
APPLICATIONS OF THE L2-TRANSFORM TO PDE’S

The goal of this article is to illustrate the applicability of the L2-transform to
solving certain partial differential equations. Recall that a function f : [0,∞)→ R
is called exponential squared order if lim

x→∞
f(x)e−x

2

= 0.

Definition 1. For any exponential squared order function f(t), the L2 transform
of f is defined as:

L2{f(x); s} =

∫ ∞
0

xe−x
2s2f(x)dx

Here is a useful example. For n ≥ 0 we have:

(1) L2{x2n; s} =
n!

2s2n+2

In the case n = 0, we obtain

L2{1; s} =

∫ ∞
0

xe−x
2s2dx =

1

2s2

and for n = 1, through integration by parts, we have

L2{x2n; s} =

(
−x2

2s2
e−x

2s2
) ∣∣∣∞

0
+

1

s2

∫ ∞
0

e−x
2s2xdx =

1

s2

(
1

2s2

)
Property (1) then follows by a simple induction.

There is a differential operator δx, defined by

δx =
1

x
· d
dx

which has some nice properties with respect to the L2-transform, which we now
recall. See also

Proposition 1. Let f be a function of exponential squared order. Then

(2) L2{δxf(x); s} = 2s2L2{f(x); s} − f(0+)

and for all n ≥ 0

(3) L2{x2nf(x); s} =
(−1)n

2n
δnsL2{f(x); s}

Proof. For the first claim, we calculate∫ ∞
0

xe−x
2s2δxf(x)dx =

∫ ∞
0

xe−x
2s2 · 1

x

d

dx
f(x)(dx) =

∫ ∞
0

e−x
2s2f ′(x)dx

and, integrating by parts, we get:

= f(x)(e−x
2s2)

∣∣∣∞
0

+

∫ ∞
0

2xs2xe−x
2s2f(x)dx
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2 APPLICATIONS OF THE L2-TRANSFORM TO PDE’S

Evaluating from 0 to ∞, using the fact that f is exponential squared order, we can
write this expression in terms of the L2 transform:

2s2L2{f(x); s} − f(0+).

For property (3) , taking the case in which n=1, we get:

δsL2{f(x); s} = δs

∫ ∞
0

xe−x
2s2f(x)dx

We can take the differential operator δs into the integral, yielding:∫ ∞
0

1

s

d

ds
·xe−x

2s2f(x)dx⇒
∫ ∞
0

1

s
·−2x2s·xe−x

2s2f(x)dx = −2

∫ ∞
0

x2·xe−x
2s2f(x)dx

We can notice here that the last term of this equation is really equal to:

L2{−2x2f(x); s}
Which is an alternative representation of property (3 ). Applying the application
of the differential operator with respect to s to this result, we get:

δsL2{−2x2f(x); s} = δs − 2

∫ ∞
0

x2xe−x
2s2f(x)dx

As we did before, we re-write the differential operator and apply it within the
integeral:

−2

∫ ∞
0

1

s

d

ds
·x2xe−x

2s2f(x)dx = −2

∫ ∞
0

1

s
x2x2xe−x

2s2f(x)−2x2sdx = 4

∫ ∞
0

x2·x2xe−x
2s2f(x)dx

Which we can see is realy equal to :

4L2{x4f(x); s}
As we can see through induction, for a general n ≥ 1, we have:

δnsL2{f(x); s} = −2nL2{x2nf(x); s}
Or, written alternatively,

L2{x2nf(x); s} =
(−1)n

2n
δnsL2{f(x); s}

�

1. The L2 Convolution

A binary operation (?) called the convolution of two functions f, g is defined as
follows:

(f ? g)(t) =

∫ t

0

xf(
√

(t2 − x2)g(x)dx

It can be shown that this operation is associative and commutative. Most impor-
tantly for our purposes, the following are true:

L2{f ? g; s} = L2(f) · L2(g)

and:

(4) L2{f1 ? f2 ? ... ? fn; s} = L2(f1) · L2(f2) · ... · L2(fn)

From which it follows:

(5) L−1{f̂1 · f̂2 · ... · f̂n} = f1 ? f2 ? ... ? fn
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2. Applications

Consider the following partial differential equation :

(6) t3utx + 2xu = 0 and u(0+, t) = 0

where u = u(x, t) for x, t > 0 and u(0+, t) = lim
x→0+

u(x, t).

Writing the PDE in Equation 6 in terms of the differential operator, we have:

t3
1

x

d

dx
ut + 2u = 0

or equivalently,

t3δxut = −2u.

Taking the L2 transform of both sides and using property (3) we obtain

2s2t3ût − u(0+, t) = −2û

where û = û(s, t) = L2{u(x, t); s}. Equivalently,

ût =
−1

s2t3
û+

u(0+, t)

2s2t3
.

By the initial condition in (6), this last term is zero. One solution to this differential
equation is

û(s, t) =
1

2s2
e

t−2s−2

2

We now write û(s, t) as a series to obtain:

û(s, t) =
1

2s2

∞∑
n=0

( s2t2)
2 )−2n

n!
=

∞∑
n=0

2n

2s2n+2t2nn!
.

Using property (1), we can calculate that u(x, t) = L−12 {(û(s, t);x} is

u(x, t) =

∞∑
n=0

2nx2n

t2n(n!)2
.

3. Further Generalizations

Similarly, we can solve all partial differential equations of the form:

0 = f(t)u+ f(t)
1

x
ux + g(t)

1

x
uxt

Taking the L2 transform, we compute:

0 = f(t)û+ f(t)2s2û+ g(t)2s2ût

Rearranging:

ût
û

= − (1 + 2s2)

2s2
·M(t)

Where M(t) = f(t)
g(t) . Claiming that L(s) is any function of s, a solution for û is as

follows:

û(s, t) = e
−(1+2s2)

2s2
·
∫ t
0
M(w)dw · L(s) = e

∫ t
0
M(w)dw · e

−
∫ t
0 M(w)dw

2s2 · L(s)
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Writing this as a series, denoting
∫ t

0
M(w)dw asM,and letting L(s) = 1

−s2 , we get:

û =
1

−s2
∞∑

n=0

−Mn

n! · (2s2)n
·
∞∑

n=0

Mn

n!
=

∞∑
n=0

Mn

n! · (2nsn+2)
·
∞∑

n=0

Mn

n!

=

∞∑
n=0

Mn

n! · 2(n−1) · (2sn+2)
·
∞∑

n=0

Mn

n!

using identity (2), and taking the L2 inverse transform, we claim that:

u(x, t) =

∞∑
n=0

Mn · x2n

(n!)2 · 2n−1
·
∞∑

n=0

Mn

2n!

Lastly, we can always solve the following types of partial differential equations:

0 = f(t)u+ f(t)
1

x
ux + g(t)ut + g(t)u+ xt

Taking the L2 transform, we get:

0 = û(1 + 2ss)f(t) + ût(1 + 2s2)g(t)⇒ ût
û

= J(t)

Where J(t) = − g(t)
f(t) . This implies that a solution for û is as follows:

û(s, t) = e
∫ t
0
J(w)dw · L(s)

Where L(s) is an arbitrary function of s. Representing this expression as a series,
and letting L(s) = 1

2s2 , we get:

û =

∞∑
n=0

(
∫ t

0
J(w)dw)n

n! · 2y2

And after applying the L2 inverse, we get the following solution for u(x,t):

u(x, t) = x0 · e
∫ t
0
J(w)dw)

4. An Application to a Partial Differential Equation of
Exponential Squared Order

Consider the following partial differential equation, with the following condition:

0 = g(t)u− f(t)ut +
1

x
f(x)uxt u(0+, t) = 0

Writing this equation in terms of the differential operator,

0 = g(t)u− f(t)ut + δxf(t)ut

and taking the L2 transform of it, we get:

0 = g(t)ût − f(t)ût + 2s2f(t)ût

Rearranging, we get:

0 = g(t)u+ f(t)f̂t(−1 + 2s2)

Which leads to:
ût
û

= − 1

−1 + 2s2
·H(t)

Where H(t) = g(t)
h(t) . This implies that a solution for û is as follows:

û(s, t) = e
−1

−1+2s2
·
∫ t
0
H(w)dw
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Writing this solution as a series, we get:

û(s, t) =

∞∑
n=0

(
∫ t

0
H(w)dw)n

n!
·
(

1

−1 + 2s2

)n

from (4), (5) and the following identity:

L2{eax
2

; s} =
1

−2a+ 2s2

We can arrive at the following solution:

L−12 {û(s, t)} =

∞∑
n=1

(
(
∫ t

0
H(w)dw)n

n!
· (e(1/2)x

2

)?n

)
Where e(1/2)e

2

)?n represents the following:

e(1/2)e
2

? e(1/2)e
2

... ? e(1/2)e
2︸ ︷︷ ︸

n

Which leads the following proposition, which can be shown through induction:

(e(1/2)e
2

)?n =
1

2n−1
· x

2(n−1) · e(1/2)x2

(n− 1)!

After a substitution, we have the following solution for u(x, t):

u(x, t) =

∞∑
n=1

(
(
∫ t

0
H(w)dw)n

n!
· 1

2n−1
· x

2(n−1) · e(1/2)x2

(n− 1)!

)
Notice that the e(1/2)x

2

term in this sum prohibits this solution to satisfy the
definition of exponential oder. To find the limit of this solution when multiplied

with e−x
2

as x→∞, we recognize the following:
∞∑

n=0

x2n · e(1/2)x2

(n+ 1)(n!)22n
= ex

2/2
∞∑

n=0

(x2

2 )n

(n+ 1)(n!)2
≤ ex

2/2
∞∑

n=0

(x2

4 )n

n!
= ex

2/2 · ex
2/4

Which follows from the fact that:

(n+ 1)(n!) ≤ 2n ∀ n ≥ 0

And since the following is true:

lim
x→∞

e−x
2

· ex
2/2 · ex

2/4 = 0

We see that our solution is in fact, of exponential squared order. Thus, this is a
solution that could not have been obtained through some other integral transforms,
including the Fourier transform.
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