Definitions

Example. Let M* and N be two manifolds of dimensions k and d respectively. Let f € C*°(M, N) be a
smooth function.

(@) Let a € M. We call rank(dF, : T,M — Tp(,)M) the rank of F' at a. We say that I has constant
rank if there exists an r such that r is the rank at a for every a € M.

(b) F is called a smooth immersion if for all a € M, dF, is inejctive; i.e., F' has constant rank k.

(c) F is called a smooth submersion if for all a € M, dF, is surjective; i.e. F' has constant rank d.

7.2 Local parameterizations of smooth immersions

Proposition 24. Let F : M* — N% be a smooth immersio Then, for all a € M, there exist charts
¢ : U — R* of M where a € U, and ¢ : V — R% of N with F(a) € V and F(U) C V such that

-1, . 1k k 1k d
YoFop :plU)—yY(F{U)); (7., 2”) eRY — (a7, ..., ,Od..;cO)GR

Proof. Let ¢ : U — R* be a chart of M ata, a € U and ¥ : V — R? be a chart of N at F(a), F(a) € V,
F(U) c V. Without loss of generality, assume that $(a) = 0 € R¥, and ¢(F(a)) = 0 € R?. Since

dpo Fog ™)y = dippry o dF, o dpg?
( )0 F(a) 0

isomorphism " ective  jsomorphism

is injective (rank k), we may assume after a rearrangement of the basis of R? that

(0(1; ° ng o) (0)> (7.2.1)

is invertible, i.e., it has rank k. Write

*This notation only indicates that M is of dimension k, and N is of dimension d.
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By what we just mentioned in equation above, Dg(0) is invertible. Then by the inverse function
theorem, there exist open subsets of R¥, Uy, U; such that that 0 € Uy,0 € U; and g|y, — U is a C*®
diffeomorphism. Let U := ¢~ !(Uy), and let

p:=gly,oPlv: U i Uy Uy, €C* —diffeomorphism
Let V; := ¢(V) N (U; x R**), and define a map,

p:Vi=RE pla,y) = (z,y — h(g~" (2))).

Note that p is well-defined, since for (z,y) € Vi, we must have that € U;, and as such g~1(z) € U,
and h(g~!(x)) makes sense. Furthermore, p is smooth, since g and h are smooth and p : V; — p(V;) is
invertible with (smooth) inverse p=1(z,y) := (z,y+h(g~*(2))) (it is easy to check that pop= = p~lop =
id). With this, set V = ¢~1(1,), and define ¢y : V — R% by 1) := po)|y.. Observe that F'(U) C V, because

G(EU)) = $(F (3~ (Un))) CH(FU)) C (V) C Vi
Now, 1ho F o™t = (pot)|y)oFo((@gly) tog ) : U — R?is given by

—1

g (@lu) 1 - F . Dy N P d
Uy Uy o (Uy) cU \%4 py(V)ycV; —— R

and for z € U; C R¥,

poFop Hz)=pohoFop " og™(x) =plg(g~"(2)), h(g~"(x)))
(g,h)

= p(z,h(g™ (2))) = (2, (g™ (z)) = M(g~" (2))) = (=, 0)

7.3 Inverse Function Theorem for Manifolds

Theorem 25. (a) (Local Version) Let F € C*°(M,N), a € M, and let dF, : T,M — Tr(a)N be invertible.
Then, there exist sets U,V such that a € U Copen, M, F(a) € V Copen, N Where Fly : U — Visa
smooth diffeomorphism (this means that F is a local diffeomorphism if and only if dF, is invertible for
all a € M).

(b) (Global Version) Let F € C*>°(M, N), dF, is invertible for every a € M, and assume that f is injective.
Then, F : M — F(M) is a smooth diffeomorphism.

Proof. (a) Well for starters,
dim(M) = dim(T,M) = dim(TpyN) = dim(N) = d

Let ¢ : U~—> @(U) be achartata € U ¢ M, and ¢ : V — (V) be a chart at F(a) € V C N with
F(U) C V. Since ¢, ¢ are smooth diffeomorphisms (by 4.3(h)), we have that

d(po Fo <p71)|¢(a) =dYp) odF, o d(p;(la)
is invertible. By the inverse function theorem in R?, there exist [7, 1% Copen R? such that

wOFO@_lzﬁ—)IZ/

is a smooth diffeomorphism. Set U := @fl(l:]), V =~ YV). Then,

. . ¢z (oFop ) »  y! =
F=¢o(oFop )op:U U 4 v (V)

and as ¢!, ¢, and (1) o F o ¢~ 1) are all smooth diffeomorphisms, we have that F|y; is also a smooth
diffeomorphism.
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(b) Note that F(M) is open in N (because for all F'(a) € N, there exists a C U Coper, M such that there
exists F'(a) € V Copen N where F|y : U — V is a diffeomorphism, and F'(a) € V C F(M), implying
that F'(M) is open). Then, F : M — F(M) is bijective. F is smooth, F~! : F(M) — M is smooth
(since for all F'(a) € N, there exist U,V as above, where F~1 : V — U is a diffeomorphism.)

O

7.4 Smooth Embeddings

Definition. Let F' € C*°(M, N). Then, F is called a smooth embedding if F' is a smooth immersion and
F: M — F(M) is a homomorphism, where F(M) C N has the subspace topology.

Remark. Recall that F : M — N between topological spaces is a topological embedding if and only if
F : M — F(M) is a homomorphism. Now, smooth embeddings occur if and only if we have a topological
embedding and a smooth immersion.

7.5 Examples
(@) Let U Copen M where M is a manifold Then, the inclusion ¢ : U — M is a smooth embedding.

(b) Let F : (3 — 3F) — R?, F(t) = (sin(2t),cos(t)). Clearly, F is injective, dF, is injective, and so
F is a smooth immersion. However, I'm(F’) is compact, where the domain of F' is not compact, so
F: (%2 — 2) - F (% — 2) is not a smooth embedding.

(c) Let F € C>®(M, N) be injective and a smooth immersion. Assume that M is compact, then F~! :
F(M) — M is continuous (since for a closed subset A of M, we have that since M is closed that A
is compact, and so F'(A) is compact in N, and by N being Hausdorff we have that F'(A) is closed in
N; (F~1)~! maps closed sets to closed sets, so F'~! is continuous). We conclude that F is a smooth
embedding.

(d) For manifolds M,N, a € M,b € N, the inclusion i, : M — M x N; z — (x,b) and i, : N <
M x N; z +— (a,z) are smooth embeddings (similarly, the projection maps projy : M x N —
M,projn : M x N — N are smooth submersions)

(e) The composition of smooth immersions (or smooth embeddings) are smooth immersions (or smooth
embeddings).

Proof. We have thatd(F o G)= dF o dG

injective injective

and so we have injectivity for smooth immersions.

€] F
For embeddings, working in the situation where M N P, we have that if M is
homeomorphic to G(M) C N and N is homeomorphic to F(N) C P, that M is homeomorphic to
F(G(M)). O

7.6 Immersed and embedded submanifolds

Definition. Let M be a manifold, and let S C M be a subset. Then, (5,.4s) is called an immersed
submanifold (embedded submanifold) if there is a manifold structure (S, .Ag) such that the inclusion
1:.S < M is a smooth immersion (smooth embedding).
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7.7 Topologies of embedded submanifolds

Remark. Note that if S C M is an embedded submanifold, then the topology of S coming from (.5, Ag)
and from the subspace topology S C M must coincide, because the inclusion i : (S, Ag) < i(S) C M is
a homeomorphism. For immersed submanifolds, this is not the case (see the example of the figure 8, as
discussed last time).

7.8 Immersed & embedded submanifolds as images of injective smooth
immersions and smooth embeddings

Proposition 26. Let M and P be two manifolds, let F' € C*°(P, M) and let S := F(P).
(@) If F is an injective, smooth immersion, then S is an immersed submanifold.
(b) If F is an smooth embedding, then S is an embedded submanifold.

In other words: (immersed)/(embedded) submanifolds are exactly the images of (injective, smooth immer-
sions)/ (smooth embeddings).

Proof. In both cases, we have that F' : P — S is a bijection. For any chart ¢ : U — ¢(U) of P, define a
chart for S: ¢g : F(U) = ¢(U), ¢s := ¢ o (F|r@w))~*. We claim that Ag := {¢s|p € Ap} defines an
atlas for S.
e g is a chart: (chart 1) since g = p o F~1, g is injective. (chart 2) We have that
ps(F(U)) = (U) Copen RI™P)
and we have that g is a chart.
e ©g,1g are compatible: (compatibility 1) We have pg : F(U) — ¢(U), vs : F(V) = ¢(V), and so
ps(FU)NF(V)) = ps(FUNV)) = (UNV) Copen RI™P)
and (compatibility 2)
Ysopgt =poF to(poF )t =¢poF toFop l=1op lipUNV)=yUNV)
is a smooth diffeomorphism, because ) and ¢ are charts in the atlas of P.
e Ag is an atlas: (atlas 1) We have that U, c 4, F(U) = S, (atlas 2) ¢, are compatible.

With this, we have that F': (P, Ap) — (S, Ag) is a smooth diffeomorphism (since ¢g o F o ™t = id, )
and ¢ o F~1 o 5! =idy ) and the inclusion i : (S, Ags) — (M, Ay) is the composition

—1

P (8, Ag) s (P, Ap) ——s (M, Any)

where F~! is a smooth diffeomorphism, and F is a smooth immersion/embedding. As their composition
is a smooth immersion (case (a))/smooth embedding (case (b)), we are done. O

Note. For (a), the topology from (.5, As) and from S C M do not coincide (in general).
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7.9 A property of embedded manifolds

Proposition 27. Let M be a d-dimensional manifold and let S C M be a subset of M. Then, S is an
embedded submanifold if and only if there exists k < d such that for all a € S, there exists a chart p : U — R?
of M with a € U such that

P(UNS) = o(U) N (B x {0} ).

ERd—k

Remark. In the above situation, S has the atlas: Ag = {mpr 0 ¢|pns : UNS = R¥|p: U — R € Ay, for
¢ as in the statement of our proposition, }, where 7y is the projection from R? to R*.

7.10 Equivalence between embedded submanifolds and submani-
folds from definition 2.4(a)

Corollary 28. A submanifold in the sense of definition 2.4(a)is the same as an embedded submanifold of
(R™, {idgn }), in the sense of definition 7.6.

Proof. (<) Let Ag be as in the statement. We need to show two things, (1) that Ag is an atlas, and (2)
that the inclusion i : (S, As) — (M, Ag) is a smooth embedding.

1. For ¢ : U — R? with ¢ as in the second statement of the proposition, denote
ps=mpro@:UNS — RF,
e (g is a chart: (chart 1) g is injective, since p(U N S) C R*¥ x {0}; (chart 2)

0s(UNS) = mge ( @ N(R* x {0}) Copen RF

open in R4

open inRE x {0}
e compatibility: take pg: UNS — R¥ 45 : V NS — R¥. (compatibility 1) we have that

ps(UNS)N(VNS)) =mar(pUNV)NpUNS)) = (p(UNV)NpU)N(R" x {0}))

CopenRY CopenR9

and (compatibility 2),

1

5ot : ps((UNSINVAS)) S 0y 9NV s $(UAV) — s s (UNS)N(VS))
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the inclusion is smooth, the map 1 o ¢~ *

s N gogl is smooth and (5 0 v5)™! = ¢s o wgl is also smooth, so 15 o ¢g
diffeomorphism.

is smooth, the projection map is smooth, and so
! is a smooth

e Proving that these make up an atlas: (atlas 1) We have that U, (U N S) = S by assumption,
and (atlas 2) is true; ¢g, 15 are compatible as was just shown.

2. Leti: S < M, and consider ¢ € Ay, as in the second statement of our proposition with corre-
sponding ¢gs. Then,

poiopg! =poio(mrop) i mpe(p(U)) = @U); z+ (,0)

This implies that 7 is a smooth immersion. It remains to show that i~! : i(S) — S is continuous.
Let V' Copen S (in the Ag topology). We need to show that V' Cep, 4(S) where i(S) C M has the
subspace topology. Let a € V' Copen (S,As). This implies that there exists ¢5 : U NS — R¥ such
that a € UN S C V. Therefore, ¢ : U — R? € Ay, and a € U, which is an open subset of M.
Then, a € UN S Copen S (under the subspace topology of M). Since we can do this for all a € S,
we have that V' C S is open in the subspace topology of M.

(=) Leti: (S, As) — (M, Ap) be a smooth embedding, and let a € S. By proposition 7.2, there
are charts ¢ : U — R? of M, a € U, and ) : V — RF of S where a € V, with V = (V) C U such
that for all z € ¢(V), the composition ¢ o i o1~ (x) = (x,0). If necessary, restrict U and V such that
Im(poioyp~t) = Im(p)N (R¥ x {0}). Since S has the subspace topology of M, this implies that there
exists a subspace V Copen M such that V =V N S. Let U := U N V. Then |5 : U — ¢(U) is a chart of
M such that

elgUNS) =pUNVNS)=pUNV)=pl)NIm(poioy™") =¢U)N (R* x {0})

7.11 Properly embedded submanifolds

Definition. Let S C M be an embedded submanifold. Then, S is a properly embedded submanifold, if
the inclusion i : S < M is a proper map, i.e., for every compact subset K of M, i~!(K) C S is a compact
subset of S. Recall from topology that if you have any map F' : S — M which is continuous, if S is
compact and M is Hausdorff, then F is a proper map. Therefore, if S C M is an embedded submanifold,
and S is compact, then S is a properly embedded submanifold.

As an exercise, let S C M be an embedded submanifold. Then, S is a properly embedded submanifold
if and only if S C M is closed.

7.12 Whitney Embedding Theorem

Theorem 29. (Whitney Embedding Theorem) Let M be a smooth manifold, and assume that M is compact.
Then, there exists an integer n such that there exists a proper smooth embedding F : M — R™.

Proof. For a € M, let ¢, be a chart ¢, : U, — R? of M (of dimension d) at a, i.e. a € U,. WLOG,
assume that ¢,(a) = 0. Let e(a) > 0 be such that B,y C ¢(U,). Denote by E, := ¢, '(B)) and
D, = cp,;l(Be(a) /2). Note that the {D,}.cns is an open cover of M. Since M is compact, there exist
ai, ..., a, such that D,, U...U D, = M. Let fi,..., f, be functions, f; € C*°(M,R) such that 0 < f; <1,
and supp(f;) C Eq;, filp—=1. Note that f; - ¢q; : M — R? is a smooth map (where ¢, is extended to

M by 0 outside of U,,). Now let n = r - d 4 r and define F' : M — Rrdtr,
F(z) = (fi(x) - 0a, (@), f2() - 0a) (7), ..., fr(x) - 0a, (), f1(2), ..., fr()).
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(if you get confused, just look at it until you remember that f;(x) - ¢4, (z) : M — R%) We claim that F
is a proper smooth embedding, which if we can prove, we are then done.

Is F injective? Let I'(z) = F(y). Since z € D, for some a;, it follows that 1 = f;(z) — f;(y) (since
F(z) = F(y)), and 50 y € o, C 90, (Us,). AlS0, g (£) = fau, (%) pa, (&) = fa, (v) - a, () (again, since
F(z) = F(y)) = ¢a, (y). But since ¢, is injective, and both z,y € U,,, it follows that z = y.

Is dF, injective? For x € D,,, we have that fj|T% = 1, implying that d(f; - ¢a;)z = d(@a, ().
To see this, apply v € T, M to this, and use 5.2(c). Now, d(¢,,). is an isom. by 5.4(e), implying that
dFy = (..., d(fj - Ya;)zs-) = (s d(a;) ,---), SO dF, is injective. As such, F' is an injective smooth

injective
immersion.
This implies by 7.5(c) that F is a smooth embedding, which implies by 7.11 that F' is a proper smooth
embedding (both of these use the fact that M is compact). O

7.13 Whitney’s theorems

Theorem 30. (a) (Whitney’s Embedding Theorem; general version (see Lee)) Let M be a smooth manifold
of dimension d > 0. Then there exists a proper smooth embedding F : M — R24+1,

Remark. Remarks on the Proof: The proof of the above uses:

(a) The notion of a manifold with boundary.

(b) Sards’ Theorem, which says: let ' € C*°(M, N), where M, N are smooth manifolds (with or
without boundary). Let C := {x € M|dF, is not surjective } be the set of critical points of F.
Then, F(C) has measure 0 in N.

(b) (Whitney Embedding Theorem - Strong Version) Let M be a smooth manifold of dimension d > 0. Then,
there exists a smooth embedding F : M — R2%.

Remark. Remark on the Proof: In proving above, you first find a smooth immersion F : M — R34,
and use the ‘Whitney trick’ to remove self-intersection. This is the starting point for surgery theory,
which classifies manifolds of dimension > 5. In fact, M? — R* and M* — R® are the best possible
dimensions to embed 2-manifolds and 4-manifolds, respectively. But, every 3-manifold M3 < M?5.

(c) (Strong Whitney Embedding Immersion Theorem) Let M be a smooth manifold of dimension d > 1.
Then there exists a smooth immersion F : M — R?1~1,

(d) Generalization of (c) (Ralph Cohen, ’85): Let M be a smooth manifold of dimension d > 1. Assume that
M is compact, then there exists a smooth immersion F : M — R?4=*(4) where a(d) is the number of '1’s
in the binary expansion of d.[ﬂ

See also, the Nash Embedding Theorem.
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Cotangent Vector and Tensors

This chapter is modeled after Lee’s book, chapters 11 and 12.

8.1 Dual Spaces

e Let V be a finite dimensional vector space (over R). Then, the dual vector space V* is the set of
maps
V*:={a:V — R|ais alinear map }
e If {e1,...;eq} is a basis for V, then there is a dual basis {e7,...,ej} of V* given by e}(es) = d;s,
e; : V. — R, induced linearly to all of V. Note that the isomorphism V' — V*, e/ — ¢ is not
canonical, i.e., it depends on the chosen basis {e;}.

e However, the map 6 : V — V**,
O(v) : V" = R, 0(v)(a) == a(v)
is a canonical isomorphism, and is given by the evaluation map.

e If A: V — W is a linear map, then there is an induced linear map, A* : W* — V*, where
A*(B)(v) = B(Av) for v € V, as illustrated below.

A
v N
Wea—oveV

1
/

BeEW™ //
' Blav)evr
R ¢--~

8.2 The Cotangent space of a manifold

Definition. Let M be a manifold of dimension d, and let a € M. Then, the cotangent space of M at a is
the dual space of T,, M, denoted by T M := (T, M)*.

Take M to be a manifold of dimension d, and a € M: Let ¢ : U — R? be a chart, and denote (as

}j=1...a the basis of T, M given by the chart ¢. Denote by dz?|, := (% ) a member

. 0
(@1) (5], ) =
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Remark. For another chart ¢ : V — R of M at a, with induced basis {52;| } of T,M and {d#'}; of
Tx M, we have the transformation rules: ’

d . .
0\ 5602 . o=t 9 (o pt) (o)
“ (8:61) - (Z O’ oz 2 a0k oxi

summarizing,

(8.2.1)

If F € C>(M, N), then there is an induced map dF, : T,M — Tp,)N, implying
dF; : T;N - T;M; dF;(ﬁF(a))(Xa) = 6F(a)(dFa(Xa))

in diagram form, this looks something like this:

X, € T,M —2y Ty N

\
N
N

N lBF(a)ET;(a)N
ﬂF(a) (dFa(Xa))
SR

If o : U — R? is a chart of M at a, and ¢ : V — R¥ is a chart of N at F(a), and F(U) C V, then take
basis {32} of T, M, {dx’} basis of Ty M, basis {52} of T, N, {di’} basis of T T4 N Then, we have

o gmi 9 - 9 6@ o (e (oFop™) 0
dF; (de‘F(a)) <axi a) = di (dFa (W,)) 53 gz (Z(ax) (o (a)) - ag:@)

(=1

_O(WoFopt)

L (elw)

summarizing again,

¢ (a)) - da’ (8.2.2)

a

d J
d(poFop!
F; (037 ) = 30 2L o)

i=1

8.3 Cotangent bundles, 1-forms
(@ LetT*M :={(a,B)|la € M, € TxM}, called the cotangent bundle, and let
m:T"M — M, (a,B) — a.
For a chart ¢ : U — R? of M, define a chart o« : 7~ H(U) — R4,
d
o (a,ZB" -dmj|a> = (¢(a), 8,8
j=1

where Z;l:l Bt dxl|, isin T M, and 3 € R.

Claim. Chart of this form define an atlas 7+, giving T*M a 2d dimensional manifold structure,
such that 7 € C>°(T* M, M).
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Proof. Similar to the proof of 6.1, so it is left as an exercise. O

(b) A covector field, or 1-form on M is a section 3 : M — T*M of w, i.e., w o 8 = idy, (this is what it
means to be a section). The set of all smooth 1-forms is denoted by X*(M). , and we call 5 smooth
if g eC>(M, T*M).

Claim. The following are equivalent:

(a) S is smooth.

(b) For every X € X(M) (smooth vector fields on M), the map (which are now defining) (3, X) :
M — R, (3,X)(a) := B.(X,) is smooth.

(©) For ¢ : U — R¥ a chart of M, fly : U = T*M, Blu(y) = X%, #(y)(dai],), B9 € C(U,R),
Proof. Similar to the proof of 6.5, so left as an exercise. O

Remark. If we take g € X*(M), f € C*(M,R), and X € X(M), then
Af - X)(a) = Bal(f - X)la) = Ba(f(a) - Xa) = fla) - fa(Xa) = (f - B(X))(a)

But, we had
X(f9)(a) = Xa(f)g(a) + f(a) - Xalg) = (X(f) g+ [ X(9))(a)

I am not entirely sure why this was pointed out, other than it may prompt the discussion of differentials
below.

8.4 Differentials

Definition. Let f € C*°(M,R), then we define the differential of f at a, df, € T, M, by setting
dfa(Xa) = Xa(f)

for X, € T, M.

Claim. df € X*(M) is a smooth 1-form.

Proof. By 8.3(b), df is smooth if and only if df,(X,) € C*°(M,R) for all smooth vector fields X. But, if
f e C>®(M,R)and X € X(M), this implies that X (f) € C>°(M,R), and X (f)(a) = X.(f) = (dfa(Xa))-
Hence, df is smooth. O

Remark. (a) Let ¢ : U — R be a chart. Then,

0 0
dfa( ):&r

i
(b) Recall that for f € C*(M,R), there is an induced map df, : ToM — T})R whereas now, df, :
T,M — R. In 5.3, we had for g € C*°(R,R) that

() e A oe)

) 5 (p(a) € C¥(UR)

dfa T, M — Tf(a)R,

= df, (Efjﬂ > (6) = 5], 60 )
ofo -1 chain rule - ° i
:W(w(a)) hainrl %(fosﬁ 1(@(0)))'%@(“))
_9(fee™) d

s @) | )
In summary,
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T,M — df, as in 5.3 — Tf(a)R

N

dfq as in 8.4

™~

(c) if ¢ : U — R% is a chart of M, denote by ¢’ the j** component of  in RY, i.e., ¢ = (p',¢?, ..., %),

where ¢7 : M — R. Then,
(0 A’ o™t
J =
nga <axk a> 8xk (Qﬁ(a))
Ox?

= @(‘P(a)) = Ojk
= dp! = da’|,

R

8.5 Maps between smooth 1-forms on manifolds
Definition. Let F' € C*°(M, N), (where F is not necessarily a diffeomorphism) then there is an induced
map dFy, : T,M — Tp) N, so we get

Claim. This implies that F™* : X*(N) — X*(M) where F*(3), := dF} (Br(a))-
For § € X*(N), X € X(M), it is

F*(B)a(Xa) = dF (Br)(Xa) = Br(a) (dFa(Xa))

€Tr@) N

Proof. Forcharts ¢ : U - R of M,a € U,and: V — RFof N, F(a) € V,F(U) CV, let

k
B=> Bd¥|pa) € X*(V).

j=1
Then,

b : ; * llinear, 8. k ; d 8 oF o 1yJ .
= dF? (Z B (F(a))dj;J|F(a)) dFy lincar, 8.2(2) Zﬁj( Z ¢—‘p)(<p(a)) - dz],
=1

j=1 i=1

d k Y ‘
-y (Z B () - 20T e ) <so<a>>) o],

smooth, U—R

O
8.6 Lemma
Lemma 31. Let F € C*°(M, N), let f € C*°(N,R) so that df € X*(N). Then,
F*(df) = d(f o F) € X*(M)
Proof. Fora € M, X, € T, M, it is,
F*(df)a(Xa) = dF;(dfF(a))(Xa) = dfF(a) (dFa(Xa)) = (dFa(Xa))(f) = Xa(f © F) = d(f © F)a(Xa)
O

60



8.7. TENSORS

8.7 Tensors

Definition. (a) let V4, ..., Vi, W be R-vector spaces of finite dimension. Amap o : Vi x Vo x ... x V}, = W
is called multilinear if it is linear in each component:

V1,02, .., TV + 8Tj, o, V) =17 - (U1, oo, U, ooy V) + 5 - (V1 ..., V)

for all r,s € Rand j = 1,...,k (note that rv; + sv; € V;). The space of all multilinear maps
a: Vi X ... x Vi, — W isdenoted by L(Vi, ..., Vi; W). Note that L(V4, ..., Vi; W) is an R-vector space
(you define the sum of maps in the way you think you would, and scalar multiplication is similarly
natural).

(b) Let V be a finite dimensional R-vector space (later, we’ll set V' := T, M). Then, a tensor of type
(k,1) is a multilinear map
Vix..xV*xVx..xV =R
k l

The space of tensors of type (k,![) is denoted by

TEDV) = THV) == L(V*,..,V*,V, ... V;R)
T

In particular,
7O =R, TOYWV)=L(V;R) =V, TOO=LV4R) =V"=V

where in the third equation, we send v from V into V** by sending v — eval(v).

88 i ®a®..Qaq; € L(Vl, ey Vk;R)
Lemma 32. (a) If a1 € VI, ag € V', o € Vi, then
a1 Qo @ ... Qo EL(Vl,...,Vk;R)

given by

(1 ® ... ® ag) (v, oy Ug) == a1 (V1) - a2(v2) + ..o (Vk)
(b) If {])}; is a basis of V', {ad}; is a basis of Vi, ..., {ad}; is a basis of V;, then
('@l ®..® ai’“ Yitidoin
is a basis of L(V1, ..., Vi;; R). In particular, if dim (V1) = dy, then dim(L(V4,...,Vi;R)) =dy -da - ... - dy,
and therefore,
dim(TH4(V)) = dim(L(V*,...,V*,V,..., V;R)) = dim(V)**".
Proof. (a) We have,
(1 ®.0a; ®..0 ag)(v1, .., 70 + 80j, ..., v) = a1 (v1) - ... - (o (rv; + 875)) - ... - cue(vg)
and since «y, is linear, and multiplication is linear,

=7(01 @ ... ® ag)(V1, ey Vjy ooy V) + S(1 @ oo @ ) (V1 oey Ty oony Vi)
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(b) Let {v}}; be a basis of V, such that od (v) = 6;;. In showing the span, let 3 € L(V4, ..., Vi;R), and
define 8, .. j, := B(v]",...,v7") € R. Claim:

8= Z Bt O @ . @
J1s--50k
To show this, we apply the right hand map to (v{l, - vi’“), and get

S B o @ a0 vl ) = Y Bl (@) o () = B

J1ysk J15sk

which is equal to S(v?', ..., vi’“), by definition. Hence, as multilinear maps are determined by their

image of a basis, and from their equality, we conclude that our claim must hold. We perform a similar
check to show linear dependence, if

J1 Je
Z Cirrogn @] @@y =0

J1sesk

to show that ¢;, . ;. = 0, we have

0= D Gl @@ (0] 0lf) = D e @ (01)f (0}F) = Ciy i
~—

J1s--dk J1yee5Jk 8
1.%1

8.9 Defining the tensor product V} ® V5

Definition. Let Vi, ...,V be finite dimensional R-vector spaces. Denote by F the free R-vector space
generated by V4 x V, x ... x V}, (i.e., elements of F are finite sums ) _ . ¢;3,, where each 3; € V1 x ... x V},).
Let R C F be the linear subspace generated by elements of the form

(V15 ooy TV ey U ) — 1+ (U1, ey Vg, ooy U ) € F
(V15 eees Vo + gy ooy V) — (V1400 Uy vy V) — (V1,4 0oy Dgy ooy V) € F

then define the tensor product of Vi, ..., V}, as
NeVh®..0V,:=F/R
we claim that there is a canonical (independent of choices) isomorphism
Ne.eV, 2LV Vs, ., Vi R)
In particular,
TEOWV) = L(V*, ., V5V, . VRy = L(V*, .,V V* .V R =V®.0VeV'®..eV*

Proof. Since V; = V;** via a canonical isomorphism, setting W, := V¥, the claim is equivalent to proving
Wi ®...0 Wy = L(Wy,.., Wi;R). Define ® : Wi x ... x W — L(Wy, ..., Wi; R),

D(aq, .., o) (W, ey wg) = ag(wy) - ... - ag(wg)

in other words, ®(a1,...,a;) = a1 ® a2 @ ... ® aj. Since F is generated by the set W7 x ... x W}, we
can extend ® by linearity to ® : F — L(W;,..W;R). We claim that ®" |z = 0. This implies that
®F : F — L(Wy, ..., Wi;R) induces a map (which happens to be an isomorphism,)

% : F/R — L(Wh, ..., Wi; R)
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given by
[Oél, ...,Ozk] = o Q... ag.

we need to show that ®® is an isomorphism. Let {a7} be a basis of . Then (by definition) a basis of
the free vector space F is given by {(3_; ¢}, REA Y i ck o)} . . On F/R, we have
717 Ik

1 o k Jk| _ 1 k J1 Jk
[E Cjaqt g cjkak} = g CjyeCly [al ,...,ak}
J1s--dk

so that [, ..., ai’“] span F/R. First, we show that ®¢ is surjective: we have

<b®[a{1, ...,ai’“] = o/f ®...® a{c’“
which is a basis of L(W7, .., Wy;R) by 8.8(b). Now, we show that ®® is injective: assume that
¢)® Z cj17,__,jk[a{1,...,aik} =0.
J1s--0k

We need to show ¢;j,, ..., ¢, =0. Let {wff} be a basis of 1V, such that af,” (w,if) = d;,4,- Then,

_ H® . . J1 Jk i1 ik
0=® E Cir,grlads ] | (Wit o wyk)
J1s--sJk

— . oA J1 Jk i1 Tk
= E GO © @ gt (W w0

= Z Cj17-~»7jka{l (wil) Tt aik (wlkk)

J1see5dk

since the o’s are just ¢;, ;,, we have

for all 41, ..., ig. O

The summary of the rest of the proof is that V; ® ... ® V, = L(V/, ..., V¥, R), given by [vq,..,v] —
0(v1)®...06(vi) where 8(vi) € V**, and we have [vq, ..., rv;+50;, ..., v5] = r[v1, ..., Uk, .., Vg]F+S[V1, oo, Dy, ooy Uk
Under this identification, we simply write: v1 ® ... ® (rv; +57;) ® ... QU; =101 ® ... QV; @ ... V) + 501 ®
... ®7; ® ... ® v;, and we have our claim.

8.10 Linear maps and 7"

Definition. Let A : V — W be a linear map between finite dimensional R-vector spaces. Then, there is
an induced map A* : TOO(W) — TOH(V);

A" L(W,...,W;R) = L(V,...,V;R)
————



CHAPTER 8. COTANGENT VECTOR AND TENSORS

8.11 Tensors in the context of manifolds.

Definition. Let M be a smooth manifold of dimension d, and let « € M. A tensor of type (k, /) on M at
a is an element of T(%:9) (T, M) which by definition, is a multilinear map

TXMX, ooy XTAM X ToM X, ooy T M — R,
k ¢

For a chart ¢ : U — R? of M with a € U, we can write a, € T**(T,M) as (by 8.8(b), 5.6(a), 8.2(b)):
d
o 9 9
_ [T
o= Y ap| ( 2 ) ®..® ( 2

U1 lk,J150 0k
we call aéi"_ ) 3’; € R the components (or component functions) of o, € T 9 (T, M).

) ® (dr?*|y) ® ... ® (dai*|,)

8.12 Tensor Bundles

Let M be a smooth manifold of dimension d.

(a) Let
TE(TM) = {(a,)|a € M, 0y € T®O (T, M)},

let 7 : T®:O(TM) — M where 7(a,a,) = a, and call it the tensor bundle of M of (mixed) type
(k,£). Then, T**)(TM) is a manifold of dimension d + d***, given by charts as follows: for each

chart ¢ : U — R? of M, define oro.oy(pary : 7 H(U) = Ra+4""* by mapping
d
— 0 0
V1yeeeslie
(a’ Z . ajl’m’jk a <8Jf“ a>®®<8$1k a

Then, Aru.o = {pre.ole € Ay} is an atlas of T4 (T M) such that 7 is smooth.

IRRRE)

>®(dx71|a)®...®(dxj’“a)) = (p(a), 017, a0
—

dk+t components

Proof. Similar to 6.1 and 8.3(a) O
(b) A tensor field of mixed type (k, /) is a section o : M — T*A(T M) of 7, i.e.,
Toa =idy
The following are equivalent:

(1) « is smooth

(2) a e C®(M,T*O(TM))

(3) Forall p', ..., pF € X*(M), and for all X!, ..., X* € X(M), the following is also smooth:
aa(pl, .ok X LX) e c>(M,R),

(4) For all charts ¢ : U — RY, the component functions a aj-ll:'_ - ;’; | are smooth; € C*>° (M, R)

Proof. Similar to the proof of 6.5. O

The set of all smooth tensor fields of type (k, ¢) is denoted by

TEOM) = {a € (M, TH)(TM))|7 0 a = ida}.
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8.13 Tensor fields and multilinear maps

Lemma 33. (a) Tensor fields o € T (M) are precisely the C°°(M, R)-multilinear maps

a: X (M) x ... x X (M) xX(M) x ... x X(M) = C>®(M,R)
k ¢

ie foralp!,.. pF e X*(M),z',...,x" € X(M), forall f € C>(M,R),

a(p17"'7f'pju"'apkvxla'wxe) :f'a(pl'“'apjv“‘vpkvxlv"'7xe)
and _ _ _ _
a(pl’.’p]_i_(p])/’_’gje):a(pl’7pj’,x£)+a(p1’,(pj)/7..7xz)

(and similarly for x%s).

(b) THEO(M) is a C>(M,R) module given by taking o, & € T*9 (M), then (o + &), := aq + G, and for
feC>(MR),
(f-a)a=fla) aq

(c) Themap @ : THFO (M) x THL) 5 Ttk L+

(a®/8)(p17"'7pk+k/’X17"'7X‘e+6/)

= a(plv sty pka Xla ceey XZ) : B(pk+1 ..... k+k,7 'Xe+1a ceey Xe+£/)
is C*°(M,R)-linear and is associate.
Proof. (a) If a € T (M), then o maps into C> (M, R) by 8.12(b). It is C> (M, R) multilinear, because
« is defined point-wise:
Oé(p17 sy XZ)(G“) = aa(p(lm ) X(f)
and this implies the claim. Conversely, if o : X*(M)* x X(M)* — C>(M, R) is C*°(M, R)- multilinear,
then we claim that o € 7 (M). To see this, we need to show that

alpt, ..., p" XY ., X5 (a)

only depends on p!, ..., pk X1 ... X’ First, we show that it only depends on a local neighborhood
of a: assume that p’|; = 5’|y for a € U, where U is an open neighborhood of M. Choose a bump
function f € C°°(M,R) such that f(a) = 1, and f|y—y = 0. Then, the function f - (o’ — p/) = 0.
Therefore, 0 = (.., f(p’ — %), ...)(a), and by C=(M, R),

— £(@) 2 p = 7,.)(@) = Al ) (@) = Al 7, ) (a)

—~—
=1

Second, « only depends on p}, ..., p¥, X} .., X! Let ¢ : U — R? be a chart of M at a € U. Fix j. On

R
U, pP =0, gida?, g € C(U,R).
Then, there exists f; € C*°(M,R),i = 1, ...,d such that there exists a neighborhood V' of a where

d
wj\v = Z fida?
i=1

and ), fidz" can be extended to a global covector field as in Lemma 5.4(%). Then,

ale.,p?,..)(a) = a(...,Zfidxi, ~)a) = fila) - af..,da’, ) (a)

G(a)
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and f;, G € C*°(M,R). Therefore, a, given by
ad(péww'ap];yX;V'WXg)

is well defined. Note that o, : M — T (T M) is smooth by criterium 8.12(b). This implies the
claim (realize that this is less of a hard proof, and more of a sketch).

(b) clear

(¢) clear

8.14 Covariant Tensors

We now restrict to covariant tensors, i.e., tensors of type (0, ¢).
(a) For F € C>*°(M,N), and a € M, there is an induced pullback map
dF; : TOD (T N) — TON(T, M)

given by
(AF; (ap()(Xgs s Xg) = ey (AFa(X3), o dFa( X))

(b) There is also an induced map F* : T(O:9(N) — T (M) by
F(a)a := dF;(ap()
(c) We have: F*(f-a) = (foF)-F*(a) for f € C°(M,R), a € T (N).
Proof.
FH(f )XY s X9 = dF ((F - @) p(@) (XY o, X°) = (flrga) - pa) (dFa(X1), ..y dFa (X))
= [(F(a)) - dF; (ap@) (X', ... XO) = ((f o F) - F*(@))a (X", ..., XF)

(d) Fora e TOO(N),3 e TOH)(N), we have a @ 8 € T+ (N), and it is
F*a® f) =F*(a)® F(B)

Proof.

F*(a®B)a(X", s XT) = (a®B) pra) (dFa(X1), ooy dF,(XTY)) = ap(ay (dFa(XDY), ... dFL (X)) -Br(ay (dFa (XY, ...y

= F*(a)o (X", .., XY - F*(B) (X, . X0
= (F*(a) ® F*(8))a(X", ..., X**)

(e) In local coordinates for some chart ¢ : V' — ¢ (V') of N,

a= Y aj.5d" @..@d e TO(V)
J1yeees Je
then
(1) F (@) B 3 (a0 F) - F(di) @ .. ® F*(di)

by 8.6,
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8.15 8.15 Important Tensors in Differential Geometry
Remark. e Riemannian metric,

g= Zgijda:i ®dz? € T2 (M)

Riemannian curvature, R € 713 (M)

Ricci curvature Ric € 702 (M)

Scalar curvature S € T (M) = C>(M,R)

Einstein Field equations,
1
Ric — 55 -g=T

where T is the energy-stress tensor. These are the field equations for general relativity, and this
latest equation lives in 72 (M1).
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Differential Forms

This chapter is based on Lee’s book, chapter 12 and 14 (mainly 14, and a little bit of 12).

9.1 Symmetric tensors

Definition. Let V be a finite dimensional vector space of dimension d.

(a) Denote by T/(V*) :=TOOV) = L(V,...,V;R)2V*® .. V*
0
4

(b) a € T*(V*) is called symmetric if and only if
(U1, ey Uiy ooy Uy ey V) = V1, 00, Uy ooy Uiy ooy V) Vi, §
The space of symmetric tensors is denoted by S*(V*) C T*(V*).
(¢) a € TY(V*) is called anti-symmetric or alternating if
a(V1, o Vi, oy U, oy Up) = —a(V1, ., Vj, ooy U4y o, V) Vi,

The space of alternating tensors is denoted by AY(V*) C TH(V*). A’ := @,>oA*(V*) is called the
exterior algebra of V*, and we will see later that it is indeed, an algebra.

Claim. The following are equivalent:
1. «is alternating
2. Forall v, a(,..v,...,v,...) =0

3. If vy, ..., vp are linearly dependent, then a(vy,...,v¢) = 0.

Proof. (1) «— (2)

We think that 1 = 2 is clear, because ‘it is its own negative’. Also, the < direction of the proof is similarly
easy, in that

O=al,...,v +vj, .., 0 +Uj,...) =l e, Viy oo, 05) + (e, V35 o, 05) + a0, 00, 05) + oo, 05, 10, )
as two of the above are 0 by assumption, we have our claim.
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(2) = )

Again

, we say that the < direction is clear. In the other direction, assume v; = .-, ¢; - v; (which we

can do without loss of generality). Then,

1
a(v1,va, ---,W) = a(z Cjvj, V2, ...,’Ug)
Jj=2

by multilinearity,

since

9.2

¢
= ch (v, v2,...,0¢) =0
j=2

(vj,v2, ..., vg) = 0. O

A basis for A‘(V*)

Proposition 34. Let {e/}9_, be a basis of V and let {e/}9_, be the dual basis of V*, i.e., € (e;) = &;;. For a
multindex I = (i1, ...,is) (Where 1 <i; < d), we define ¢! € T*(V*) by

€1(vy) . € (vp)
e (v, . vp) 1= det = det(e" (Vk)) .k

€c(vy) ... €(vy)

Claim. 1. ¢ € AY(V*)

2.
3.
Proof.

{e!|I = (i1, ...,4¢) with iy < iy < ... < i,} forms a basis of A*(V*).

dim(A'(V*) = (4) = ﬁ for 1 < ¢ < d, dim(A(V*)) = 0 whenever £ > d.

1.
€1(v) ... €1(v)
(v, .0, .) =det : :
ec(v) ... €(v)
as this matrix has the same column twice, and hence the determinant is equal to 0. This implies the
claim, by 9.1(c)(3).

. We need to show that {e!/|I = (iy,...,i¢) with i; < iy < ... < i;} spans the exterior algebra,

and is linearly independent. For the span, let a € Af(V*). Then for any I = (iy,...,i¢) (not
necessarily increasing) define oy := a(e’, ¢, ...,e%) € R. Note by 9.1 that o(__; _; .y =0, and
for a permutation o € ¥, (the symmetric group), we have that

Vi 1y ooy = a(el*® ... elv®) = sign(o)a(e™, ..., ")

where sign(o) € {£1} is the sign of the permutation. Then we claim that the following is true,
where the sum on the right is the sum over all such multindexes J,

a= Z ay- €. (9.2.1)

J=(j1<...<je)

To see this, apply (e, ..., %) for some multindex I = (i; < iy < ...,i¢). Then a(e®,...,e") = ay,
and

Z aje’ (e, ... e") = Z a; - det

J=(j1<...<je) J=(j1<..<je) e(ei)...ele(e)
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The claim is that the determinant on the right is equal to d;,4, - 0;,4, - ... - 05,4,. For a general
I = (4, ..., 1¢), note that both sides of[9.2.1|are alternating, (and both sides applied to (..., v, ..., v, ...)

- U,

give us 0), so that holds when applies to any (e, ..., e%). As such, we have the span condition.
Now, we show linear independence: assume that

Z cy-e¢l =0,
J=(j1<...<je)
we need to show that every ¢; = 0. Apply
> e
J incr.
to (e, ...,e%) for iy < ... < iy, then
Z cj-el (e .. e) = Z -det ((ej(eis))jys)
J incr. J incr

and the determinant is equal to J;,;, - ... - 0;,4,, o the sum is equal to ¢;.

3. Note that increasing indicies (i1 < i2 < ... < iy) correspond to (-element subsets {i1,...,is} C
{1,...d}. There are () many (-element subsets of {1,...,d}. If ¢ > d, then A“(V*) = {0} by
9.1(c)(3).

O

9.3 The wedge product

Definition. (a) Define the alternation map
Alt - THV*) — AY(V™)

given by

1 .
(Alt(a))(v1, ..., v) = 7 Z sign(o) - a(Va(1)s - Vo(e))
oEeYy

As an exercise, check that Alt(a)(..., v;, ..., v5,..) = —Alt(a)(, ..., v}, ..., vs, ...), and therefore, Alt(a) €
AY(V*) is well defined.

(b) The wedge product or exterior product is a map
A AV x AY (V) — AT (V)
where a € AY(V*), 8 € AYV*, given by

£+ 0!

anB =

- Alt(a® B) € AN (V)

where a @ § € T (V*).

(c) We have
E(il,m,ie) A 6(j17~~aj2') _ 6(7;1:“'77;1{7j1’~~‘,j[’)

(d) The wedge product is bilinear; for all r, s € R,

(ra+sB)ANy=r(aAy)+s(BAY)

and
aA(rB+sy)=r(aAB)+s(any)
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(e) The wedge product is associative,
(@nB)Ny=aA(BA7)
(f) The wedge product is anti-commutative, if o« € A(V*) and 3 € AY (V*), then
aAB= (1) BAa
Proof. We have

Alt(a ® ﬁ)(vl, ceny 1}@4_@/) = Z sign(a) . Oé(’UJ(l), ooy ’Ua(g)) . 6(1}0(”1), ceey /UO-(ZJ’,Z/)) eR

UEE[+Z/

= Z 5ign(a) - B(Va(e41)s s Vo(e4tr)) - A(Vo(1)s o Vo (r))

TED )y

= Z SIgn(o) - BV, t1ys - Upny) - Vg (474 1y5 - Uy (e

TEX )y

where ¢ and & are related by & = o o 7, where

N RN R4
T(j)_{j—el,j>£l

Note that sign(r) = £ - ¢'. Therefore, this gives us that the sum above is equal to

= (-1)"" - Al(B® )

(g) Forall py,...,p°" € V¥ =TH(V*) = AL (V¥),

(0" Ao A ) (01, oy ve) = det (o (), )
—— )
EAL(V*)

Proof. The formula is true for p/ = e’ € V* by definition 9.2. The claim follows, since both sides are
multi-linear in p?’s (by (d) above, and the determinant is also multi-linear). O

Proof. Though select properties were proven, this will be on the next homework sheet. O

9.4 The interior product

Definition. Let v € V. Then, we can define the interior product,
iy AY(V*) — ALV
given by
(ip(@))(v1, .oy vo—1) = (v, V1, ..., Vo—1)

Notationally, we also write i, («v) = v—a (this should be upside down) It has the following properties:
(@) 4,04, =0
(b) For a € AL (V*), B € AY'(V*):
iv(@nB) = iy(@) A B+ (=1)" - a Aiy(B)
Proof. (a) clear

(b) exercise
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9.5 Linear maps, exterior algebras, and the wedge product
Lemma 35. (a) If A: V — W is a linear map, then there is an induced map
A*AN(W) = ANV
where A“(W*) c TOOD (W), and A*(V*) € T (V) given by
(A*(B))(v1y ..oy ve) = B(Avy, ..., Avy)

It is true that A*(8 A ~y) = A*(8) A A*(7).

Proof. A* is defined on T(°:¥) by 8.10 (and is anti-symmetric), A*(3®~v) = A*3® A*y, and Alto A* =
A* o Alt, which you can check on § and some (vy, ..., v). O

(b) If A:V — W and B : W — Z are linear maps, then (B o A)* = A* o B* : AY(Z*) — AY(V*).

Proof.
(A" oB*)(y)(v1, .., v¢) = A*(B*)(v1, ..., v¢) = (B*y)(Avy, ..., v¢) = y(BAvy, .., BAvg) = (BoA)*(y)(v1, ..., v¢)

O

9.6 A manifold structure on the exterior bundle, A‘(T* M)
Definition. Let M be a manifold of dimension d. Let

A(T*M) := {(a,a)|a € M, € A(T M)}.
be the exterior bundle of M, and let 7 : A*(T*M) — M where 7(a,a) = a.

Claim. A‘(T*M) is a manifold of dimension d + (5).

Proof. Let a: M — A*(T*M) be a section of T, i.e.,
Toa = 1idpy

Let ¢ : U — R be a chart of M. Then, {dx?|,};—1, . a is a basis of T* M so that

yeeey

{(dz™)]g Ao A (dm”)|a}1=(i1<m<m

forms a basis of A*(T}M) (recall that dz’ A dz? = —dz’ A dz?, and so dz® A dx' = 0). Then « can be
written (locally) as

o= Z O{ilmizdmil /\.../\Cl!EilZ
I=(i1<...<ig)
For any ¢ : U — R% in the atlas of M, A,;, define
e HU) — R(?)
by
P e (a7 a) = (90(0')’ {ai1 ,,,,, ie}i1<...<ie)
then Ay = {pac|p € Apr}is an atlas and © € C=(AY(T* M), M). O
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9.7 Differential /-forms
Definition. (a) Let o : M — A*(T* M) be a section of 7. Then the following are equivalent:

(a) «is smooth.
(b) a € C=(M, A (T*M)).

(© a,,.. i, € C®°(M,R) for all multi-indices I = (i1, .., ).

Proof. We have the corresponding property for tensors, see 8.12(b). O

A smooth section a € C=(M, A*(T*M)) is called a (differential) ¢-form of M, the set of all ¢-forms
is denoted by,

QM) = Q5 (M) := {a € C¥(M, AY(T*M))|m o a = idpr } =: T(M, A“(T* M|
The wedge product gives us a map,
A QUM x QF (M) — QY (M)

Remark. (M) is a R-vector space.

Define,
O (M) = Qpp(M) := B0 (M)

which is called the deRhamn algebra of M, where the algebra structure given by
A QY (M) x QY (M) = Q*(M)
Remark. It was asked that we better flesh-out the map that the wedge product induces, so for all a € M,

A N(TEM) x AY(TFEM) — A9 (T M),

(Z ail,m,iedxil AL A da:”) A (Z ﬁjl,...,jzd.ﬁjl, ey ,da:j">
I; J

= Z (iy,vip * Bivje) dzt A ... Adz' Adzit A LA dadt
1,7

(b) For a smooth map F' € C*°(M, N), we have an induced map
F*: QYN) — QM)
such that

F*(a A B) = F*(a) A F*(B) (9.7.1)

Proof. Pullbacks exist for tensors 7(%*) (M) by 8.14. The alternating property is preserved (point-
wise) by 9.5(a), and follows pointwise from 9.5(a). O

*I cannot find this notation elsewhere, so I fear that I made a typo. I have allowed it to remain, for the time being.
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9.8. THE EXTERIOR DERIVATIVE Dpgr

9.8 The exterior derivative dpp

(a) Let U C R™ be an open subset. Define the exterior derivative d = dpg,
dpr : QYU) — Q“TL(U)
as follows: for a € QY(U), write

a= Z ail,””dx“ A ... ANdzi = Zaldxl
I=(i1...i¢) 4

where oy = «;, . 4, and dz! = dz® A ... Adz® (here, I is just an index, and need not be increasing).

Let
da=d <Z qux1> = Z(dal) A da!
T

I
Note that this is well defined, because

ar € C®°(U,R) = doy € X*(U) = TOV(U) = QY(U),
and the definition is independent of your choice of multi-indices, since for dz! = (—1)°dz”, we have
d(a- (1) -da”) = d((=1)° - a) Adz? = da A da’ = d(o - da”)
(b) Example: U is still an open subset of R". If f € Q°(U) = C>(U,R):

sax~ Of

a € QY(U) implies a« = Y-, fidz". Then,

da=d (Z fid:ci> = dei Adat = ZZ gi: do) Nda' = %dxj Nzt 4+ ngj da? A da’
7 1 ? J

i<j i>]

_ ofi 0\ , ; i
_Z(ﬁﬂ 3:Ci)dx A dzx
1>]

Lastly, take o € Q*(U), so a = 3, _; fijda' A da’, giving us

do=d (Z fijdz' A de) =Y dfyy Adat ndad =N gf,j da® A dz' A da?

i<j 1<j i<j k

=Y O+ DY =Y <g‘§g - %JZ? + Z‘Zj’?dxkAd:ciAda:j)

k<i<j i<k<j i<j<k k<i<j

9.9 Properties of the exterior derivative.

Proposition 36. With notation from 9.8, we have the following:
(a) dis R-linear
(b) Forall o € QY(U), B € QY (U), we have

dlaNB)=darB+(-1)"-ands
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(¢c) dod=0
(d) ForallU C R™ open, V C R™ open, and for all F : U — V smooth with all o € Q*(V):

F*(da) = d(F*(a))
Proof. (a) Note thatd(r- f) =r-d(f) forallr € R, and f € C>*(U,R).
(b) First, for f,g € Q°(U) = C>(U,R), we have
o(f - ) o a 0 . 0 ,
d(f-g)zz%{vﬁdxl:z:(ai gd ):(Zagdxz>-g+f-<zajidmz>
j i i i

= (df)g + f(dg) = (df) Ng + f A (dg)
In general, o € QY(U), a = 3, ayda?, € QY3 =3, Bdx’, we have

dlanp) = d(z ar - Byda’ Ada?) = Zd(a[ - By) Adaxt A da?
I1,J 1,J

so from the previous case,

= Z(doq By +ar-dBy) Adx’ ANdz? = Z(doq ANdz! A By Adx” + (—l)eoq ~dz' AdBy A d;cI)
I1,J 1,J

= (Z doy /\de> A <Z mdx") +(-1)°- <Z a,dmf> A (Z dB; Ade>
1 J 1 J
=daAB+(-1)ands

(c) For f € C*°(U,R) = Q°(U), we have that

; 9.8(5) B 0% f ; i _
) Z& lajdx Adz? Z( 9005 Dridmd dz? Ndx 0

J<

() = d(df) = d( A

For
a= Zoqda:I € QYU),

we have that

() =d (Z dar Adzt A ... A dx”)

I
(b)z 2 i i 2 i i i 2,
= daj/\darl/\.../\dxe—Zdaj/\dJc1/\.../\d:17"'+...+2doz]/\d:rl/\.../\d ¢ =0
I 0 I 0 I 0
(d

9.5(a)

F*od(fdz' A ... Ndz™) = F*(df Adx' A ... A dx™) (F*df) A (F*dz™) A ... A (F* F*da™)

5 J(foF)Ad(zP o F)A...Ad(2¥ o F) = d((foF)-d(z" o F)A...Ad(z¥ o F)) * 2 q(F* (f-dxit A...Adzi?))

The claim then follows by the R-linearity of F* and d.
O
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9.10. THE LOCAL DEFINITION OF THE EXTERIOR DERIVATIVE

9.10 The local definition of the exterior derivative

Definition. Let M be a smooth manifold. Define d : Q¢(M) — Q‘F1(M) as follows: for a € Q(M),
da € Q1 is defined locally on a chart ¢ : U — ¢(U) by setting da|y € Q“FH(U) to be

doly = ¢" odo (p7!)"(alv)
This is well defined, since for another chart ¢ : V' — (V') we have
Y odo (Y1) (@) = ¢ o(pT!) 0yt odo (¥ 1) (a) = ¥ odo(YopT) o (¥ (a) = T oao (v (a).

where some of these equalities are taken from 9.5(b) and 9.9(d).

9.11 More properties of the exterior derivative

Proposition 37. The map d satisfies the following:

(@) dis R-linear

®) daAb)=dahB+(~1)' aAdbforae QM)
(© d&*=0

(d Vf e Q' M), z € X(M), df (z) = X(f),

(&) VF € C=(M,N), a € Q4N): F*(da) = d(F*a)
Proof. (a) Clear from 9.9(a)

(b

dlanB) Y o) (anB) =2 ord((p~ 1) a A (p71)*B)
SLY o (de™) @) A (071 B) + (D (1) ) Ad((9~)"B))

IO da A B+ (1) andB

9.7(b)

(©
d* =g (™) " d(p™h)" = " d*(p7)" =0

(d) Locally:

it () =l D) = (Z O oe™) gxf_l)dxj) (=)= 20250

J

(e) Locally: for charts ¢ of M, ¢ of N, F(U) C V (again, I'm just using the normal notation here):

F*(da) = F*op*od(yp™")*(a) = ¢*o(p™ 1) oF oy odo(1p1)*(a)) "LY wodo(yhoFop™) o(1y~1)*(a)

Remark. d is the unique map satisfying (a) — (d).
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9.12 Person addendum

The notes above have now covered a significant number of different manifold structures, all of which
are deeply inter-related. I thought it might be worth it (for my personal perspective) to draw a ‘chart’
of some kind, which simply summarizes some of these ideas. The graph below isn’t supposed to be
taken as anything that follows conventional notation, rather, I was hoping it might provide some kind of
mnemonic device. If you're not me, you probably want to skip this.

a€M-----mmmmmmmmmm s > ToM ————m oo »TM ¢------mmmmmmmmmm- X(M)
Tl AT i P
\\‘7/\\} < 3 v
! B S A R T e X*(M)
(A .
! N ~v P
T RO (T, M)~ $TEO (M) ¢ T (k. 0)
\\ ,
\\}l \IV
THT*M) D A(TFM) —————=————- S ATFM) ¢ QUM) = Q4 M
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Orientation and Integration

10.1 Orientations

Definition. Let V be a vector space of dimension d > 1. An ordered basis is a d-tuple (eq, ..., e4) such
that {e; };=1, 4 is a basis of V. Two ordered bases (es, ..., eq) and (f1, ..., fq) are called equivalent if the
linearmap A: V — V, A(e;) = f; forall i = 1, .., d satisfies det(A) > 0 (it can be shown that this is an
equivalence relation). An orientation on V is an equivalence class of ordered bases [(e1, ..., e4)]. A vector
space V has exactly two orientations: [(e1,...,e4)], and [(—eq, ...,eq)] = [(e2, €1, €3, ..., €4)].

10.2 Linear maps and induced maps on exterior algebras

Lemma 38. Let V be a vector space of dimension d, so that A*(V*) has dimension (Z) =1IfA:V-Vis
a linear map, then the induced map A* : A4(V*) — A4(V*) from 9.5.;

A*(/B)(Uh ..,’Ud) = B(A’Ula sy A’Ud)

is given by
A*(B) = det(A) - B € A(V™)

Proof. Let {e;}¢_, be a basis of V with dual basis {a;}_, of V*. Then, oy A ... A aq spans A%(V*), so that
B=c-a1N..Nay.

Then,
Bler,.neq) =c-ar A .. Aagler, ...,eq) = c-det((a’(e;))i;) = ¢,
and if A(e;) = >, Afee,
A*(B) (e1,...,eq) = B (Aey, ..., Aeq) = c - det ((ai (Aej))ij) =c-det ((Z Ala’ (eg)> ) =c-det(A)
4 i,j
We claim that this is true when applied to (e, ..,eq). Since both sides are alternating, this implies true

for when applied to (ey(1), .-, €5(a))- Since both sides are multilinear, this implies the claim when applied
to any (v1, ..., vq)- O
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10.3 Determining an orientation with A%(V*) — {0}

Corollary 39. Let d > 1. An orientation consists of a choice of component of A%(V*) — {0}. In fact,
B € A4(V*) — {0} determines the orientation [(ey, ..., eq)] so that B(ey, ...,eq) > 0.

Proof. 1If A(e;) = f;, then

Bf1s v a) = BlAer, o, Acq) = (A*B)(er, oy eq) = det(A) - Bler, wvea) > 0

where the inequality is determined by the sign of A’s determinant. Thus, 5 determines a well-defined
orientation. If 5’ is in the same component as 3, then 5’ = ¢-3,¢ > 0. thus 5'(e1, ...,eq) = ¢-B(e1, ...,eq) >
0. This implies that 5’ determines the same basis, while — determines [(—eq, ...., e4)].

O

10.4 Equivalent conditions for being orientable

Proposition 40. Let M be a manifold of dimension d. The following three conditions are equivalent:

1. There exists a choice of orientations [(e{, ..., e%)] of T, M for each a € M such that for all a € M there
exist U, Copen M, a € U,, such that there exist Xfa), ...,Xéa) € X(U,) such that for all x € U,,
x5, Xéa) | are linear independent and

(X, XS10) ~ (€2, e8)

2. There exists a nowhere vanishing d-form w € Q4(M)

3. There exists a non-maximal atlas <7, = {¢ : U — R4} of M such that for all (¢,U), (1, V) € o,

—1\j
det (Ws@)‘ ) 50
oxt eUnV) /4

If M satisfies one of these conditions, then M is called orientable. A choice of [(e{, ...,e3)] (or of w, or of
4,) is an orientation of M. Furthermore, we call a chart ¢ : U — R? positively oriented if

0 i’
oxlly "7 Ozdlp

induces the chosen orientation at each p € U. Also, <7, is called an orienting atlas.

Proof. We approach this proof by showing that 1 = 2 =3 = 1.
(1=2)
Let U,, X¢,..., X% as in (1). Define p, € Q4(U,),
p( X1, .., X3)=1
This is smooth, because in local coordinates, write
ZAgﬁ € X(U,)
with A7 € C®(U,,R), if A : ;2 — X, then
“ a4 0 a\ . 0 a1\ 0 0
pa( XY, X3)=1=p, (AM7W’A8I‘1> = A"(pa) (89:1"”’ 8xd> = det(A) - pq (3x1 oy 81:”1)
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0 0 1 o
= Pa (83&1""’81“1> = m € C*(Uo, R)

implying p, is smooth by 8.13(a). Let x, be a partition of unity subordinate to {U, },cas. Then define,
W= Xa*Pa
a€eM

where Y, - p, is a d form on M (is in Q¢(M)), because supp(x,) C U,. We have that w € Q4(M) is
nowhere vanishing, from the following reasoning: consider

617"-7 Z Xa * Pa e17" )

acM
andlet A, : T,M — T, M, A, : X*|, — e/, where X € X(U,). Then det(A) > 0, which implies that

w(ey, ..., ZX" paley,....e})

aceM
= Z Xa - Pa(Aa - Ajtel, .  AgA T eY)
aeM

—ZXa (Pa) (XTy, - XGly)

= ZX“ ~det(A) - po(Xt, ... X3) = Z Xa -det(Aey)

and there exists a x,(y) > 0, so this sum is not equal to 0. O

2=23)

Let the orienting atlas be % = {¢ € @|w ( 5T Fo 527) > 0} where a -2 are induced by the chart ¢ (this
is the oriented atlas, and I may have meant to write this as, O). This is an atlas; in fact it covers all of
M (because if ¢ is a chart, write w in the basis given by the chart implying that w = f - dz' A ... A dz?,
feC>(U,R), f #0). Assuming that U is connected, then f > 0 or f < 0. This implies either

o o\, . g0 9

=1

implying that ¢ is in the orienting atlas, or take a chart o : U — R, o (z) = (—¢!(z), ¢*(2), ..., % (),

implying 5 )

which would imply that ¢# is in the orienting atlas. We now need to check the determinant property of
0

(3): for ¢,y € o,
0
( 5o ) = e (Aaﬂ o7 )
o)

where A : T,M — T,M, A ( gz' 6:6’ lo. By 5.6(2), A has matrix representation
_(O(popt)
Ay = (Wﬂa) y

0 0 10.2 0 0
Wy <8x1|a,...,.axd|a> = det(A) - Wq (Aai‘l(“'“’Aaj‘dhL)

>0

this implies that

implying det(A) > 0, which is the claim.
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B=1
Let a € M, let p : U — R? be a chart of M, a € U. Then define

(e, ...,e%)] := Kail

This is well-defined, because for another chart ¢» € O/, we have

(), (204 (2)

by

det (A) = det ((W) ) )

0

a, vy 8xd

0
ozt

and by the assumption in (3),

S O I I ) (O I
oxlla’ "7 0zdla )| |\ 02l 92dla
Clearly X¢ := ai-i € X(U) is a smooth vector field giving the correct orientation (by construction). O

10.5 Recall (Integration in R"™)

10.5.1 Domains of integration

If D C R" is a bounded subset of R" such that the boundary D := D — D° has measure 0 in R" (i.e.,
for every e > 0 there exist countable open rectangles Ry, ...,: D C U2 R; and 3772, vol(R;) < ), and
if f: D — R is a continuous function, then one can show that

/ f(zx)dzt...daz"™
D

is defined. In this case, D is called a domain of integration,

10.5.2 Examples

(1) If B C R” is an n-ball, then the boundary of B is S”~!, which has measure 0 in R". So, B is a
domain of integration.

(2) If R C R" is an n-dimensional rectangle, then R is also a domain of integration.

(3) If D is a finite union and or intersection of domains of n-balls or rectangles, then D is a domain of
integration.

(4) Let D = U32,Uj, where U; C (0,1) is open. We set up these Uj’s such that D is some kind of crazy
Cantor set. This set is not a domain of integration.

10.5.3 Change of variables formula

Let D, £ C R" be domains of integration. Let ¢ : D’ — E° be a smooth diffeomorphism such that
¢ extends to a neighborhood U of D and a neighborhood V' of E as a smooth diffeomorphism. Let
f : D — R be continuous. Then,

/f(x)dxl...dx”:/(fow)~|det(D¢)|da:1...dx”
E D
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O’
Do = (3$j>ij

i/ (f o @) -det(De)dz? ... dz"
D

where

is the Jacobian. Note that this is equal to

where + when det(A) is positive, and — when det(A) is negative.

10.6 Integrating differential forms

Let £ C R" be a domain of integration. Let E C V open, and let w € Q"(V). Then, we can write
w=f-dz' A...Adz". We define,
———

in this order
/ w:= /f cdxt A LA da ::/ fdxt..dx"
E E

which sort of feels like cheating. Let ¢ : D — E be as in 10.5(c). Then,

9" (w) C Q™ (V)

fo=2[ ow

where we get + if det(D¢) > 0 and 0 if det(D¢) < 0.

Claim.

Proof.
* 0 0 % 1 n i i — fod-ob* 1 n i i
(p*w) («%clagcn) =¢*(f-dx" A...Ndx )<8x1""’8xn> = fo¢-¢*(dx* A...Ndx )<8x1""’8xn>

0 0
_ . 1 n
= fo¢-det(Do)dx A ... N\dx <8m1 ) eees 8:1:")

—_———

=1
— fo¢-det(Do)
therefore, ¢p*w = f o ¢ - det(D¢) da' A ... A dx™, and the claim follows from 10.5(c). O

10.7 Integrating differential forms with compact support

Let M be an oriented manifold of dimension d > 1.

(@) Let w € Q4(M) such that supp(w) = {x € M|w, # 0} C M, is compact. Assume that there exists a
chart ¢ : U — R9 such that ¢(U) = B, a d-dimensional ball in R?, and such that supp(w) C U. Then

define,
[ o=t [ e

where we have + if ¢ is positively oriented, and — if ¢ is negatively oriented. Note: the integral over
B is defined, and this definition is independent of the chosen chart, expanding on this, take another
chart ¢ : V — R, supp(w) C U N V. Then there exist domains of integration D and E such that

p(supp(w)) C D Cp(UNYV)

83



CHAPTER 10. ORIENTATION AND INTEGRATION

Y(supp(w)) C E Cyp(UNV)

because o(supp(w)) is compact, implying ¢(supp(w)) C U B;, which is a domain of integration
(similarly with ). Then for ¢ ;== o p™1 : p(UNV) — (U NV), we have

/¢ e L@ s [ owye-x / T e = / E

where we get + when ¢ and ¢ have the same orientation, and get — when v and ¢ have the opposite
orientation.

(b) Let w € Q4(M) such that supp(w) is compact. Let ¢; : U; — B; C R? be charts of M covering
supp(w). Since supp(w) is compact, there exist finitely many of these, 1, ..., ¢ such that the support
sits inside of their union. Let x; be a partition of unity subordinate to this cover, U = {Uy, ..., Uy, Up}
where Uy = M — supp(w). Then, y; - w € Q4(M), supp(xiw) C U; which is a single chart. Then

define,
k
w = it w
/M ;/MX

/ xiw € R
M

was defined in (a). This is a finite sum of elements in R, so there isn’t a convergence issue. Also, [, w
is independent of the chosen cover and partition of unity. For another cover V7, ..., V4, and partition
of unity p1, ..., p¢ subordinate to Vi, ..., V, it is fM p; - Xiw is well-defined (since supp(p;xiw) C U;
and of V}). Therefore,

k k Y4 k Y4 Y4 k ?

i=1 j=1

This is well-defined, meaning each

10.8 Regular domains

Let M be a manifold of dimension d > 1. A regular domain D C M is a subset such that for all
a € 0D = D — D°, there exists a chart ¢ : U — R¢ such that for some 2r € R,

1. ¢(U) = (—r,r)? (the open d-dimensional cube with side length 2r)
2. p(UND)=(—rr)¥ 1t x][0,r).
3. o(UNdD) = (—r,—r)4=1 x {0}.

In particular, (U N (M — D°)) = (—r,7)4~1 x (—r,0]. Note:

1. D = D°U0D, D° C openlM, and if D # () then D° # (), and 0D is an embedded submanifold of M
of dimension (d — 1), by proposition 7.9.
2. If w € Q4(M) with compact support, then we can still define [, w.
(@) If supp(w) C U C D°, where ¢ : U — o(U) = (—r,r)* is a chart of M, then [jw =
+ f¢(U)(<p‘1)*(w), which is well-defined as in 10.7(a).

(b) If supp(w) C U for some chart p : U — (—7,7)%, as in the three conditions above, then define
f pw==% fw(UmE)(‘Pil)*w' By (2), this (I think I mean the domain of integration) is the same
as (—r,7)%"1 x [0,7), and the + is given by ¢ having positive or negative orientation. This is
well-defined, because if we take another chart 1) : V — (—r,7)? also as in the 3 conditions
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10.8. REGULAR DOMAINS

above, with supp(w) C UNV, then there exist D,E which are domains of integration such that
w(supp(w) N D) C D C (U N D) and ¥ (supp(w) N D) C E Cyp(VND).
This implies

/w(me))(w_l)*(w) = /E(Wl)*(u)) = i/f)(wow—l)*(w—1)*w

—x [ =2 / RCEE®

where the + comes from whether ) o ! is positively or negatively oriented.

(¢) For supp(wlccpt M, let ¢; : U — R% be charts as in (a) or (b) covering supp(w) N D. Since

supp(w) N D is compact, there are finitely many ¢, ..., . Let {x;}; be a partition of unity
subordinate to {Uy, ..., Uy, Uy} where Uy = M — (supp(w) N D). Then define, as before,

k
Aw:jzléxi'w

This is well-defined, as in 10.7 (i.e., it is independent of the chosen cover and partition of
unity).

3. If M has an orientation, then 9D has an induced orientation as follows: let v = _a%d‘a e T,M
for some chart ¢ : U — R? as in the first three conditions of this section. We call v an outward
pointing tangent vector. Let e € T,(0D) fori =1, ...,d—1 be a basis. Then, (e{, ..., e%_,) represents
the orientation of T;,(9D) if and only if (v, e, ....,e%_,) represents the orientation of T,, M. This is
well-defined: i.e., it is independent of the chosen chart. Let ¢ : V — R? be another chart as s in
this discussion, satisfying the 3 conditions at the beginning of this section. Recall from 5.6(2) that
the change of variable

d o o1}
0 1 =S o) )y 2

O Oxd

Since 1 : D — (—r,7)4"1 x {0}, we have for all j < d that

9
oxI

€ T, (0D) = span(ef, ...,e5_1)

Now for j = d, note that ¢ o o~ 1 : (—r,7)4"1 x [0,7) — (—r,7)4"1 x [0,7), therefore

(—r, 7)1 x (0,7) fort >0
Yo t(p(a)+(0,..t) € (—r,r)?t x {0} fort=0
(=r,7)~ % x (=7,0) fort <0

this implies

o1 d
%@(a)) = %w o Hp(a) +(0,...,0,)) >0 =

d—1
0 . )
gl = 2l He gl

j=1

€T, (0D

*these D, E can be constructed as in 10.7, e.g. for D there exist finitely many By, ..., By, that cover ¢(supp(w)) and B; C
(—=r,7)%. Then take D := (B U... U By) N ((—r,7)%1 x [0,7)), which is indeed, a domain of integration.
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CHAPTER 10. ORIENTATION AND INTEGRATION

where ¢ > 0. This implies that if A : T,M — T,M, A(e}) = § A(—7%

)
4, 57la) = —5gala, then A has a
matrix representation given by

c 7 ... Td—1

0 1 O
A=,

: 1

0 1

implying that det(A) = ¢ > 0, and so

a a
,61, ceny ed_1>:|
a

0 " " 0
(~goglorets i = | (-

10.9 10.9 Example

M =R", D = {z € R"a2" > 0}, implying that 9D = R"~! x {0} C R™. Let a € dD. Denote by
[(e1, ..., €, )] the standard orientation of T,R"™ given by e; = %M- We claim that the induced orientation
of T,R"™ Lis [(—1)" - e1, ..., €n—1)]-

Proof. Letv = —ai = —e,, be the outward pointing tangent vector. Then: [(v, (—1)"e1, €2, ..., €n—1)]

-

[(—en, (=1)"e1, .y en_1)] = [((=1)"7L - (=1)"e1, €2, .0y en1, —€n)] = [(€1, s €n_1, €n)]- 5

10.10 Stoke’s Theorem

Let M be an oriented manifold of dimension d. Let D be a regular domain of M. Let w € Q4~1(M) with

compact support. Then:
/ dw = / w
D aD

where w on the right is interpreted as i*(w) € Q¢~1(dD), with i being the inclusion i : 9D — M.

Proof. Transcribing this proof became difficult, so I omit it due to a large number of anticipated errors.
This proof can be found in Lee’s book. O

10.11 Proposition

Let M be an oriented manifold of dimension d, w € Q%(M) with compact support, let D C M be a regular
domain. We want to calculate [, w. Let (y;,U;) be positively oriented charts of M for i = 1,...,k such
that

1. Foralli=1,....k, ¢;(U;) is a domain of integration,

2. There exists a continuous extension of ¢ ~1:

s —1

@it oi(Ui) = Ui

3. supp(w) C UL U...UUTy
4. Foralli#j,U;NU; =0

Then:



10.12. EXAMPLE

Proof. This is a sketch of the proof: first, assume there exists ¢ : U — R? positively oriented such that
supp(w) C U and that ¢(U) is a domain of integration and that U is compact, and »(U) is compact, and
that ¢ extends to a diffeomorphism ¢ : V — R? with U C V. Then: 9(U N U;) has measure 0 (because
AU NU;)) = (80U NU;)) by assumption on the extension of ¢, and (U NU;) € U U aU; (U,U;
open), and OU and OU; have measure 0O since ¢, ; are domains of integration.) This implies that

RS / MGREE)Y / oo, )

Jj=1

because p(supp(w)) C (U NU;)U...Up(U N Uy), while for all i # j, o(UNU;) N(UNU;) =0 (by (4)
). These images are open, and so

e(UNU;) Np(UNUj) Co(p(UNU;))U(e(UNUj))

but either set on the right has measure 0, and so it follows that the left hand side has measure 0 as well.

Then,
/ (o) w= / (6007 (o) w = / (671 (@)
»(UNU;) »; (UNU;) w;(U;)

where the last equality follows from supp(w) C U implying that ¢;(supp(w)) C ¢;(U N U;). O

10.12 Example
Let ¢=1: (0,7) x (0,27) — S?, given by

o Y, B) = (sin asin B, sin o cos 3, cos 3)

Note: »=1((0,7), (0,27)) = S?, and this implies

Le=[] 7 (oY (w)dads
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11

DeRham Theory

YES OH SWEET LORD WE'RE BACK TO TOPOLOGY (Lee, chapter 17 and 18).

11.1 Cochains

(a) A cochain complex complex over R consists of R-vector spaces CV, j € Z and linear maps d; :
CJ — C7*1 such that d; od;—; =0 for all j € Z.

(b) « € CF is called closed if di(a) = 0, in this case, « is called a cocycle, and the space of all cocycles
is denoted by Z*.

() a € CF¥ is called exact if a = dj,_1(3) for some 3 € C*~1. In this case, « is called a coboundary, the
space of all coboundaries is denoted by BF.

(d) We define the cohomology in degree k as H* := Z*/B*.

(¢) A map of chain complexes {C;,d;} and {C;,d;} consists of linear maps F; : C7 — CV such that
dj o Fj = Fj+1 o dj.

11.2 Definition

Let M be a smooth manifold. Let C* := Q¥(M) for k > 0, C¥ = 0 for k < 0, and let dj, : C* — C**! be
the DeRham exterior derivative from 9.10: d : Q*(M) — Q**+1(M). Define,

HY = 2% /B = {a € QF(M)|da = 0} /{a € Q¥ (M) |33 € QF 1 (M) : a = dB}

called the DeRham cohomology of ) in degree k.
Note:

(@) HYR(M) = {0} for k <0, and H},r(M) = {0} for k > dim(M), because Q*(M) = {0} for k > m.
(b) If F € C*°(M, N), then this gives us that
F*: QF(N) — QF (M)

by 9.7(b). We have d(F*«) = F*da by 9.11(c), and this implies that F'* gives a morphism of chain
complexes, which therefore maps F* : Z¥(N) — Z*(M) (since da = 0 = dF*a = F*da = 0) and
similarly F* : B¥(N) — B*(M) (since a = d3 = F*a = F*dj = dF*3). Hence, we get a map

F*: Hpp(N) = Hpp(M);  givenby:  F*([a]) := [F*(a)]

89



CHAPTER 11. DERHAM THEORY

which is well defined, i.e., independent of representative «, because for [a] = [o/], then a — o’ €
B%(N), if and only if « — o/ = df for some 8 € B¥~1(N), but this implies that F*a — F*a/ =
F*dB = dF*f, and so F*a — F*a' € B*(M), which is equivalent to saying that [F*a] = [F*o/].
Note: id : M — M is a trivial map on the DeRham cohomology, and the composition of these maps
on cohomology works out well; (F o G)* = G* o F™*.

11.3 11.3 Definition

Definition. 1. For v, ...., v, € R™ let

k k
[vo, ..., vi| := the affine span of vy, ..., v = {Z tj-v; [t; €10,1] and th =1}
i=0 §=0

2. Leteg:=0€ R¥, and for j = 1,...,k lete; := (0,...,1,..,0) € R¥, where the 1 is of course, in the j**
coordinate. Define the standard k-simplex to be

k::[

g 607...,6k]

3. There are face maps f/ : 0% — o"*1, for j = 0,...,k + 1 given by

k 5 .
fileo, - er] = [€0, s €y ovy €Rt1];
€0 > €0y ..y €j—1 F> €5-1,€5 F> €541, ..., € F> €41

extending ff linearly over eq, ..., ek,

k k
ff (Z tﬁi) = Ztiff(ei)
i=0 =0

4. Let M be a manifold. A k-simplex in M is a continuous map o : o* — M. A k-chain in M is a finite
linear combination of k-simplicies:

¢
c= g croi, ¢ €R, o;ak-simplex.
i=1

Denote by Cy(M,R) := {c|c is a k-chain in M}. This is the free R-vector space generated by
all k-simplicies called the singular chain complex of M. Denote by CY (M,R) := Ci(M,R)* =
Hom(C(M,R),R) called the singular cochain complex.

5. There is a map 0, : Cy,(M,R) — Cy_1(M,R) given by

k

Ok(0) = (~1)iooff!

=1

and for ,
Cc = Z C;0;,
i=1
¢ ¢
Ok <Z Cﬂh‘) = ci-Ok(ov)
i=1 i=1
Claim. 8k_1 [} 8k = 0.
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Proof. T've done this before, so I won’t copy this one down. Basically, the signs all cancel out—it’s a
fun exercise to do. O

Dualizing 9y, gives us 6,1 := 9; : CF=1(M,R) — C*(M,R). This gives us two chain complexes,
one which uses the boundary map, and the other uses the coboundary map.

6. Let Z*(M,R) = Ker(6;), B*(M,R) = Im(6s_1). Define HE(M,R) := Z*(M)/B*(M,R), called
the k*" singular homology.

7. If F € C®(M,N), then for a k-simplex 0 : A¥ - M, Foo : A¥ - N, and Foo is a k-
simplex in N. This gives us an induced map F : Cy(M,R) — Cx(N,R), and so it’s dual gives us
F*: C*(N,R) — C*(M,R).

11.4 Definition and Proposition

Definition. Let M be a smooth manifold. A k-simplex o : A*¥ — M is called smooth if for all z € A*,
there exists U Copen R*, z € U such that ¢ has a smooth extension oy : U — M, i.e., o|ynar = ov|unak-
Denote by Cp°(M, R) the R-vector space generated by smooth k — simplicies, i.e.,

ceCP(M,R) if c=) co;
i=1
where o; is a smooth k-simplex. Note that Jy preserves smoothness, i.e., if o is smooth then do is smooth.
Denote by 05° : Ci°(M,R) — C7° (M, R) the induced boundary map 9;°(c) = 9x(c). More precisely, if
i: O (M,R) < Cr(M,R)

then i 0 95°(c) = Oy oi(c), for all ¢ € CF°(M,R). This implies that i is a chain map. Define C* (M, R) :=
(Cp°(M,R))" with induced differential §° := (d)*, then there is an induced map

p:=i*:Ck (M,R) — C* (M,R)
Since i is a chain map, so is p. Define,

ZE(M,R

to be the k" smooth singular cohomology of M. This implies the existence of an induced map p* :
H*(M,R) — HE (M, R).

Claim. p* is an isomorphism.

Proof. Not done. O

11.5 Definition and Proposition

Let M be a smooth manifold. Let p;, : Q¥(M) — C% (M,R) be given by: for w € Q¥(M), ¢ a smooth

k-simplex, let
(@)= [wi= [ o)

For ¢ = Y.¢_, ¢io; € C7°(M, R) where o; is a smooth k-simplex, let
¢ ’
@)@ = [wi=Y o [w=3a [ ou
¢ i=1 i i—=1 AF
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Claim. (a) I is well-defined.

(b) Iy is a cochain map:
Iy ody =05° oI,

(c) If F € C>®(M,N), then:
F OIk = IkOF*

Proof. (a) Note that for a smooth k-simplex o(AF) is not a regular domain as we defined it. However,
each point z € AF has a ‘nice neighborhood’ U, containing z, and without loss of generality assume
that U = B° (open ball), such that oy : U — M is smooth. Then sigmaf;wl|,, ) is defined,
and since A* is compact, there are finitely many Uy, ..., U, which cover AF in that way. Then for a
partition of unity 1, ..., x; subordinate to Uy, ..., Uy, define

L
w:= Xj oy, (w)
/a ;/AMUJ 7

This is independent of the chosen cover, ad partition of unity (exercise).

(b) We need to show that
/ dw = I(dw)(c) = 6% (Iw)(c) = I(w)(8c) = / w
C dc

It is enough to show this for smooth k-simplicies, since both sides are R-linear in c¢. We need to show

the following:
/ dw = / w
o do

for a smooth k-simplex o : A¥ — M. We have

/dw :/ o (dw) = oardo*w :/ ofw
o Ak Ak

Now, AR = Uk_ =1 (A*=1), and AF C R* has standard orientation. This implies that the orienta-
tion induced on '~ (AF~1) is

. ~

((=1)eq,...,ed,...;ex), forj>0

(because (—e;, (—1)7e1, ..., €j,...,ex) ~ (€1, ..., €, ..., e)). This implies that f£~' : Ak=1 — fr=1(Ak-1)
is positively oriented if and only if j is even (j > 0) and f¥~' : A*=1 — fF=1(A*=1)is also positively
oriented - because

(e1+ ... +ex_1,e2 —e1,.e3 —€9,...,ep —ex—1) ~ (€1,..., k).
—_————

outward pointing

This implies that

k k k
ocfw = ocfw = (fl)j/ f],c_l " 0*(w) = (fl)j/ (J o f’.“"'l)*w
\/OA’V jZO/f_f_l(Akl) ; Ak—1 ( J ) jgo Ak—1 J
k
== Z(—l)j / w = / w = / w
=0 oofy ! POMINCEVEELY s oo
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(@]

(1o F*(@)(o) = [ Frw

g

(where w € QF(N), F*w € QF(M), o is a smooth k-simplex in M)

= [oru= [ Fooru= [ worwFoo) = (F D))

O
11.6 The DeRham theorem
Theorem 41. By 11.5, we have an induced map J* : Hjp(M) — HE (M, R).
Claim. J* is an isomorphism, thus H}, (M) = HE (M,R) = H*(M,R).
Proof. Cite: Lee, Theorem 18.14. O

11.7 Corollaries of the DeRham theorem

Corollary 42. H7, (M) has properties similar to that of singular cohomology:

1.

2.

3.
4.

Homotopy equivalence: if M and N are homotopy equivalent, then Hj (M) = H} (N) are iso-
morphic.

Dimension: H"*({x}) = {0}, for all k # 0 (I'm not entirely sure what he means by this, this is not a
typo - it almost appears that he’s saying that the cohomology groups of EVERYTHING are zero, which
is of course, not true). Then, (1) and (2) imply that if M is contractible, that H*(M) = {0} by the
Poincaré Lemma. Thus: every closed form is locally exact; more precisely, if dw = 0 then for all p € M,
there exists a contraction p € M: w|y = d\ A € Q*(U) .

Additivity: H*(U;e; M;) = @i H* (M;)

Mayer-Vietoris Property: if M is a manifold, U, B C M are open, U UV = M, then there exists a
long exact sequence

*

7o on) S e B (V) BE (U AV s HY (M
o = Hpp(M) ——— Hpjp(U) @ Hpr(V) ——— Hpg( ) ——— Hpp (M) — ...

where f,g,p,q are the inclusions f : U — M,g:V <> M,p:UNV < U,q:UNV < V,and 7 is
some map.

11.8 Examples

1. Since R" is contractible,

. 0 k#£0
&) ={ ¢ 179

2. When / is the number of connected components of a manifold M,

HYn(M) = R"

Taking [f] € HY (M), we have in local coordinates that df =0 — 0 =" 2Lda? (;2) = 2L = f
is locally constant, and so f = c;, where ¢; € R is chosen for each connected component of M. One
can show that if M is simply connected, that this implies H},z(M) = {0}.
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3. We have the following equalities, the middle one will then be proven:
Hpp(S') =R, Hpp(S') =R, Hpg(s')=0Vk#0,1
Proof. We now prove equality *:
o= {0} = Q%(SY) — QNS — {0} — ...
implies that for all @ € Q!(S?) that da = 0 = Z1(S1) = Q!(S!) (by the exact-ness, I think). What
is B1(S1)? Well, let p := dzy — ydr € Q'(R?). Leti : S' < R? be the inclusion map, and let
w=1i*(p) € QH(Sh).
Claim. (a) w ¢ B'(S')

(b) For all « € Q'(S'), there exists a ¢ € R, ¢ € Q°(S?) such that « = ¢ - w + d¢. Thus, [o] =
[cw — d¢] = clw] — [d(], but as d¢ = 0 in H'(S!), [a] = ¢ [w] € H'(S!). This implies that
H'(S') = R is generated by [w].

Proof. In proving our first claim, we now prove this claim:

(@) Let p: St — {(~1,0)} — (—m,7) be given by ¢~ 1(¢) = (cos(t), sin(t)) € S' C R?. This
implies that (¢~ 1) (w) = (p~1)*i*(zdy — ydx) = cos*t dt + st dt = dt. As such,

[om [t [ sean
/51d42/5)51<=/0)<=0
Thus, w # dC.

(b) We have (¢~ 1)*(a) = f(t) for some smooth function f : (—7, 7) — R. Define

c::%/_Tr f(s) ds

but for all ¢ € Q°(S),

and

coral Ty, o ftf(s)ds—c-t te (—m,m)
CECT(SLR), C(COSt’Slnt>'_{ fo“f(s)ds—c%:fO*”f(s)ds_c.(_W) t=m

Then, ¢ is smooth (consider another chart ¢ : S* — {(1,0)} — (0,27),%~1(t) = (cost,sint)
and check this). Then,

d(e™1)"¢ = d(/o f(s)ds —c-t) = f(t)dt —c-dt = (p7 ") a—c- (¢7)"(w)

Applying ¢* gives us that a = d{ + ¢ - w on Im(y), and by the continuity of S'. We have
our claim, and we are done with everything now.

O

O
4. We have,

& ny R k=0orn
HDR(S){ {0} k#0orn
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Proof. This follows by induction on n. For n = 1, this is true by example (3). Going from n to n+1,
assume that the statement is true for H},5(S™). Then, HY ,(S"!) 2 R, H}, 5(S" ) = {0} by (2),

since S"*! is connected and simply connected. Covering S"*! by two hemispheres, U, V such that
U NV = §". Then the Mayer-Vietoris sequences gives us for k£ > 2, that

Hpy (U) ® Hipp (V) = Hpp (UNV) = Hpp(S™) = Hpp(U) & Hpp(V)
——
={0}®{0} H o (S™) ={0}

——
={0}
Implying then, that

n ~ r7k—1/an R k=n+1
Hpp(S™) = HE (S ):{ {0} k#Z+1
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The Lie Derivative

This chapter comes from Lee’s book, chapters 9 and 12 (though more of 9).

12.1 Proposition and Definition

Let M be a manifold, let X € X(M) be a smooth vector field. Then, one can do the following:

1. Let a € M. Then there exists an open interval I, 0 € I, such that there exists a smooth curve
aq : I — M such that «,(0) = a, and for all ¢ € I,

ag(t) = Xag)- (12.1.1)
For another curve o, : I — M as above, it is true that
O‘a’mf = da|mf
Any such curve «, is called an integral curve of X.
2. For a € M, let I, be the maximal interval for which «, can be defined, «, : I, — M. Let
D :=Usepml, x {a} CRx M

Then D C R x M is open, and the map 6 : D — M, (t,a) — 0(t,a) := a,(t), is smooth. We call 6
the flow of X.

3. Let 6¢(a) := O(t,a) = au(t). Then, Oy = idy, 05 0 0y = 054, for any s, ¢ for which 6;, 0,04, is
defined. Let U C M be open such that 6, is defined on U,

9,5 :U—->M
Then 67 : U — 6,(U) is a smooth diffeomorphism with inverse given by 6, ' by 6, * = 0_,.

Proof. 1. This is actually a local problem. Let ¢ : U — R be a chart, a € U. Then, any curve
a : I — M has a velocity of

iy N\~ dlpoa) 9
a(t)_z dt .%a(t)

Jj=1

*This asserts the uniqueness of integral curves
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(from 5.6(3)) and
d
4 0
Xa - Xj t ey
0 g (@) 55
where X7 € C°(U,R). Let & := poa and X7 := X7 0 o~ is also smooth, then the equation|12.1.1
is equivalent to:

) — XYEL (1), ..., al(t))

at > ~ -
ot — XAUE (L), ..., a%(t)

We have the initial condition &(0) = ¢(a). Now, (1) follows from the existence and uniqueness of
solutions of O.D.E.’s (see Lee, Appendix D, Theorem D.1(a,b)).

2. Follows from the smoothness condition of O.D.E’.s (Lee, Theorem D.1(c)). We have: for all a € M,
there exists an open subset U C M with a € U such that there exists ¢ > 0 such that |(—¢,¢) xU —
M is defined. This implies that D C R x M is open (because if (t,a) € D, then for b := 0(¢,a):
there exists an open subset V' C M with b € V and there exists an ¢ > 0 such that 6 is defined
on (—e,¢e) x V. Since 6(t,—)|y : U — M is smooth, and therefore continuous, this implies that
U := (6(t,—)|U)"*(V) € M is open, and a € U. Then @ is defined on (¢ — €, + ¢) x U, since
by uniqueness of the integral curve, the flow of § and the solution of the O.D.E. near b have to
coincide.).

3. 6(0,a) = a, and 6, o 85 = O, by uniqueness of solutions. This implies that 6, o 6_; = id)s, and so
(6t)71 = H,t.
O

12.2 12.2 Definition

Definition. A vector field X is called complete if the flow of X is defined on all of R, i.e.,

0:Rx - M

12.3 Proposition

Proposition 43. If M is a compact manifold, and X is any smooth vector field on M, then X is complete.

Proof. For every a € M, there exists a neighborhood U, and there exists an ¢, > 0 such that 6 is defined
on f|(—eq, €,) x U, — M. Since M is compact, there exist finitely many U, ..., U,» such that M is equal
to their union. Let ¢ := min(e,1, ...,€46) > 0. Then, 0 is defined for (—¢,¢) x M — M, in particular,
0|[_%,§]XM — M. Now, let t € R. Write ¢ as a finite sum, ¢ = £e2+ § + ... & § + s where s € [, §].
Then’ 0 = 0pmeQ:|:§:|:...:i:§+s=

Oiesp0...00;

is defined for t € R. O

12.4 Definition

Definition. Let M be a smooth manifold. Let X be a smooth vector field on M, and let  : D — M be
the flow of X. Let (t,a) € D, then there exists an open neighborhood U C M, a € U such that 6, is
defined on U, and is a diffeomorphism

Ht:U—>9t(U)::V
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Therefore, §_, : V — U, and in particular, 6_;(0;(a)) = a. This tells us that
(dO—t)o,(a) : To,(a) = TaM

Now, let W € X(M). Then: (d0_¢)s,(a)(Wo(a)) € ToM. Therefore, (d0_;)g,(a)(Wo,(a)) — Wa € TaM. We
define the Lie derivative of 1V with respect to X to be:

(LxW)q := lim (d0—-1)0. () Wo,(a) = Wa
X ar t—0 t

Similarly, let o € 799 (M) (a tensor field of type (0,¢)), (e.g., « € Q*(M)). Note that
(d07) 4 : TOO (T, (yM) — T (T, M)
Then we define the Lee derivative of « with respect to X:

Y (db7)a(g,(a)) — Xa
(Lx)acx = %g% t

12.5 Proposition
Let M be a manifold, let X, W € X(M). Then we have:
(LxW), =X, W], (12.5.1)

where the right hand side is the Lie bracket from Lemma 6.7.e. In particular,

1. LxW € X(M) is smooth (by 6.7e)

2. LxW = —Lw X (by 6.8¢)

3. For Z e X(M), Lx (W, Z]) = [LxW, Z]| + [W, Lx Z]

4. Lix,7gW = Lx(LzW) + Lz(LxW), ((4) and (3) are from 6.8(b))

5. Lx(f-W)=X(f) - W+ f-Lx(W) (by 6.8(e))
We now prove [12.5.1}

Proof. Let f € C*°(M,R), let a be contained in an open subset U C M. Then,

(Lxa(f) = lim (=000 Wo@))(f) = Wald)

t—0 t

Let ¢ > 0 be such that g : (—¢,¢) x U — R given by

g(t, ) := f(0u(x)) — f(x)

is defined for t € (—¢,¢€),z € U, and g is smooth. Let ¢ be a chart at a, without loss of generality assume
also that ¢ : U — R? (or otherwise, take the intersection U N Domain(p)). Let h : (—¢,€) x p(U) — R be
given by

h(t,y) = g(t, 0™ ().

Note that & is a smooth function, and h(0,y) = 0. By the fundamental theorem of calculus,

¢ 8/1(3 y) substitute ! ah(t " U y)
ht,y:/i’ds i t~/ SO gy =t k(t,y
) = | =5 o ()
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(the substitution is u = 1 - s, du = 1ds) where k is a smooth function, k : (—¢,€) x U — R. Now, let
U(t,x) == k(t, o(x)) which is also a smooth map ¢ : (—¢,¢) x U — R. We have:

F(60(2)) — F(z) = glt,2) = h(t, 9(2) = 1 b{t, p()) = ¢ (1, 2) (12.5.2)
Thus: 0 .
£(0,) = tim TOD Iy JONZTD _ (o1 0))(5) = xx()

(the equality above is because « is an integral curve of X). Therefore,

((d0—+)0,(a)(Wo,(a)))(f) — Wal(f) Wo,(a)(f 0 0-1) = Wa(f)

(LxW)a(f) = limy ; =T lim .
=3, Wo,(a)(f) + W, () (=t - £(—t, ) — Wa(f)
t—0 t

(and because Wy, ) is R-linear);

. Wta f _Waf . t'Wta g_t7 8W 0
- 0,(a) )t ( >_th£% 0. ( >t(( 7)) _ (f(;(5 1(a)) L Wa (0. 2))
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