APPLICATIONS OF THE L,-TRANSFORM TO PDE’S

The goal of this article is to illustrate the applicability of the Lo-transform to
solving certain partial differential equations. Recall that a function f :[0,00) = R

is called exponential squared order if lim f(gz:)e_‘l62 =0.
T—r00

Definition 1. For any exponential squared order function f(t), the Lo transform
of f is defined as:

Lo f(x); s} = /000 xe‘$252f(x)dx

Here is a useful example. For n > 0 we have:

n!
282n+2

(1) Lo{z®"ss} =

In the case n = 0, we obtain

> 2.2 1
Lo{l:s} = 2?5 gy —
2{1;s} /0 ze T= 5

and for n = 1, through integration by parts, we have
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o, I A A s 1 _p2g2 _ 1 1
‘CQ{‘"E 55} - < 282 € ) ‘0 + 872 o e :Z:dx = 87 (282>

Property (1) then follows by a simple induction.
There is a differential operator ¢, defined by

1 d

6z:—oi
r dx

which has some nice properties with respect to the Ls-transform, which we now
recall. See also

Proposition 1. Let f be a function of exponential squared order. Then
(2) La{0,f(x); s} = 257 La{ f(2); 5} — F(0F)

and for alln >0

3) Lo{a® f(x):s) =

Proof. For the first claim, we calculate

/000 xe_zzszézf(x)dw = /000 ze ™S lif(a;)(da:) = /000 e s [ (z)dx

rdr

(=1

S f()ss)

and, integrating by parts, we get:

2.2

= f(x)(e™ ™)

. —|—/ 21‘82I671252f(1‘)d93
0
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Evaluating from 0 to oo, using the fact that f is exponential squared order, we can
write this expression in terms of the £ transform:

252 Lo{ f(x); s} — f(0T).
For property (3) , taking the case in which n=1, we get:
dsLo{f(x);8} = (53/ xe_xzszf(x)dx
0

We can take the differential operator s into the integral, yielding:

*1d 2.2 1 2 2.2 o 9 2.2
——-xe” "7 f(z)dr = ——2zswe” " % f(x)dr = -2 xtze” ¥ f(x)dx
0 S dS 0 S 0
We can notice here that the last term of this equation is really equal to:
Lo{—22%f(x); s}
Which is an alternative representation of property (3 ). Applying the application
of the differential operator with respect to s to this result, we get:

8sLo{ =222 f(x); 8} = 6, — 2 /OO I2$671252f(1’)d$
0

As we did before, we re-write the differential operator and apply it within the
integeral:

—2/ **'$2$€_r252f(36)dx = —2/ “2?e?re ™ f(2) 22 sdx = 4/ 222re™ " f(z)da
0 o S 0

s ds
Which we can see is realy equal to :
4Ly {xt f(2); 5}
As we can see through induction, for a general n > 1, we have:
S0 Lo{f(x); s} = —2"Lofa®" f(x); s}
Or, written alternatively,

EQ{C(:Q”f(CL');S} _ (_1)

Lt (@) )

1. THE L5, CONVOLUTION

A binary operation (x) called the convolution of two functions f, g is defined as
follows:

(f*g)(t) = / e (V2 — ) g(a)de

It can be shown that this operation is associative and commutative. Most impor-
tantly for our purposes, the following are true:

Lo{f*g;s} = La(f) L2(9)

and:

(4) Lo{fix fax ..k fn;s} = La(f1) - La(f2) o - La(fn)

From which it follows:

(5) L7Hfi- oo fay=Fixfokokfn
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2. APPLICATIONS

Consider the following partial differential equation :

t3uge +22u =0 and w(0T,t) =0

(6)
where u = u(x,t) for z,t > 0 and u(0",t) = lim+ u(z,t).
z—0
Writing the PDE in Equation 6 in terms of the differential operator, we have

1d
tSE%ut +2u = 0

or equivalently,
t36,ur = —2u.
Taking the L5 transform of both sides and using property (3) we obtain

252630, —u(0",t) = —24

-1

where 4 = 4(s,t) = Lo{u(z,t); s}. Equivalently,
uw(0T, 1)

iy = =<1
s2¢3 252¢3

By the initial condition in (6), this last term is zero. One solution to this differential

equation is
~ ]. t—25—2
(s, t) = 252¢ °
We now write (s, t) as a series to obtain:
2,2
A 1 0 (3 ; ))—Qn & on
i(s,t) = 252 Z n! B Z 252n+2¢2np)”
n=0 n=0

> on 20

u(zx,t) = Z RTYEIER

n=0

Using property (1), we can calculate that u(z,t) = £ *{(a(s,t); x} is

3. FURTHER GENERALIZATIONS

Similarly, we can solve all partial differential equations of the form:

1
0= f(t t)— Uy t)—Ug
P+ F(8) e+ 9(0)
Taking the Lo transform, we compute:
0= f(t)a+ f(t)2s%a + g(t)2s%ay

(1+2s?) M)

Y

Rearranging:
Where M(t) = %. Claiming that L(s) is any function of s, a solution for @ is as

S| &

— [ M(w)dw
=g Swidw L(s)

follows:
fL(S,t) = 67(%?2)1‘(; M (w)dw . L(S) — efot M(w)dw
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Writing this as a series, denoting fg M (w)dw as M,and letting L(s) = —L5, we get:

_827

ol A M EM & M M

D i R crarhD SRl B oo R
B Z_: n!-2(n=1) . (257+2) . Z nl

n=0
using identity (2), and taking the £y inverse transform, we claim that:

o0 o0
M™ . x2n M™
u(@,t) = Z (n)2-2n—1° Z o)
n=0
Lastly, we can always solve the following types of partial differential equations:

1
0=f(t)u+ f(t);ux +g(t)us + g(t)u + xt
Taking the £y transform, we get:
Uy

0=a(l+2s°)f(t) + (1 + 25%)g(t) = = =J®

Where J(t) = —%. This implies that a solution for @ is as follows:
(s, t) = elo 7AW . 1)

Where L(s) is an arbitrary function of s. Representing this expression as a series,
and letting L(s) = 53, we get:

o) t
J(w)dw)™
4= Z (fo (w)dw)
—  nl 212
And after applying the Lo inverse, we get the following solution for u(x,t):
u(x,t) — 0. efot J(w)dw)

4. AN APPLICATION TO A PARTIAL DIFFERENTIAL EQUATION OF
EXPONENTIAL SQUARED ORDER

Consider the following partial differential equation, with the following condition:
1
Writing this equation in terms of the differential operator,
0=g(t)u— f(t)us + a f(£)ue
and taking the Lo transform of it, we get:
0=gt)a; — f(t)a + 2$2f(t)ﬁt
Rearranging, we get: R
0= g(t)u+ f(t)fe(~1+25%)
Which leads to: R .
Ut
—=—-———"-H(t
U -1+ 252 ®)
Where H(t) = %. This implies that a solution for @ is as follows:

(s, t) = e=iraz Jo H(w)dw
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Writing this solution as a series, we get:

i(s, t) = i (Jo H (w)dw)" < 1 )"

n! —14+ 252

n=0
from (4), (5) and the following identity:
(l{I/’Q . — 1
Lafe®™ 5s} = —2a + 252

We can arrive at the following solution:

a0 = 5 ((fo Hlw)du) (e(l/anz)*n)

Where e(1/ 2)82)*" represents the following:

6(1/2)e2 *6(1/2)e2m *6(1/2)62

Which leads the following proposition, which can be shown through induction:
1 g2 e(1/2)a
=1 " (n—1)!

After a substitution, we have the following solution for u(z,t):

u(:z;t) — i ((fo H(w)dw)n . 1 . 22(n=1) 6(1/2)12>

n! 2n—1 (n—1)!

2\ %
(6(1/2)6 ) n —

n=1
Notice that the e(!/2)7* term in this sum prohibits this solution to satisfy the
definition of exponential oder. To find the limit of this solution when multiplied
with e~ as z — 00, we recognize the following:

o " IZ o) ./132 n o0 :L‘2 n
ZM26$2/22L<&2/2Z(T) — "2
S Dm0 S e = S

Which follows from the fact that:
(n+1)(nhH)<2® ¥ n>0
And since the following is true:
lim =@ . %' /2. ¢7%/4 — ¢
Tr—r 00
We see that our solution is in fact, of exponential squared order. Thus, this is a

solution that could not have been obtained through some other integral transforms,
including the Fourier transform.
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