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CHAPTER 1

INTRODUCTION

Office hours are Tuesday, Thursday from 3:30 - 4:30.

1.1 Overview

The idea of topology revolves around the study of "spaces" and "functions" be-
tween them. We can think of interesting examples of what we could call "spaces",
for example spheres circles, tori, etc. The thing worth noticing is that each of
these "spaces" is a set of points. The question to ask then, is what differenti-
ates the different surfaces I just named from each other if all they are is a set of
points? Thus, we have to add there there exists some additional structure for each
of these spaces, which we will call their "topological " structure. For example, we
could take some notion of distance and add that notion to these sets.

To compare objects, we need to discuss a notion of "sameness".
Example. If we take sets with the additional structure of the notion of distance,
same-ness is a bijection preserving distances. A fancy name for this is an isome-
try. This line of thinking leads to a subject of metric geometry.
Example. If you took no additional structure, we're really just studying sets, and
"sameness" is defined by having a bijection between two sets. This line of thinking
leads to the subject of Combinatorics.

The subject of topology is somewhere in-between these two notions. Our addi-
tional structure on a set will be called "a topology", and a set with a topology
will be called a space- more specifically, a topological space. Then, our notion of
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CHAPTER 1. INTRODUCTION

"sameness" will be given by bijections between sets that preserve the additional
structure, i.e., the topology. This will lead to more familiar notions:

1. Connected-ness

2. Compact-ness, or things "being bounded" . For example, the real line R and
R2 extend forever without bound, but a figure like a circle has a bound.

1.2 Discussions from Set Theory

Definition. A set is a collection of objects, with the following operations:

1. Subsets

2. The union of an arbitrary number of sets

3. The intersection of an arbitrary number of sets.

4. The Cartesian product of sets. For example, if A,B are sets, then A × B =
{(a, b)|a ∈ A, b ∈ B}.

5. Functions between sets, where such a function f : A → B is a subsetX ⊆ A×B
such that (a1, b1), (a2, b2) ∈ X if a1 = a2 then b1 = b2. You can think of this as
saying f(a) = b when (a, b) ∈ X.

6. Relations and Equivalence Relations. An Equivalence Relation on a set S is
a subset X of S × S satisfying the following:

(a) a ≤ a

(b) If a ≤ b then b ≤ a

(c) If a ≤ b, b ≤ c, then a ≤ c.

Where we write a ≤ b if and only if (a, b) ∈ X.

Definition. A set S is finite if there exists a bijection f : {1, 2, ...n} → S for some
n ∈ N. We say S has n elements. If S is not finite, then we say that S is infinite.
Fact. If a set is infinite, then every injection, or "one-to-one" function, is also a
surjection.
Example. Given f : N → N, f(n) = n + 1, this map is 1 − 1 and is not onto. This
follows from 1 not being in image of f . This tells us that N is not finite, but is an
infinite set.
Definition. We say that a set S is countable if there is a bijection f : N → S.
Fact. The integers Z = {±1,±2,±3, ....} are countable. It is also true that Q are
countable. The more surprising fact is that R are not countable.
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1.3. THE DEFINITION OF A TOPOLOGY

A finite union of finite sets is always finite. Similarly, a finite intersection of a
finite number of sets is finite, and the same is true of a finite product of finite
sets, and a subset of a finite set is finite. However, a subset of a countable set is
not necessarily countable- for example, the subset {2, 3} of N is not countable since
there exists no bijection between this set and N. On the other hand, a finite union
of countable sets is countable, and the countable product product of countable
sets is not countable- and even worse, the finite product of countable sets is not
countable.

1.3 The Definition of A Topology

Definition. Let X be a set. A Topology on X is a collection of subsets of X,
denoted T , satisfying the following properties:

1. ∅, X ∈ T

2. An arbitrary union of elements of T belongs to T . Another way to say this
is that T is closed under arbitrary unions.

3. A finite intersection of elements of T belongs to T . Another way to say this
is that T is closed under finite intersections. If U1...Un ∈ T , then ∩n

i=1Ui ∈ T

A pair (X, T ) is called a topological space. Elements of T (which are in fact subsets
of X) are called open sets.

Example. Let X be a set. The trivial topology on X, T ={∅, X} is one example of a
topology on X. Alternatively, the discrete topology on X, T consists of all subsets
of X, T =P(X). In this topology, all subsets of X are open.
Example. Another example is the finite complement topology, whose definition
is T ={A ⊆ X|X − A is finite or equals all of X }. This is a topology because:

1. ∅ ∈ T since X − ∅ = X

2. suppose {Uα} ⊆ T . Looking at their union,
∪

α Uα ∈ T . We know that X − Uα

is finite or equals X for all α from the following:

X −
∪
α

Uα =
∩
α

(X − Uα) = is either finite or all of X

which tells us that
∪

α Uα ∈ T .

3. Suppose that U1, U2 ∈ T . From this we know that X − U1& X − U2 are either
finite or all of X. Now looking at X − (U1 ∩ U2) = (X − U1) ∩ (X − U2) which is
either finite or all of X. Proceeding similarly, you can show the same is true

7



CHAPTER 1. INTRODUCTION

for the intersection of a finite number of elements, and the same is true for
finite union.

Definition. Let X be a set. Suppose that you have two different topologies ,T , T ′

on X. We say that T is finer than T ′ if T ′ ⊆ T . In this case we say that T ′ is coarser
than T .

Going back to our first two topologies, it is clear that the trivial topology is the
coarsest topology, and the discrete topology is the finest topology. Notice that
two topologies need not be comparable.
Definition. A basis for a topology T on X is a collection of subsets of X, called B
such that:

1. For all x ∈ X, there is an element B ∈ B such that x ∈ B.

2. If you took B1, B2 ∈ B, nand x ∈ B1 ∩ B2, then there exists some B3 ∈ B such
that x ∈ B3

X

B1

B2

B3

We'll show a basis for a topology indeed induce a topology.
Example. Let X = R. Let B = {(a, b)|a < b}. Let's check the claim that this is a basis
for a topology

1. Given some point on the real like R, there is always an interval that contains
that point.

2. Give a point contained in two intervals that overlap, there is always a smaller
one that exists in between those two contained in their intersection that con-
tains that point.

Example. Given X = R2, you can let B be all open disks in the plane. Is this a
basis?

8



1.4. CONSTRUCTING BASES FROM T

1. Given some point, you can construct an open disk around that point.

2. Given a point contained in the intersection of two disks, you can create a
smaller disk contained in that intersection that contains that point.

Example. Let X = R2, and let B be all open rectangles in the plane. Is this a basis?

1. Any point can be contained in an open rectangle

2. Any point contained in the intersection of two rectangles can be contained
in an appropriate smaller rectangle.

The basis we discussed with intervals is called the "standard basis for R".

Claim. If B is a basis for a topology on X, then TB = {..} is a topology on X. This
follows from:

TB = {U ⊆ X| ∀x ∈ U,∃ B ∈ B s.t. x ∈ B ⊆ B}

Proof. Fix a basis B and let T = TB.

1. First, ∅ ∈ T since there's nothing to check.

2. X ∈ T since if you take any x ∈ X, there is an element B ∈ B such that
x ∈ B ⊆ X, which follows from the fist condition in the definition of a basis.

3. Given some {Uα} ⊆ T We need to show that
∪

α Uα ∈ T . This follows from
noticing that for each α, if x ∈ Uα, then ∃ B ∈ B such that x ∈ B ⊆ Uα. Given
some x ∈

∪
α Uα, we know that x ∈ Uα for some α. So, then x ∈ B ⊆ Uα ⊆

∪
α Uα.

This tells us that the B that works for Uα also works for ∪Uα.

4. Given U1, ...Un ∈ T , suppose that n = 2 and that x ∈ U2 ∩U2. Since T is a basis,
we know that open sets B1, B2 contained respectively in U1, U2 and that there
exists a B3 such that x ∈ B3 ⊆ B1 ∩B2. This shows that U1 ∩ U2 ∈ T . For n > 2,
the result follows from induction.

We moved in to a discussion of elements of a topology being `open' sets.
Example. In the standard topology on R, a single point is not open- this is true
since if x ∈ R, there does not exist an open interval (a, b) such that (a, b) ⊂ {x}.

1.4 Constructing Bases from T

Example. Let X be some set and let T be the discrete topology. A basis for T is
given by:

B = {x ∈ X}

9



CHAPTER 1. INTRODUCTION

Claim.

1. B is a basis.

2. The topology that B generates is the discrete topology.

Proof. For (2), it is enough to show that every set in X is open. Given some subset
U ⊆ X, and x ∈ U , x ∈ {x} ⊆ U and {x} ∈ B. This is the discrete topology. This
follows from allowing U to be any arbitrary set in X.

More formally,
TB = {U ⊆ X|∀x ∈ U, ∃B ∈ B s.t.x ∈ B ⊆ U}

is a topology, and we have the claim that TB = all unions of elements of B.

Proof. Lets show that TB ⊆ all unions of elements of B. So, if U ∈ TB, for all x ∈ U ,
there exits Bx ∈ B such that x ∈ Bx ⊆ U . Then we can just say that U =

∪
x∈U Bx,

which follows what we claimed.

U

X
B
X

Now, in showing that TB ⊇ all unions of B. First, B ⊆ TB, and on the other hand,
TB is closed under arbitrary unions, so we know that arbitrary unions of B are in
TB.

Example. The standard topology on R has the basis

{(a, b)|a < b}

So, the open sets in R are precisely the union of open intervals.

10



1.5. CONSTRUCTING T FROM A BASIS

1.5 Constructing T from a Basis

Let T be a topology on some set X. Any collection C of subsets of X satisfying
some particular condition is a basis. The condition is as follows: for any U ∈T ,
an x ∈ I, there exits C ∈ C such that x ∈ C ⊆ U is a basis for T .

U

C

X

Why is C a basis? Well, we need to recognize the following:

1. Given x ∈ X, since X ∈ T , by our condition we know that there exists C ∈ C
such that x ∈ C ⊆ X. Thus, every x is in some C.

2. Let C1, C2 ∈ C and let x ∈ C1 ∩ C2. We need to find some C3 ∈ C such that
x ∈ C3 ⊆ C1 ∩ C2 By letting C3 = C1 ∩ C2 , since C ⊆ T and since T is closed
under finite intersection, then C3 ∈ C. Thus, x ∈ C3 ⊆ C1 ∩ C2. This looks like
the following picture:

C1

C2
C3

x
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CHAPTER 2

NOTIONS OF TOPOLOGY

2.1 Equality

A fair question to ask is `when are two topologies the same?' We have the follow-
ing theorem:
Theorem 1. Let T be generated by B, and let T ′ be generated by B′. Then,

1. T ′ ⊇ T (T ′ is finite, more open sets)

2. if and only if for all B ∈ B an x ∈ B there exists B′ ∈ B such that x ∈ B′ ⊆ B.

B

B'

x

Proof. In showing that (1) ⇒ (2), given some B ∈ B and x ∈ B, we know that then
B ∈ T since B ⊆ T so B ∈ T ′ since T ′ ⊇ T . We also know that T ′ is generated by B,
which tells us that there exists some B′ ∈ B′ such that x ∈ B′ ⊆ B.

13



CHAPTER 2. NOTIONS OF TOPOLOGY

x B'

B

U

Switching to show that (2) ⇒ (1), Let U ∈ T . We want to show that U ∈ T ′. It's
enough to show that ∀x ∈ U, ∃B′ ∈ B′ such that x ∈ B′ ⊆ U . Since U is open in T ,
we know that for all x ∈ U , there exists some B ∈ B such that x ∈ B ⊆ U . By (2),
we have that x ∈ B′ ⊆ B ⊆ U

Example. Look at the basis for R2 given by all open disks. Similarly, we can look
at the topology on R2 given by all open rectangles. Are these basis the same? It
turns out, the answer is yes, and we can show this using our theorem. We need to
show that the topology from (1) is contained in the topology from (2). This follows
from our theorem, by looking at our picture: Similarly, the topology from (2) ⊇

x

x

the topology from (1), which can also be seen from our picture. One interesting
consequence from this is that the interior of a circle can be represented by open
unions of rectangles, and vice versa. Thus these topologies are the same.
Example. We will now define the following new topology on R, given by the fol-
lowing basis:

{[a, b)|a, b ∈ R, a < b}

This is a basis, since

1. If x ∈ R, x ∈ [x, x+ 1).

2. And x ∈ [c, b) ⊆ [a, b) ∩ [c, d).

14



2.2. SUBBASES

Bl is a basis, and generates a topology called the lower limit topology onR, denoted
Rl. So, how are Rl and the standard topology on R related? Given some x ∈ (a, b),
x ∈ [x, b) ⊆ (a, b) so (2) holds. By our theorem, Rl ⊇ the standard topology on
R, demonstrated by the picture on the following page.. On the other hand, if

x

a b

x ∈ [a, b), x ̸= a then x ∈ (a, b) ⊆ (a, b]. But, if x = a, there does not exist (c, d) such
that x ∈ (c, d) ⊆ [a, b). Thus, (2) fails, and the standard topology on R is not finer
than the lower limit topology.

From this we have the following Corollary:
Corollary 2. The interval [a, b) cannot be written as an arbitrary union of open
intervals.

Proof. If this were true, than the basis of open intervals (a, b) would be the same
as the basis of all [a, b), which we know to not be true.

Example. The topologyRk is generated by the basis B = {(a, b)|a, b ∈ R, a < b} or {(a, b)−
K|a, b ∈ R, a < b} where K =

∪
n≥1

1
n
. It can be shown that Rl ̸⊇ Rk and Rk ̸⊇ Rl. This

won't be worked out in class, but can be done at home.

2.2 Subbases

Definition. A Subbasis of X is a collection of subsets of X whose union is X.
Example. Let X = R, C = {(−n, n)|n ∈ N} is a subbasis since the union

∪
S∈C S =∪

n∈N(−n, n) = R. Thus, C is a subbasis of X. Thanks to this fact, we know that BC
is a basis for a topology on X.

Proof. We say that BC is the set of all finite intersections of elements of C = {c1 ∩
... ∩ cn|c1, ...cn ∈ C, n ∈ N}. We need to now show that each x ∈ X is contained in
some B ∈ B. To see this, first note that C ⊆ BC. Secondly, since , since

∪
S∈C S = X,

we know that for any x ∈ X, x ∈ S for some S ∈ C. Thus, x ∈ S ∈ C ∈ BC, so x ∈ S
for some S ∈ BC.

The second thing to check is if B1, B2 ∈ B and x ∈ B1∩B2 there exists some B3 such
that x ∈ B3 ⊆ B1 ∩ B2. By definition, B1 = c1 ∩ ... ∩ cn and B2 = d1 ∩ ... ∩ dm where
ci, dj ∈ C. So, let x ∈ c1 ∩ ... ∩ cn ∩ d1 ∩ ... ∩ dm ⊆ B1 ∩B2, i.e., let B3 = B1 ∩B2.

it turns out that this subbasis is actually a basis. Does this subbasis generate the
standard topology on R? It turns out that if x ∈ (−n, n), there exists (a, b) such

15



CHAPTER 2. NOTIONS OF TOPOLOGY

( )
1 2

x

that x ∈ (a, b) ⊆ (−n, n). But, if x ∈ (a, b), there may not exist n ∈ N such that
x ∈ (−n, n) ⊆ (a, b)!

This tells us that the standard topology is finer than the topology generated by
this basis, and is not finer than the standard topology (this sounds redundant,
but it can happen when two basis are the same). Thus the standard topology is
`strictly finer' than this topology.
Definition. A simply ordered set is a set X with a binary relation `<' such that :

1. Either x < y or y < x For all x, y

2. It is never the case that x < x (it is non-reflexive)

3. If x < y, y < z, x < z.

One example is (R, <), and a non-example is (R,≤).
Example. Looking at R× R, a× b < c× b if a = c, or if b < d.

For any simply ordered set (X,<) we can define

(a, b) = {x ∈ X|a < x < b} (a, b] = {x ∈ X|a < x < b or x = b} [a, b] = {x ∈ X|a ≤ x ≤ b}

Looking back at our example R× R, if we take a point a× b and take a point c× d,
the set S = {w × x|a× b < w × z < c× d}, we have:

a× b

c× d

b

d

a c

S = {w × z|a× b < w × z < c× d}

And we can show that the collection of open intervals in X need not be a basis or
a subbasis. For example, X = {0, 1}, 0 < 1 but (0, 1) = ∅. However, if you allow your

16



2.3. PRODUCTS OF TOPOLOGICAL SPACES

intervals to be closed, where (X,< ) is a simply ordered set, then B = {(a, b)|a, b ∈
X} ∪ {(a, b]|a, b ∈ X} ∪ {[a, b)|a, b ∈ X} is a basis for a topology on X. This basis
generates what is called the order topology.
Example. We can consider the order topology [0, 1] with < . The open sets by our
theorem are arbitrary unions of intervals of the form (a, b), (c, d], [e, f). Another
example would be to take R using the relation < which has an order topology
(since R is an ordered set). In this case, it turns out that this topology is strictly
finer than the standard topology, since the standard topology does not have half-
closed intervals as open sets. This follows from noticing that given a ∈ [a, b), there
does not exist some interval (c, d) such that a ∈ (c, d) ⊆ [a, b). So, the standard
topology is not finer than the order topology.
Definition. A Ray (a,∞) = {x ∈ X|a < x}. Similarly, we could have defined this to
have been (∞, a) = {x ∈ X|x < a} We also have:

[a,∞) = {x ∈ X|x ≤ x} (∞, a] = {x ∈ X|x ≤ a}
And these are a subbasis. Does this generate the order topology? This is an open
question for the class.

2.3 Products of Topological Spaces

Definition. Let (X, T ) and (Y, T ′) be topological spaces. The product topology one
the set X × Y is the topology whose basis is:

B = {U × V | U open in X
V open in Y

}

The first question to ask is if x× b ∈ X×Y . Well, X open in X, Y open in Y , so a× b
is contained in some element on B. Secondly, we can check what the following
picture illustrates:

B1 = U1 × V1

B1 = U2 × V2

B3 = (U1 ∩ U2)× (V1 ∩ V2)

Note however, that B is not closed under union. This is simply because the union
of two rectangles is often not a rectangle. The above picture illustrates that fact
plainly.

17



CHAPTER 2. NOTIONS OF TOPOLOGY

We have the following maps:

X × Y
π2

##GGGGGGGGG
π1

{{vv
vv

vvv
vv

X Y

And the set S = {π−1
1 (U)|U is open in X}∪{π−1

2 (V )|V is open in Y } is a subbasis for
the product topology on X × Y . This is because π−1

1 (X) ∈ S and π−1
2 (X) = X × Y ,

so S is a subbasis. Notice also that

π−1
1 (U){(a, b) ∈ X × Y |π1(a, b) ∈ U}

Definition. Let (X, T ) be a (topological) space. If Y is a subset of X, then the
subspace topology on Y is given by:

TY = {U ∩ Y |U is open in X}

We have the following picture:

X

Y

Z

Z = U ∩ Y , open in X.

U

Example. Let X = R with the standard topology. Y = [0, 1]. Is [0, 1
2
] open in Y in

the subspace topology? Well, this would have to mean that there is some interval
that when we intersect it with Y , we get this set. And we have such an interval:

[0,
1

2
) = (−1,

1

2
) ∩ Y

18



2.3. PRODUCTS OF TOPOLOGICAL SPACES

Notice that if 0 < a < b < 1, then (a, b) is open in [0, 1] = Y , since

(a, b) = (a, b) ∩ Y

Similarly, (ϵ, 1] is open in Y for all 0 < ϵ < 1.

what this essentially says if that if you're given a topological space X with a sub-
space Y , you can put a topology on Y .

(X, T )

Y

we can use the following interesting formulas to help show this:

∅ = ∅ ∩ Y∪
α

(Uα ∩ Y ) =

(∪
α

Uα

)
∩ Y

n∩
i=1

(Ui ∩ Y ) =

(
n∩

i=1

Ui

)
∩ Y

And we have the following properties of the subspace topology:

1. If T is generated by B, then TY = {B ∩ Y |B ∈ B}, which is a basis for the
subspace topology TY .

2. If V ⊆ Y ⊆ X, Y is open in X and V is open in Y , then V is V is open in X
since V = U ∩ Y , which are both open inX.

3. (See Picture)

Our Picture Can demonstrate what were were interested in talking about. More
will follow this in our next class.

19



CHAPTER 2. NOTIONS OF TOPOLOGY

W

Y

(Z, T ′)

(X, T )

Y ×W

2.4 The Subspace Topology, Continued

If Y ⊆ X, where you have (Xan ordered set,order topology) Then (Y,order topology)
and (Y, subspace topology), which are not the same in general.
Example. Let Y = [0, 1] ∪ {2}, and let X = R, an ordered set. Notice that

{2} = (
3

2
,
5

2
) ∩ Y

So, {2} is open in Y , the subspace topology, and in the order topology. However,
if you removed the element {1} from Y , then (this example is in the book on page
83-91) somewhere on page 85 i think.
Definition. Let X, T ) be a topological space. A subset C ⊆ X is called closed if and
only if X − C ∈ T , i.e., X − C is open.
Example. Let X = R be the standard topology. Given [a.b],

R− [a, b] = (−∞, a) ∪ (b,∞)

notice that both (−∞, a) and (b,∞) are both open sets, so thus their union is also
open. This tells us that [a, b] is closed in R.
Example. Take R, and look at C = {11}. C is closed, since its compliment R−C is
open under the same argument as above.
Example. Take any set X with the discrete topology. Unusually, every subset of
X is closed, since the complements are all open.
Example. We also have examples of sets that are both closed and open. For ex-
ample, take

Y ⊆ R, Y = [2, 3)

Its not very hard to show that [2, 3) is not open, and that (−∞, 2)∪ [3,∞) is also not
open. This tells us that [2, 3) is not closed in R.
Example. Given R×R with the product topology, closed sets look like the follow-
ing:
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2.4. THE SUBSPACE TOPOLOGY, CONTINUED

c

c c

R×R

Example. Now look at X = [0, 1] ∪ (2, 3) as a subspace of R. Since

[0, 1] = (−1,
3

2
) ∩X

we know that [0, 1] is open in X and is closed in R, Alternatively,

(2, 3) = (2, 3) ∩X

So (2, 3) is open in X and is open in R. However, notice that

[0, 1] is closed in X since : X − [0, 1] = (2, 3)

is open in X. Similarly, (2, 3) must be closed in X since

X − (2, 3) = [0, 1]

which is open in X.

We have the following Properties of closed sets, where (X, T ):

1. X and ∅ are closed.

2. An arbitrary intersection of closed sets is closed.

3. A finite union of closed sets is closed.

A few of these follow from DeMorgan's laws,

n∪
i=1

(X − Ui) = X =
n∩

i=1

Ui

∩
α

(X − Uα) = X −
∪
α

Uα

(3) uses the one on the left, and the one on the right is used for (2).
Definition. Given some topological space X and a subspace Y of X, and A ⊆ Y ,
we say that A is closed in Y if and only if A is a closed subset of Y in the subspace
topology.
Claim. Suppose that A ⊆ Y ⊆ X where Y is a subspace, X is a space. Then, A is
closed in Y if and only if A = C ∩ Y for some C closed in X.
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Proof. A is closed in Y if and only if we can write A as A = C∩Y for some C closed
in X. And well, A = C ∩Y for some C closed in X if and only if A = (X −U)∩Y for
some U open in X if and only if Y −A = Y ∩ Y for some U open in X if and only if
Y − A is open if and only if A is closed. This looks like the following picture:

X

A

U

If A ⊆ X, where X is a space, we have define the Interior and the Closure of
A.
Definition.

Int(A) =
∪

U open U⊆A

Closure(A) = A =
∩

closed A⊆C

C

Notice that
Int(A) ⊆ A ⊆ A

Also, if A is open, Int(A) = A. Similarly, if A is closed, A = Closure(A). Also notice
that the interior of A is always open, and the closure of A is always closed.
Example. Let A = [0, 1] ⊆ R. A is closed, so A = A, and Int(A) = (0, 1).
Example. Let A = {1

2
, 1
3
, 1
4
, ...} ⊆ R. A is not closed since R − A is not open: this

is true since for 0 ∈ R − A and any a, b such that 0 ∈ (a, b), we have (a, b) ̸⊆ R − A.
Notice that A is a countable union of closed sets and not closed. Also, notice that
if you took

∞∪
n=1

(− 1

n
,
1

n
) = {0}

we see that we have a countable intersection of open sets that is not open. Simi-
larly,

∞∪
n=1

(1, 2 +
1

n
) = (1, 2]

is neither closed or open.
Lemma 3. Given Y , a subspace of X< the closure of A in Y 4 is equal to the closure
of A in X.
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Proof. We know that

∩
C closed in Y, A ⊆ C

C =
∩

D closed in X, D ⊆ Y ∩ Y

(D∩Y ) =

( ∪
A⊆D

D

)∩
Y = closure of A in X

∩
Y

Definition. We say that A,B ⊆ X intersect if A ∩ B ̸= ∅. We also say that Given a
topological space X, and x ∈ X, a neighborhood is an open set U in X such that
x ∈ U .
Theorem 4. Let A ⊆ X, x ∈ A if and only if every neighborhood of x intersects A.

Proof. It is enough to show that x /∈ A if and only if there exists a neighborhood
U of x such that U ∩ A = ∅. Firstly, notice that if x /∈ A, then x ∈ X − A, and X − A
is open. Then, let U = X − A, then x ∈ U and we can see that

U
∩

A = (X − A)
∩

A

Working in the other direction, If there exists a neighborhood U of x such that
U ∩ A = ∅, then X − U is closed since U is open and

X − U ⊇ A, so X − U ⊇ A =
∩

C closed, C ⊇ A

C

and since x ∈ I, x /∈ X − U so Xx /∈ X − U ⊇ A so x /∈ A.

Roughly, if the topology for X has the basis B, x ∈ A if and only if every basis
elements B ∈ B such that x ∈ B satisfied B ∩ A ̸= ∅.

2.5 Limit Points

Let A ⊆ X. A point x ∈ X is a limit point of A if every neighborhood U of x
intersects A in some point other than A.
Definition. If A ⊆ X, then

A′ = {x ∈ X| x is a limit point of A}

is called the set of limit points of A in X.
Example. Let X = R, and let A = (0, 1). It is clear that 1

2
is not a limit point, but 0, 1

are limit points of A in X.
A′ = {x ∈ R|0 ≤ x ≤ 1}

Example. Let X = R and let A = {1, 1
2
, 1
3
, 1
4
, ...}We can see that 1

n
is not a limit point,

0 is a limit point, so we say that A′ = {0}.
Claim. A = A

∪
A′.
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X

A

x

U

Proof. We know that A ⊆ A, so we must show that A ⊇ A′. Let x ∈ A′: then every
neighborhood U of x intersects A in a point other thanX, so every neighborhood U
of X intersects A, so x ∈ A by our last theorem. It remains to show that A ⊆ A

∪
A′.

So, let x ∈ A. If x ∈ A, we're done, so assume that x /∈ A. We must show that x ∈ A′.
Since x ∈ A, every neighborhood U of x intersects A, i.e., there exists a y ∈ U ∩ A,
and x ∈ U . But, since x /∈ A, we know that y ̸= x. This tells us that x ∈ A′.

Corollary 5. A is closed if and only if A′ ⊆ A.

Proof.
A = A ∪ A6′

If A′ ⊆ A then A′ = A so A is closed. If A is closed, A = A so A = A = A′ ∪ A so
A′ ⊆ A. Sets are closed if they contain their limit points.

2.6 Hausdorff Spaces

Definition. A space X is Hausdorff if for all x, y ∈ X there exists neighborhoods
U of x and V of y such that U ∩ V = ∅.
Example. Rn is Hausdorff for all n. A non-example would be R under the finite-
compliment topology.
Definition. A sequence of points in a space xn ∈ X,n ∈ N is said to converge
to x if and only if for every neighborhood U of x, there exists N ∈ N such that
n > N ⇒ xn ∈ U .
Claim. If X is Hausdorff and xn → x and xn → y, then x = y.

Proof. Suppose that x ̸= y. Then, there exist neighborhoods U of x and V of y such
that U ∩B = ∅. This follows from X being Hausdorff. In particular, if xn → x, then
for n sufficiently large(n ≥ N), xn is in U . However, since U ∩ V = ∅, so n ≥ N ,
xn /∈ V . This tells us that xn does not converge to y, and this is a contradiction.
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2.7. CONTINUITY

Example. Let X have the indiscreet topology, which means T ={∅, X}. In this
space, every sequence converges to every point. Also notice that this space is
highly non-Hausdorff.

We have the following properties:

1. A subspace of a Hausdorff space is Hausdorff.

2. A product of two Hausdorff spaces is Hausdorff

2.7 Continuity

Definition. Let X, Y be spaces. A function f : X → Y is called continuous if and
only if the inverse image of an open set is open. More formally, if V is open in Y ,
then f−1(V ) is open in X.

X Y

f−1(V )
V

f

Figure 2.1: The Picture for Continuity

It turns out that this actually agrees with the usual notion of continuity. Recall
that if you have a function

f : R → R

is called ϵ− δ continuous if for all ϵ > 0 there exists some δ > 0 such that if

|x− x0| < δ then |f(x)− f(x0)| < ϵ

The condition in this definition is true for all open sets V if it is true for all basis
elements. This follows from the fact from set theory that the inverse image of a
union (or an intersection, for that matter) is the union of the inverse images (or the
intersections). We will show that ϵ− δ continuity at all points implies topological
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continuity. To show this, let V be open in Rn , and we'll try to show that f−1(V ) is
open.

Since V is open, we can chose for each y ∈ V an interval Iy ⊆ V and with y ∈ Iy.
This interval Ix has some radius ϵ. Let x ∈ f−1(y), so x ∈ f−1(V ), and since f is
ϵ-δ continuous at x, we can find δ > 0 so that the interval Jx containing x and or
radius δ satisfies the condition that f(Jx) is contained in Iy. This then tells us that
Jx ⊆ f−1(Iy). We should notice the following:

f−1(V ) = f−1

(∪
y∈V

Iy

)
=
∪
y∈Y

f−1(Iy) ⊇
∪
y∈V

Jx

also, for every x ∈ f−1(V ), x ∈ Jx so x ∈
∪

x∈f−1(V ) Jx so f−1(V ) =
∪

x∈f−1(V ) JX and
since Jx are open intervals, we can see that f−1(V ) is open.
Fact. The definition of continuity agrees with those you're used to for

f : R → R, f : Rn → Rm, etc.

Example. Let X, Y be spaces. Suppose that f : X → Y is a constant function. In
other words, f(x) = y0 ∈ Y for all x ∈ X. Let V be open in Y . We now have two
cases, either y ∈ V or it isn't. If y ∈ V , then f−1(y0) = X, so f−1(V ) = X which is
open in X. Now if y0 /∈ V , then f−1(V ) = ∅, which is trivially open in X. This shows
that f is continuous.
Example. Let X be a space. Every space X has the canonical identity function,
id : X → X that assigns to every x ∈ X the element x ∈ X. Thus, f−1(V ) = V , and if
V is open, it is clear that f−1(V ) is open. So, the identity function is continuous.
Example. Let X,Y be topological spaces where X has the discrete topology. Any
function f : X → Y must be continuous, since f−1(V ) corresponds to some set
in X, which by definition is open. Thus, any function from a topological space
with the discrete topology to another topological space is continuous A similar
situation occurs when you take a function from any topological space to a space
with the indiscreet topology.
Theorem 6. Let f : X → Y . The following are equivelant:

1. f is continuous

2. If A ⊆ X, then f(A) ⊆ f(A)

3. If C is closed in Y , then f−1(C) is closed in X.

4. For every x ∈ X and V open in Y such that f(x) ∈ V , there is a U open in X
such that x ∈ I and f(U) ⊆ V .

Proof.

(1) ⇒ (2) Let x ∈ A, we want to show that f(x) ∈ f(A). Let V be open in Y such that V
contains f(x). Our goal is to show that V intersects f(A). Recall that y ∈ B
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2.7. CONTINUITY

S2

Figure 2.2: f : R → S2 ⊆ R3 is an example of a continuous path from R to the
2-Sphere

if and only if every neighborhood of Y intersects B. By (1), f−1(V ) is open
in X. Since x ∈ f−1(V ), and x ∈ A, we know that F−1(V ) intersects A. So for
example, if y ∈ f−1(V )∩A, we know that f(y) ∈ V ∩f(A). This proves our goal.

(2) ⇒ (3) Let C be closed in Y . It is enough to show that f−1(C) = f−1(C). So it suffices
to show that f−1(C) ⊆ f−1(C). We have the following fact:

f(f−1(C)) ⊆ C

taking the closures of both sides and using (2), we have:

f(f−1(C)) ⊆ f(f−1(C)) ⊆ C = C

this tells us that
f−1(C) ⊆ f−1(C)

So we're done

(3) ⇒ (1) Let V be open in Y . Then, C = Y − V is closed in Y . So, by (3), f−1(C) =
f−1(Y )− f−1(V ) = x− f−1(V ) is closed in X. So, f−1(V ) is open.

(1) ⇒ (4) Given x ∈ X, V open in Y , with f(x) ∈ V , we must find U open in X such that
f(U) ⊆ V . Let U = f−1(V ), which is open by (1), and f(U) = f(f−1(V )) ⊆ V .

(4) ⇒ (1) Let V be open in Y . Show that f−1(V ) is open in X. From (4), for each x ∈
f−1(V ) there is an open set Ux with x ∈ Ux such that f(Ux) ⊆ V . Notice that if
U is open, it is a union of open sets. And, f(Ux) ⊆ V for all x so Ux ⊆ f−1(V )
for all x, so

U =
∪

x∈f−1(V )

⊆ f−1
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But f−1(V ) ⊆ U since if x ∈ f−1(v) then x ∈ Ux ⊆ U . So, U = f−1(V ) is open.

Definition. Let X and Y be spaces. A function f : X → Y is called a homeomor-
phism if and only if the following are fulfilled:

1. f is a bijection

2. f is continuous

3. f−1 is continuous

We say X and Y are homeomorphic if there exists some function f from X → Y
that satisfies these conditions.
Example. (a, b) is always homeomorphic to (c, d)
Corollary 7. Let L be a linear homomorphism from (a, b) to (c, d). It turns out that
any two open intervals are homeomorphic. It also turns out that any open interval
is homeomorphic to R. It turns out that homeomorphisms are composable.
Definition. And imbedding1 is an injection (1− 1) f : X → Y such that

1. f is continuous

2. f : X → Im(f) ⊆ Y is therefore a bijection, and we require that this function
f : X → Im(f) is a homeomorphism.

So (1) holds and f−1 : Im(f) → X is continous.
Example. Show that f(t) = (t, sin(t)) (so naturally, f : R → R) is an embedding.

If we have:

f : X → A

g : X → B

then

(f × g) : X → A×B

(f × g)(x) = (f(x), g(x))

Claim. f × g is continuous if and only if f and g are both continuous.

Proof.
A×B

π1

{{ww
ww

ww
ww

w
π2

##GG
GG

GG
GG

G

A B

1`embedding' and `imbedding' will be used interchangeably, since Professor Wilson uses both,
and Wikipedia tells me they are equivalent.
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Where π1(a, b) = a and π2(a, b) = b. Recall that π1, π2 are continuous. Notice that

π1 ◦ (f × g)(a, b) = f(a)

so,
f = π1 ◦ (f × g)

thus, if f×g is continuous, then so is f . Similarly, g = π2◦(f×g) so g is continuous.
In the other direction, suppose that f, g are continuous. Let U×V be a basis element
for A×B: it is enough to show that (f × g)−1(U × V ) is open. We can see that:

(f × g)−1(U × V ) = f−1(U) ∩ g−1(V ) ⊂ X

and since f−1(U) and g−1(V ) are open, we know that (f × g)−1(U ×V )must be open,
since it is the intersection of two open sets.

The `bad news' is that there is no nice condition for checking when a function
f : X × Y → Z is continuous.
Example. Suppose you have

f : R× R → R

f(x, y) =

{ xy
x2+y2

x.y ̸= 0

0 x = y = 0

Let Xα be a collection of sets, where α ∈ J , where J is some arbitrary set called the
index set.
Definition. ∏

α∈J

Xα := {f : J →
∪

Xα | f(α) ∈ Xα}

Example. Suppose that J = {1, 2} and X1, X2 are sets, then

X1 ×X2 = {f : {1, 2} → X1 ∪X2 | f1 ∈ X1, f(2) ∈ X2}

so, you can think of (a, b) as being shorthand for f(1) = a, f(2) = b.
Example. Let J = N. X1, X2, ... are sets.∏

Xi = {f : N →
∪

Xi | f(i) ∈ Xi}

similarly as the above example, you can think of (a1, a2, ...) as being shorthand for

f(i) = ai for all i

There are two natural ways to put a topology on
∏

α∈J Xα:
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1. The Box Topology

The idea is to take the topology generated by the basis consisting of the
collection:

B = {
∏
α∈J

Uα | Uα is open in Xα}

it isn't very difficult to check that this is a basis, and is roughly the same as
the proof for the product of two spaces.

2. The Product Topology

This topology is the topology generated by the following sub-basis2:

S = {π−1
β (Uβ) | Uβ is open in Xβ}

notice that there exist functions:

πβ(
∏
α∈J

Xα) → Xβ

So, suppose you fix some β. What is

π−1
β (Xβ)?

it turns out,
π−1
β (Xβ) =

∏
α∈J

Xα

So, S is a sub-basis. The basis generated by S is given by all finite intersec-
tions of elements of S:

BS = {π−1
β1
(Uβ1)

∩
...
∩

π−1
βk
(Uβk

)|βi ∈ J, Uβi
is open in Xβi

}

Example. Let J = N. Calculating the following:

π−1
β1
(Uβ1)

∩
...
∩

π−1βk
(Uβk

) ⊆ X1 ×X2 × ...×Xk × ...

= (X1×X2×...Uβ1×...×Xj×..)
∩

(X1×X2×...×Uβ2×...×Xj×...)
∩

...
∩

(X1×X2×...×Uβk
×...)

where each Uβi
is in the βth

i spot,

= X1 ×X2 × ...× Uβ1 × ..×X...×X × Uβk
× ...

So, an element of B is a subset ∏
α∈J

Yα

where Yα = Xα except for finitely many α ∈ J , and for these α, Yα can be any open
set Uα ⊆ Xα.

2Recall that a subbasis is a collection of subsets whose union is the entire space.
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The box topology generates a finer topology than the product topology, and if you
have a finite set for J , then notice that the restriction on the product topology is
sort of waived, and the topologies are the same.

Both the box and product topology on
∏

α∈J Xα have the following properties:

1. If Aα is a subspace of Xα for all α then
∏

α∈J Aα is a subspace of
∏

α∈J Xα

2. If Xα are Haudsdorff, for all α ∈ K, then
∏

α∈J Xα are Hausdorff.

3. If Aα ⊆ Xα, then ∏
Aα =

∏
Aα

Claim. Let f : A →
∏

α∈J Xα, f(a) =
∏

α∈J(fα(a)) Our claim is now that giving
∏

α∈J
the product topology, then f is continuous if and only if fα is continuous for all
α ∈ J .
Remark. It turns out that this is actually false for the box topology, and we have
many examples of this. One such examples would be:

f : R →
∏
n∈N

R f(x) = (x, x, x, x, ....)

Consider the following:

U = (−1, 1)× (−1

2
,
1

2
)× (−1

3
,
1

3
)× .. =

∏
n∈N

(− 1

n
,
1

n
) ⊆

∏
n∈N

R

Let us calculate f−1 of U

f−1(U) = {x ∈ R | f(x) ∈ U} = {x ∈ R | (x, x, x, ....)

is contained in (−1, 1)× (−1

2
,
1

2
)× (−1

3
,
1

3
)× ..}

and it turns out, that this set is {0}. This is not an open set in R, since it does not
contain an interval and is nonempty. Thus, f is not continuous.

Proof. If f is continuous, then
fβ = πβ ◦ f

where
πβ :

∏
α inJ

Xα → Xβ πβ({Xα}) = Xβ if U is open in Xβ

Notice that πβ is continuous if U is open in Xβ . Then π−1
β (U) is open in

∏
α∈J Xα by

definition. Now, if f is continuous, then fβ = πβ ◦ f is continuous. Suppose that fα
is continuous for all α. We want to show that

f : A →
∏
α∈J

Xα is continuous
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It is enough to show that f−1 of a subbasis element. We know that the elements
of the subbasis are the collection:

{π−1
β (U) | U is open in X}

then, looking at:
f−1(π−1

β (U)) = f−1
β (U)

which is open by assumption, since we assumed fβ is continuous.

2.8 Metric Spaces

Definition. A metric (or "distance function'') on a set X is a function:

d : X ×X → R

such that:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z. This is the triangle inequality.

Fact.
Definition. If X has metric d, then the "ϵ-ball'' centered at some x ∈ X is by defi-
nition:

B(x, ϵ) = {y ∈ X|d(x, y) < ϵ}
This looks sort of like the following, where y1, y2 are in the ϵ-ball centered around
x:

x ϵ

y1

y2

Given some X with a metric d, the set of all ϵ-balls centered at any point form a
basis for a topology.

Proof. Given x ∈ X, x ∈ Bα(x, .17), since x(x, x) = 0. Now, given some z ∈ B(x1, ϵ1) ∩
B(x2, ϵ2) it can be shown that there exists a new ball B(x, β) such that it is properly
contained in B(x1, ϵ1) ∩B(x2, ϵ2)
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Example. R is an example of a metric space, where

d(x, y) = |x− y|

is its metric. The balls
Bϵ = {y ∈ R | |x− y| < ϵ}

and this is exactly:
= {y ∈ R | − ϵ < x− y < ϵ}

= {y ∈ R | x− ϵ < y < x+ ϵ}

In other words, the ϵ-balls in this space are open intervals.
Definition. A space X is metrizable if there exists a metric d on X such that the
induced metric topology is the same as the given topology.

Notice that R with the standard topology is metrizable.

Let

d(x, y) =

{
d(x, y) if d(x, y) < 1

L if d(x, y) ≥ 1

so,
Bd = {y ∈ X | d(x, y) < 2}

= {y ∈ X | min{d(x, y), 1} < 2} = {y ∈ X} = X

so the ϵ-balls for d are either ϵ-balls for d (if ϵ ≤ 1) or all of X.

If X has two metrics, d1, d2, then the topology for d1 is finer than the topology for
d2 if and only if for every x ∈ X, ϵ > 0, there is a δ > 0 so that

x ∈ Bd1(x, δ) ⊆ Bd2(x, ϵ)

So, d and d generate the same topology since this condition holds in showing that
the topology of d is finer than the topology of d, and vice-versa.
Example. On Rn, the metric is:

d(x, y) = max1≤i≤1{|xi − yi}

this is called the square metric. Notice that when n = 1, the square metric is just
the Euclidean metric. When n = 2, we have the following picture:

B(X, 1) = {y ∈ R2 | max{|x1 − y1|, |x2 − y2| < 1}

and the following picture (on the next page) for when n = 3:
Example. Let α ∈ R, α > 0.

dα =
(∑

|x1 − yi|α
)1/α
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x

1

1

x

Figure 2.3: The picture for when n = 3 of the square metric. The point x is at the
center of the box.

we can check this is a metric. Notice that d2, where α = 2, is the Euclidean metric.
When α = 1, we see that

d(x, y) =
n∑

x=1

|xi − yi|

and when n = 2, we have the following picture:

we can put these in a family, can draw them all when n = 2 as alpha ranges, and
you eventually get a square with rounded edges as alpha gets really large, like the
following: The limit as α → ∞, the ball Bα(0, 1) becomes the unit ball for the square
metric. The claim is that the vector (1α + 1α)1/α = 21/α → 1 as α → ∞.

While this may seem confusing, it turns out that these all actually induce the same
topology on Rn.

Proof. Recall that the topology induced by d′ is finer than the topology induced by
d if and only if for all Bd(x, ϵ) and y ∈ Bd(x, ϵ) there exists some ϵ′ such that

y ∈ Bd′(y, ϵ
′) ⊆ Bd(x, ϵ)

Let us first show that the square is finer than the Euclidean metric. WE can always
pick ϵ′ = ϵ − d(x, y), and allows our square to be inside of any euclidean ϵ-ball.
Alternatively, given some ϵ for a ϵ-ball in the square metric, we can let

ϵ′ = ϵ− d′(d, y)
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α = 1

n = 2

α = ∞

Figure 2.4: The following picture is an illustration of the ϵ-balls for the square
metric when n = 2 and α is getting very large. Starting with α = 1, we have a
rotated square, and as α gets larger, the square eventually becomes what we call
the `unit ϵ-ball for the square metric'.

Fact. The square metric and the Euclidean metric induce the same topology on
Rn as the product topology. the idea follows from given some ϵ-ball in the square
metric, first off, notice that it is a square. So, it is open in the product topol-
ogy. Conversely, given a basis element in the product topology, notice that we
essentially have a rectangular box containing some point y. From what we know
about the square metric, we can find a basis element in the square metric topology
containing y and contained in the box.
Corollary 8. Rn is metrizable for all n.

Consider
∏

α∈J R. Recall that this has the box topology and the product topology.
Try now to make the definition of d(x, y) for x, y ∈

∏
α∈J R. It turns out this is quite

hard, since our lack of restrictions on the set J make this difficult- for example J
might be come uncountable set, and we may accidentally define our metric to be
an infinite set of non-zero numbers that doesn't converge. Suppose we tried to
say:

d(x, y) = max{|xα − yα}

this almost works, but since it may not converge to a real number as α varies, it
doesn't always work.

Another candidate is the following:

d(x, y) = supα∈J {min{∥xα − yα|}, 1}

where the `sup' represents the supremum, the least upper bound. In our case,
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Bd(x, ϵ)

Bd′(y, ϵ
′)

Figure 2.5: Here, d′ is finer than d.

ϵ

ϵ

xx

ϵ′ ϵ′

Figure 2.6: This picture illustrates that the Square metric is finer than the Eu-
clidean metric, and that the Euclidean metric is finer than the Square metric.

since the numbers are all bounded by the 1, this definition holds. However, is this
a metric? Well, we have the following:

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0 is true, since d(x, y) = 0 if and only if x = y.

3. d(x, z) = supα∈J{min{|xα − zα|, 1}} and since we know that

|xα − zα| = |xα − yα + yα − zα| ≤ |xα − yα|+ |yα − zα|

so, the min{|xα − yα|, 1} ≤ min{|xα − zα|, 1} + min{|yα − zα, 1}, so taking the
supremum,

d(x, z) ≤ supα∈J{min{|xα − yα|, 1}}+ supα∈J{min{|yα − zα|, 1}}
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= d(x, y) + d(y, z)

so,
min{|xα − zα|, 1} ≤ min{|xα − yα|, 1}+min{|yα − zα|, 1}

and
supα∈J(Rα + Tα) ≤ supα∈JRα + supα∈JTα

Which leads nicely into the following question: What is B(x, 2) in
∏

α∈J R in the
uniform metric? It turns out that:

B(x, 2) = {y ∈
∏
α∈J

R | supα∈J{min{|xα − yα|, 1} < 2} =
∏
α∈K

R

Also notice that B(x, ϵ), lϵ < 1 in the uniform metric is all y ∈
∏

α∈J R such that

|xα − yα| < ϵ

so,

(
1

2
,
1

4
,
1

8
,
1

16
, ....) ∈ B(0,

1

2
)

Fact. The Box topology is finer than than the Uniform topology (where the Uni-
form topology is the topology generated by the Uniform metric) and the Uniform
topology is finer than the Product topology. In other words,

Box Topology ) Uniform Topology ) Product Topology

for J infinite. There is a nice proof of this fact in our book.

Fact. We have the following nice statements about metric spaces:

1. A subspace of a metric space is a metric space. For example Z ⊆ R where R
has the usual metric, is a metric space.

2. All metric spaces are Hausdorff.

Definition. We say f : X → Y is sequentially continuous if and only if for all
sequences xn → x, we have that f(xn) → f(x). Saying that xn → x means that
for every neighborhood U of x, there exists some N ∈ N such that n ≥ N implies
that xn ∈ U . Our claim is that if we left f : X → Y , if f is continuous, then f is
sequentially continuous. If X, Y are metrizable, the converse is also true.
Theorem 9. If f : X → Y is continuous, then f is sequentially continuous. The
converse is true if X, Y are metric spaces.

Proof.
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Proposition 10. If X, Y are metric spaces with dx, dy and f : X → Y , then f is
continuous if and only if for all x ∈ X, ϵ > 0 there exists δ > 0 such that

y ∈ Bdx(x, δ) ⇒ f(y) ∈ Bdy(f(x), ϵ)

f

ϵδ

The proof of this is that: if f is continuous, then

f−1(Bdy(f(x), ϵ))

is open in X. Since this is open in X, for any

f ∈ f−1(Bdy(f(x)ϵ)

there exists a basis element Bdx(x, δ) for some δ such that

x ∈ Bdx(x, δ) ⊆ f−1(Bdy(f(x), ϵ))

so y ∈ Bdx(x, δ), then
f(y) ∈ Bdy(f(x), ϵ)

working the other way, suppose that f satisfies the condition in our proposition.
Let V be open in Y . We need to show that f−1(V ) is open in X. For each f(X) ∈ V ,
pick some ϵ < 0 so that BdY (f(x), ϵ) ⊆ V , since V is open. By our proposition, there
exists some δ > 0 so that Bdy(x, δ) satisfies

f(BdY (x, δ)) ⊆ V

So, Bdx(x, δ) ⊆ f−1(V ). So for any x ∈ f−1(V ), there is a δ so that

x ∈ Bdx(x, δ) ⊆ f−1(V )
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so f−1(V ) is open. An equivalent way to state our proposition is that

f(Bdx(x, δ)) ⊆ Bxy(f(x), ϵ)

Lemma 11. Let x ∈ X, A ⊆ X. If there is a sequence of points xn ∈ A such that
xn → x, then the point x is in the closure of A, x ∈ A. The converse of this statement
holds if X is a metric space, or if X satisfies a different and weaker condition.

Proof. We can say that x− n → x means that for every neighborhood U of x, there
exists some natural number N ∈ N such that xn ∈ U for n > N . But, xn ∈ A for all
n. So, for any neighborhood U of x, xn ∈ U ∩ A for n ≥ N , so U intersects A, so
x ∈ A. Now suppose that X is a metric space. The converse of our statement is to
allow A ⊆ X, and to take x ∈ A. To say that x is in the closure of A is to say that
each neighborhood of x intersects x. For each n ∈ N, B(x, 1

n
) ∩ A ̸= ∅. So, we can

chose for each n ∈ N some

xn ∈ B(x,
1

n
⊆ U

Our claim is that xn → x, and its proof is that given a neighborhood U of x, chose
N so that

B(x,
1

m
) ⊆ B(x,

1

N
) ⊆ U

for M ≥ N . So, xn ∈ B(X, 1
n
) for all n ≥ M . This shows that xn → x.

It turns out that we can add the 1st countability condition: For every x ∈ X
there is a countable collection of basis elements Un for n ∈ N so that for any
neighborhood U of x, there exists some N ∈ N such that

Un ⊆ U for all n > N

Theorem 12. Let f : X → Y , if f is continuous then f is sequentially continuous.
The converse is true if X, Y are metric spaces.

Proof. Suppose that xn → x. We need to show that f(xn) → f(x). Let V be a
neighborhood of f(x). We know that f−1(V ) is open, and contains x. Since xn → x,
we know xn ∈ f−1(V ) for all n > N for some N ∈ N, then f(xn) ∈ V for all n > N .
This shows that f(xn) → f(x).

Suppose that xn → x implies that f(xn) → f(x), where X, Y are metric spaces. We
want to show that f is continuous. We can do this by showing:

f(A) ⊆ f(A) for all A ⊆ X

Suppose that x ∈ A. We want to show that f(x) ∈ f(A). Since x is in the closure
of A, by our lemma, we know that there exists some sequence xn in A such that
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xn → x. Then, since f is sequentially continuous, you know that f(xn) → f(x).
Again by our lemma,

xn ∈ A so f(xn) ∈ A

and by our lemma
f(xn) → f(x) ⇒ f(x) ∈ f(A)

So f is continuous. So, is the converse true if X is 1st countable, Y is 1st countable,
or both?
Definition. Let fn : X → Y be a sequence of functions, where Y is a metric space.
We say that fn → f uniformly if for any ϵ > 0 there exists N ∈ N such that

dY (fn(x), f(x)) < ϵ

for all n > N and all x ∈ X.
Theorem 13. Let fn : X → Y where Y is a metric space. If each fn is continuous,
and fn → f uniformly, then f is continuous. I.e., `the uniform limit of continuous
functions is continuous'.
Remark. fn(x) = xn on the interval (0, 1] but the limit is not continuous- it has a
jump discontinuity.

The proof of this theorem is in our textbook.

2.9 Review of Sets

Recall that if X is a set, then the following are equivalent:

1. There exists a partition of X into disjoint subsets,

X = X1 ⊔X2 ⊔X2 ⊔ ... ⊔Xn ⊔ ... 3

2. There exists an equivalence relation on X, i.e. a relation, says x1 x2 satisfying
reflexive, symmetric, and transitive properties.

Definition. If X has an equivalence relation ⋆, then for any x ∈ X there exists a
set:

[x] = {y ∈ X|y ⋆ x}

called the equivalence class of x

The proof of our `the following are equivalent' claim can be done by showing that
the collection of equivalence classes for any equivalence relation define a partition
of X. Conversely, given a partition, you can construct an equivalence relation that
mimics the structure of your partition.

3notice that ⊔ denotes `disjoint union'
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Example. What are all of the equivalence classes on R, where the relation ismod 1?
Well, it looks like the following:

{[x] | 0 ≤ x < 1}

Suppose that (X, T ) is a space. Suppose the set X has an equivalence relation ⋆ on
it. Let X/⋆ be the set of equivalence classes on X. Well, we have the map:

q : X → X/ ⋆ x → [x]

Is there a topology on this set X/⋆ such that this map q is continuous? The answer
is yes: we can define a topology onX/⋆ so that U ⊆ X/⋆ is open if and only if q−1(U)
is open in X. This is not the unique topology on X/⋆ making q continuous.
Claim. There is a unique topology on X/⋆ such that q satisfies the following: U is
open in X/⋆ if and only if q−1(U) is open. Such maps q that satisfy this property
are called quotient maps.

Proof.

Definition. More formally, q : X → Y is called a quotient map if V is open in Y if
and only if q−1(V ) is open in X.

Let T ′ = {U ⊆ X/⋆ | q−1(U) is open in X}. This is a topology on X/⋆, since we have
the following:

1. q−1(∅) = ∅, q−1(X/⋆) = X, so ∅, X/⋆ ∈ T ′.

2. q−1(
∪

α Uα) =
∪

α q
−1(Uα)

3. q−1(
∩n

i=1 Ui) =
∩n

i=1 q
−1(Ui)

These can all be proven, though I have omitted them.

2.10 Connectedness

Definition. A space X is called disconnected if there exist non-empty, disjoint
open sets U, V such that X = U ∪ V .
Example. Consider X = [0, 1] ∪ [2, 3) ⊆ R. Notice that [0, 1] is open in X, and non-
empty. Similarly, [2, 3) is open in X and open. These two sets are disjoint, and
since X is the union of these two sets, X is disconnected.

So, is the fact that [0, 1] = [0, 1
2
) ∪ [1

2
, 2] a proof that [0, 1] is disconnected? Well no,

since [1
2
, 1] is not open.

Lemma 14. If f : X → Y and f is continuous where X is connected, then

f(X) = Im(f)

is connected.
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Corollary 15. If X and Y are homeomorphic, then X is connected if and only if Y
is connected.
Fact. If there exists a homeomorphism f : X → Y then

f : {X} − x → Y − {f(x)}

is a homeomorphism.

So, if X −{ some point } is connected, and Y −{any point} is not connected, then
X and Y are not homeomorphic.

We have the following properties:

1. ∪Aα is connected if there exists p ∈ ∩Aα and each Aα is connected.

2. If A is connected and A ⊆ B ⊆ A then B is connected

3. If f : X → Y is connected and X is connected then f(X) is connected.

4. If X and Y are connected, then X × Y is connected.

Proof.

1. The idea is to suppose that you have some overlapping connected sets Aα,
then considering a point p in all their intersections, using the fact that each
set Aα is connected, you can show that ∪Aα is connected.

2. Left for Homework

3. Already discussed

4. Take the Cartesian product X×Y . Notice that a×Y, a ∈ X is connected since
it is homeomorphic to Y . Similarly, X × b, b ∈ Y is connected. Now taking
y ∈ Y ,

(X × y)
∪

(a× Y )

it is clear that this space is connected, since they have a point in common,
and they are both connected. Thus,

X × Y =
∪
y ∈Y

[(X × y) ∪ (a× Y )]

is connected, since all of these spaces are connected and contain the point
a × b. Thus by (1), X × Y is connected. By induction and (4), we know that a
finite Cartesian product X1 × ...×Xn is connected if each Xi is connected.
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2.10.1 The Connected-ness of R

Definition. A simply-ordered set (X,<) is called a linear continuum if and only
if:

1. Every non-empty bounded subset of X has a least upper bound

2. For all x, y ∈ X such that x < y there exists z ∈ X such that x < z < y.

Our prototypical example is (R, < ). A non example is (Z, < ). Similarly, a non
example is (Q, < ), which does not satisfy (2).
Claim. Let (X,< ) be a linear continuum. Every convex subset of X is connected.
Convex tells us that if you take a, b ∈ Y , then [a, b] ⊆ Y .

Proof. Suppose that Y = A ∪ B, where A,B are open, nonempty, and disjoint. So
there exists a ∈ A, b ∈ B, and we can consider:

A0 = [a, b] ∩ A B0 = A[a, b] ∩B

A0 is nonempty since a ∈ A0, and is bounded by b. So, A0 has a least upper bound,
which we will call c ≤ b. We'll show that c /∈ A0, but c ∈ [a, b] implies that c ∈ Y , so
Y ̸= A

∪
B.

Again by contradiction, if c ∈ B0 then since B0 is open, we can find an interval
(d, c] such that c ∈ (d, c] ⊆ B0. So, c is no the least upper bound, any x ∈ (d, c] is an
upper bound for A0 and x < c. This shows that c /∈ B0, and similarly if c ∈ A0, then
since A0 is open we can find [c, e) such that c ∈ [c, e) ⊆ A0. Then from the second
property of being a linear continuum, there exists y such that c < y < e. But then,
y ∈ A0, since [c, e) is contained in A0. Then c < y ∈ A0, so c is not an upper bound.
Thus we again arrive at a contradiction.

Corollary 16. R is connected, so [a, b] is connected, and [a,∞) is connected. So is
(a, b) connected? Well,

(a, b) =
∪
n

[a+
ϵ

n
, b− ϵ

n
]

So by a previous proposition, (a, b) is connected.
Theorem 17. Suppose that X is connected and Y is a simply ordered set. If f : X →
Y is continuous and f(X) ≤ r ≤ f(b), a, b ∈ X then there exists c ∈ X such that
f(c) = r.

Proof. We know that f(X) is connected. If there does not exist a c such that f(c) = r,
then r /∈ Im(f), i.e.,

Im(F ) =
[
(−∞, r)

∩
Im(f)

]∪[
(r,∞)

∩
Im(f)

]
Notice that this is a union of disjoint subsets of Im(f).
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2.11 Path Connectedness

Definition. A path in X is a continuous function

f : [a, b] → X

We say that a space X is path-connected if for all x, y ∈ X there exists a path f
such that f(a) = x, f(b) = y.

If X is path-connected, then X is connected.

Proof. If X is not connected, then you can write X as:

X = A
∪

B

where A,B are open, disjoint and non empty. Now picking some pint x ∈ A, y ∈ B,
if there were a function f : [a, b] → X such that f(a) = x, f(b) = y, then

[a, b] = f−1(X) = f−1(A)
∪

f−1(B)

where A,B are nonempty and disjoint. If f were continuous, than f−1(A) and
f−1(B) would be open, in which case [a, b] is not connected. So, f is not continuous.

2.12 Compactness

Definition. Let X be a space. An open covering of X is a collection {Uα} of open
sets in X such that

X =
∪
α

Uα

Definition. Let X be a space. We say X is compact if every open cover {Uα} of X
has a finite sub-cover, i.e., there is some collection U1, ..., Un ∈ {Uα} such that

X = U1

∪
U2

∪
...
∪

Un

Example. Suppose that X is a space consisting of finitely many points. Then, X
is compact.
Example. Take R. It turns out that by this definition, R is not compact. Let

Un = (n, n+ 2) n ∈ Z

Then {Un} is an open covering of R. However, the thing to notice is that n+1 ∈ Uk

if and only if k = n. Thus, if we throw out any one of these sets, we will not cover
the real line- implying that {Un} has no finite sub-cover.
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( )( )

21 3 4 5 6 7 8 9

( )( )( )( )

( )

Example.

A = {0}
∪

{ 1
n
| n ∈ N}

A is compact. If {Uα} is an open covering, then {0, } ∈ Uβ for some β. Then, 1
k
∈ Uβ

for all k > M , for some M . For each 1
j
/∈ Uβ, pick Uj such that 1

j
∈ Uj , so

{Uβ}
∪

{Uj} is a finite sub-cover of A

Example.

(0, 1)

Is not compact. Let Un =
(
1
n
, 1
)
where n ∈ N. then Un is open in A. Notice that

∞∪
n=1

Un = A

so thus, we have an open cover of A. We would like to now show that there is no
finite subcover for A. Given

Uk1 , Uk1 , ..., Uij

there exists some maximal integer km = max{k1, ...kj} such that

∪
Uki =

∪
Ukm = (

1

k
, 1) ̸= (0, 1)

so thus, we have no finite subcover for A. Similarly, (0, 1] and [0, 1) are not compact.
However, [0, 1] is compact, and this will be shown in a future class.
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2.13 Compactness of a Subspace

X

Y

Definition. A collection of open set {Uα} each open in X, is said to cover a sub-
space Y if and only if Y ⊆

∪
α Uα.

Proposition 18. Let X be a space. A subspace Y ⊆ X is compact if and only if every
collection of open sets in X that covers Y has a finite subcover.

Proof. V is open in Y if and only if V = U
∩
Y for some open set U in X. Suppose

that Y is compact. Let {Uα} be a collection of open sets in X that covers Y . Then,

Vα = Uα

∩
Y

is an open cover of Y . Y is then compact, and there then exist V1, V2, ...Vn that cover
Y . Then, U1, U2, ..Un open in X must cover Y . The other direction of this proof was
left as an exercise.

Theorem 19. Every closed subset of a compact space is compact.

Proof. Let C ⊆ X, where C is closed and X is compact. Let {Uα} be an open cover
of C.

Assume that Uα are open in X. Since C is closed, X − C is open in X, and

{Uα}
∪

{X − C}

is an open cover of X. X is compact, so there is a finite subcover of X. X is
compact, so there is a finite subcover which may not use X − C. If it does throw
it out, what remains is an open covering of C. Thus, C is compact.

Remark. (1, 2) ⊆ [0, 3], and notice that (1, 2) is open but not compact, and [0, 3] is
compact.
Theorem 20. A compact subset of a Hausdorff space is closed.
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X

C

X

C
X − C

x

y

Proof. Let C ⊆ X, where C is compact and X is Hausdorff. For each y ∈ C, pick
Uy, Vy, disjoint neighborhoods of x, y. C is compact, so there is a finite subcover
Vy1 ...Vyk of C. Then, consider neighborhoods Uy1 up to Uyk , which are open, and
contain x. We know that

x ∈
k∩

i=1

Yyi

is a finite intersection of open sets, and is open. Then see that

U =
k∩

i=1

Uyi ⊆ X − C

but

C ⊆
k∪

i=1

Vyi

and

Uyi

∩
Vyi = ∅ for i = 1, ..., k
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So if

z ∈
k∩

i=1

Uyi then z /∈ Vyi for i = 1, ..., k

so

z /∈
k∪

i=1

Vyi

and so, z /∈ C, i.e., z ∈ X − C.

Corollary 21. Non-closed subsets of Hausdorff spaces are not compact.
Proposition 22. If F : X → Y is continuous andX is compact then Im(f) is compact.
In other words, the continuous image of a compact set is compact.

Proof. Suppose that {Uα} is an open cover of Im(f). Then {f−1(Uα)} is an open
cover of X. X is compact, so it has a finite subcover {f−1(U1), ..., f

−1(Uk)}, so the
corresponding set {U1, .., Uk} is a finite subcover of Im(f). This tells us that the
image of f is compact.

Corollary 23. If f : X → Y is a homeomorphism and X is compact, then Y is
compact.
Proposition 24. LetX be an ordered set with the least upper bound property. Then,
every closed interval [a, b] is compact in the order topology.

Proof. Let [a, b] be an interval, a < b. Let C = {Uα} be an open cover of [a, b]. We now
aim to show that there is a finite subcover. If [a, b] = {a, b}, then we're done- there
exists a finite subcover. To continue this proof, we would like to use the following
lemma:

Lemma 25. Let x ∈ [a, b], x ̸= b, then there exists y such that

x < y ≤ b

and [x, y] can be covered by finitely many elements of C.

Proof.

Definition. The immediate successor of x (if it exists) is a element p such that
p > x and there is no q such that x < q < p.

We break this proof into two cases:

1. If x has an immediate successor: Let y be the immediate successor. Then,
[x, y] = {x, y}, and we can chose two sets covering this.

2. If x does not have an immediate successor: We can pick U ∈ C such that x ∈ U .
Since U is open, we can find:

[x, c) ⊆ (d, c) ⊆ U
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Pick y ∈ [x, c), then [x, y] ⊆ [x, c) ⊆ U . So, we can cover [x, y] by one element of
C.

Proceeding, let S = {y > x | y ∈ [a, b] and [a, y] can be covered by finitely many
elements of C}. Our first goal is to show that S is non-empty. Secondly, we would
like to show that the least upper bound of S is in S, and thirdly we would like to
show that this least upper bound is equal to b. In proving our first goal, we apply
the lemma where x = a, then there exists y ∈ [a, b] such that y ∈ S. In proving the
second, call the least upper bound of S `L', we know that it exists by what we
just proved. We want to show that L ∈ S, i.e., we need to show that [a, L] can be
covered by finitely many elements of C. Pick U ∈ C such that L ∈ U . Then there
exists a s such that

(d, L] ⊆ (d, e) ⊆ U ⊆ [a, b]

If L /∈ S, then there exists some element z ∈ (d, L] such that z ∈ S (since if not,
then d is a smaller upper bound for S). Since z ∈ S, [a, z] can be covered by finitely
many open sets. But, [z, L] ⊆ U so:

[a, L] = [a, z]
∩

[z, L]

can be covered by finitely many sets, so L ∈ S. Thirdly, we want to show that
L = b. Suppose that L < b. Applying the lemma to x = L gives us y > L such that
[L, y] can be covered by finitely many sets:

[a, y] = [a, L]
∪

[L, y]

L ∈ S, so we can cover the left most interval by finitely many sets, and [L, y] can
be covered by finitely many sets by our lemma. But y > L and y ∈ S, so L is not
the least upper bound, and we arrive at a contradiction.

Corollary 26. A closed interval [a, b] is compact in R
Fact. A product of compact space is compact in the product topology.
Corollary 27. A closed box in Rn is compact, i.e.,

[a1, b1]× ..× [an, bn]

is compact.
Corollary 28. [a, b] and (a, b) are not homeomorphic.
Theorem 29. Take Rn with the usual topology fromt he Euclidean metric. A subset
A ⊆ Rn is compact if and only if it is closed and bounded.
Definition. A subset A ⊆ Rn is called bounded if there exists M > 0 such that
d(x, y) ≤< M for all x, y ∈ A.

Proof. If A is compact then A is closed since Rn is Hausdorff.

Rn =
∪
N∈N

B(0, N)
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Notice that {Bd(0, N)} is an open cover of A, and since A is compact there exists a
finite subcover of A. So,

A ⊆ Bd(0,M)

for some M , so A is bounded.

Now suppose that A is closed and bounded. Then

A ⊆ Bd(0,M) ⊆ [−M,M ]n 4

A is a closed subset of a compact space, so A is compact.

Definition. We say X is limit-point compact if every infinite subset of X has a
limit point.
Proposition 30. We have the following for spaces:

Compactness ⇒ Limit Point Compactness

Proof. Let A ⊆ X, where X is a compact space. Suppose that A has no limit point.
Then for each a ∈ A, chose Ua such that Ua

∩
A = {a}. Then,

X = (X − A)
∪(∪

a∈A

Ua

)

is an open cover of X. So since X is compact, there must exist a finite subcover
of X. I.e., we can cover A with finitely man {Ua} a ∈ A, in which case A is finite.
The converse of this statement is false.

Definition. We say that X is sequentially compact if and only if every sequence in
X has a subsequence that converges.
Theorem 31. For metric spaces,

Compactness ⇒ Limit Point Compactness ⇒ Sequential Compactness ⇒ Compactness

Proof. Suppose that X is limit point compact. Let xn be a sequence in X. Con-
sider A = {xn}. If A is finite, then xn is eventually constant, and has a convergent
subsequence:

x1, x2, ..., xM = xM+1 = xM+2 = ..︸ ︷︷ ︸
this is a convergent subsequence

but if A is infinite, pick x to be a limit point of A. For each x ∈ N, chose

xnk
∈ B

(
x,

1

k

)
then xnk

is a subsequence that converges to x. This is shown by taking ϵ > 0, and
choosing N so that 1

N
< ϵ. Then xnk

∈ B(x, ϵ) for all k > N .

4the right hand side is the n-dimensional cube of side lengths 2M .
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ALGEBRAIC TOPOLOGY

3.1 The Fundamental Group

Given a space X, we would like to assign to it a piece of algebraic structured called
the fundamental group of that space. This has nice consequences: for example,
if we have a continuous map f : X → Y and we have their associated fundamental
groups, we end up with a group homomorphism f̂ from X → Y .
Definition. A homotopy between two spaces:

f1 : X → Y f1 : X → Y

is a function H : X → I → Y where I is [0, 1] 1 such that:

H(x, 0) = f1(x)

H(x, 1) = f2(x)

Definition. A path in X is a continuous function f : [0, 1] → X.
Definition. We say that two paths, f0, f1 : I → X are path homotopic if and only
if there exists a continuous function H : I × I → X such that:

H(t, 0) = f0(t)

H(t, 1) = f1(t)

H(0, s) = f0(0) = f1(0)

H(1, s) = f0(1) = f1(1)

The idea is sort of as follows:
1It turns out, this is somewhat of a formality- I can really be any closed interval, since they're

all homeomorphic.
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t

s

H

f0

f1

Example. Take the space R2 − {0}. Intuitively, we can see that it is not true that

R2

f1

f2

these two paths are path homotopic, since any continuous map would have had
to `pass through' the point that was omitted from R2. We will show that this is
true.

3.2 Path Composition

Let f, g : I → X. If f(1) = g(0), then define the composition of these paths as:

(f ⋆ g)(s) =

{
f(2s), s ∈ [0, 1

2
]

g(2s) s ∈ [1
2
, 1]

Path homotopy, denoted "≃p'' is an equivalence relation:

1. f0 ≃p f0

2. f0 ≃p f1 ⇒ f1 ≃p f0
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3. f0 ≃p f1, f1 ≃p f2 ⇒ f0 ≃p f2

So Given f : I → X, let us define the equivalence classes of f :

[f ] = {g : I → X | f ≃p g}

Claim. Composition induces a well-defined operation on equivalence classes of
paths:

[f ] ⋆ [g] = [f ⋆ g]

This looks like the following: Then

f0

f1

g1

g0

H(t, s) =

{
Hf (2t, s) t ∈ [0, 1/2]

Hg(2t− 1, s) t ∈ [1/2, 1]

This is a homotopy from f0 ⋆ g0 to f1 ⋆ g1. So if f0, f1 are in some equivalence class,
and g0, g1 are also in the same equivalence class, then f0 ⋆ g0 and f1 ⋆ g1 are in the
same equivalence class.

We have the following properties:

1. Associativity:
[f ] ⋆ ([g] ⋆ [h]) = ([f ] ⋆ [g]) ⋆ [h]

Just as a remark, notice that (f ⋆ g) ⋆ h ̸= f ⋆ (g ⋆ h).

2. For any [f ] there is an equivalence class [f(1) and [f(0)., which are the equiv-
alence classes under ≃p of constant paths at f(0) and f(1) respectively.

3. Given f let f̂(t) = f(1− t), then

f ⋆ f̂ ≃p f(1)

f̂ ⋆ f ≃p f(0)

so,
[f ] ⋆ [f̂ ] = [f(1)] [f̂ ] ⋆ [f ] = [f(0)]
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Just to be clear with notation, notice that we have the following:

(f ⋆ g)(s) =

{
f(2s) s ∈ [0, 1

2
]

g(2s− 1) s ∈ [1
2
, 1]

Definition. Given x0 ∈ X, let:

π1(x, x0) = { [f ] | f : I → X such that f(0) = f(1) = x0}

Proposition 32. Let X be a space. For any x0 ∈ X, G = π1(X, x0) is a group under
composition ⋆.

Proof. First notice that [f ] ⋆ [g] is always defined, since f(1) = x0 = g(0). Also,
[f ] ⋆ [g] ∈ π1(X, x0).

Theorem 33. If f : X → Y is continuous, then for any x0 ∈ X, there is a group
homomorphism:

h∗ : π1(X, x0) → π1(Y, f(x0))

defined by:
h∗([f ]) = ([h ◦ f ])

Corollary 34. If h : X → Y is a homeomorphism, then:

h∗ : π1(X, x0) → π1(Y, f(x))

is an isomorphism for all x0 ∈ X.
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