
Fall 2011

Probability Theory

Author:
Todd Gaugler

Professor:
Dr. Stefan Ralescu

December 14, 2011



2



Contents

1 Introduction 7
1.1 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introductory Probability, Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conditional Probability 11
2.1 Chapter 1, Question 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Chapter 1, Question 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Discrete Random Variables 13
3.1 Calculating Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Random Vectors of Discrete Random Variables . . . . . . . . . . . . . . . . . 15
3.3 Chapter 3, Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Chapter 3, Question 11(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Chapter 3, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Necessary Background in Probability Vectors . . . . . . . . . . . . . . 17
3.5.2 Chapter 3, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 The Density of the Sum of Two Independent Random Variables . . . . . . . 19
3.7 Homework Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.1 Chapter 3, Question 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.2 Chapter 3, Question 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7.3 Chapter 3, Question 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 The Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 Applications of the Theorem and the Probability Generating Function . . . . 26

3.9.1 Finding f(x) from F (x) . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9.2 Chapter 3, Question 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9.3 Chapter 3, Question 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9.4 Chapter 3, Question 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9.5 Chapter 3, Question 33 . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9.6 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Expected Value of Discrete Random Variables 31
4.1 The Connection between Probability Generating Functions and Expected Values 32

3



CONTENTS

4.1.1 Chapter 4, Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Chapter 4, Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Chapter 4, Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 An Application of the Probability Generating Function . . . . . . . . 35

4.2 Moments of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Announcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Chapter 3, Question 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Chapter 3, Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Chapter 3, Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.5 Chapter 3, Question 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Chebyshev’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Markov’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Chebyshev’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Chapter 4, Question 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Chapter 4, Question 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 Chapter 4, Question 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9 Chapter 4, Question 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.10 Chapter 4, Question 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11 Chapter 4, Question 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.12 The Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . 48
4.13 Review for Midterm #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13.1 Chapter 4, Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.13.2 Chapter 4, Question 29 . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.13.3 Chapter 4, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.13.4 Chapter 3, Question 15(c) . . . . . . . . . . . . . . . . . . . . . . . . 50
4.13.5 Chapter 3, Question 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.13.6 Chapter 3, Question 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.13.7 Chapter 4, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.13.8 Chapter 4, Question 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Continuous Random Variables 55
5.1 Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Finding the Density of a Transformation of a Random Variable . . . . . . . . 57
5.3 Chapter 5, Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Chapter 5, Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Chapter 5, Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Chapter 5, Question 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Chapter 5, Question 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 Chapter 5, Question 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.11 The Gamma Function (continued) . . . . . . . . . . . . . . . . . . . . . . . . 67
5.12 Chapter 5, Question 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.13 Chapter 5, Question 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.14 Chapter 5, Question 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4



CONTENTS

5.15 Chapter 5, Question 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.16 Chapter 5, Question 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Jointly Distributed Random Variables 71
6.1 A Brief Review of the Double Integral . . . . . . . . . . . . . . . . . . . . . 71
6.2 Multivariate Continuous Distributions . . . . . . . . . . . . . . . . . . . . . 72
6.3 Chapter 6, Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Chapter 6, Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Chapter 6, Question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 Chapter 6, Question 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7 Chapter 6, Question 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Finding the Density of the Absolute Value of a Continuous Random Variable 83
6.9 Chapter 6, Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.10 Chapter 6, Question 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.11 Chapter 5, Question 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.12 Chapter 6, Question 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.13 Chapter 6, Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.14 Chapter 6, Question 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.15 Chapter 6, Question 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.16 Chapter 6, Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.17 Chapter 6, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.18 Chapter 6, Question 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.19 Chapter 6, Question 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.20 Chapter 6, Question 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.21 Test Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.22 Chapter 5, Question 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.22.1 Chapter 5, Question 43 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.22.2 Chapter 6, Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.22.3 Chapter 6, Question 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.23 Chapter 6, Question 9, Continued . . . . . . . . . . . . . . . . . . . . . . . . 95

7 The Expectations of Continuous Random Variables and the Central Limit
Theorem 97
7.1 Expected Values of Continuous Random Variables . . . . . . . . . . . . . . . 97
7.2 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 The Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Chapter 7, Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.6 Chapter 7, Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.7 Chapter 7, Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.8 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . 103
7.9 Chapter 7, Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.10 Chapter 7, Question 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Moment Generating Functions 107

5



CONTENTS

8.1 Chapter 7, Question 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Chapter 7, Question 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3 Chapter 7, Question 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4 Chapter 7, Question 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.5 Chapter 7, Question 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.6 Chapter 7, Question 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.7 Chapter 7, Question 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.8 Chapter 7, Question 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.9 Chapter 8, Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.10 A Relationship Between MX(t) and ΦX(t) . . . . . . . . . . . . . . . . . . . 114
8.11 Chapter 8, Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.12 Properties of Moment Generating Functions . . . . . . . . . . . . . . . . . . 116
8.13 Chapter 8, Question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.14 Chapter 8, Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.15 Chapter 8, Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.16 Chapter 7, Question 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.17 Announcement for the Final . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.18 Review for the Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.18.1 Chapter 8, Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.18.2 Exam Question Number 6 . . . . . . . . . . . . . . . . . . . . . . . . 120
8.18.3 General Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.18.4 Chapter 6, Question 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.18.5 Chapter 7, Question 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.18.6 Information About the Exam . . . . . . . . . . . . . . . . . . . . . . 122

6



Chapter 1
Introduction

1.1 Homework

• Chapter 1: pp(22-26)/ 4,6,7,9,12, 34, 35, 36, 37, 45,46

• We will cover chapters: 1, 3, 4 , 5 , 6 , 7 , 8

• Chapter 3: pp(77-82) 4, 5, 10, 11, 13, 14, 15, 16, 17, 18, 31, 32, 33

• Chapter 4: pp(104-108) 2, 3, 4, 6, 8, 9, 13, 14, 15, 21, 26, 27, 28, 29, 30

• Chapter 5: pp(133-135) 1, 7, 8, 9, 10, 14, 19, 21, 23, 24, 25, 31, 33, 34, 39, 41, 43, 44

• Chapter 6: pp(169-172) 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 21, 22, 29, 30

• Chapter 7: pp(192-196) 1, 3, 4, 5, 6, 14, 15, 31, 32, 33, 34, 35, 36, 37, 38, 39

• Chapter 8: pp(213- 215) 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22

• 3 exams, I(30%), II (30%), III (40%)

• Office hours are Wednesday 2 to 3 p.m. in KY 407

1.2 Introductory Probability, Chapter 1

We derive the notion of Probability from that of the idea of a Random experiment, for
example tossing a coin, rolling a die, picking a card from a standard deck of cards, and so
on.

Ω Is here going to be used as the “sample space” or “probability space” which is the collection
of all possible results or outcomes of a particular random experiment. It is a set. We think
of a “sample point” as being a result or outcome of a particular experiment. Here an event
is a subset of the sample space.
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CHAPTER 1. INTRODUCTION

Definition. A non-empty collection of subsets A of Ω is called a σ-field if the following
properties are true:

1. If A ∈ A ⇒ A′ ∈ A where here, Ac = A′ = Ā.

2. If we have a sequence, possibly infinite, of elements A1, A2, A3 ∈ A, this tells us that
∞⋃
n=1

An = 1 and
∞⋂
n=1

An are in A.
Definition. The definition of Probability is as follows: Let Ω be a probability space and let
A be a σ-field on Ω where you have a function P : A → [0,∞] such that:

1. P (Ω) = 1

2. P (A) ≥ 0

3. If (A1, A2, A3, ...) are mutually disjoint (any two have no intersection), in A, then
P (∪∞n=1An) = ∑∞

n=1 P (An). This tells us that probability is countable-additive (the
sequence may be infinite, but is countable).

Example. Suppose An = Φ = Empty, all n ≥ 1. Now suppose that P (Φ) = P (Φ) +P (Φ) +
P (Φ)... This implies that P (Φ) = 0, since we have (2) and each event has a finite probability.
Where the probability of an impossible event must be 0.
Claim. For every event A ∈ A, P (A) ≤ 1. This follows from noticing the following:

Ω = A ∪ A′

Which are obviously disjoint. Thus, take A1 = A, and take A2 = A′ and take A3 = A4 =
empty... = Φ. Using (3), and recognizing that these sets are mutually disjoint, seeing that⋃∞
n=1An = Ω, using (3) we know that 1 = P (Ω) = P (⋃∞n=1) = P (A) +P (A′) + .... which tells

us:
1 = P (A) + P (A′)

and since P (A′) ≥ 0, we know that P (A) ≤ 1.

For homework, we have the following problem: Show that if A,B ∈ A and A ⊆ B then
P (A) ≤ P (B). This follows again from doing something very similar to what we just did,
since we just proved that A ⊆ Ω⇒ P (A) ≤ P (Ω).
Fact. P (A ∪ B) = P (A) + P (B)− P (AB) Where AB = A ∩ B. For homework: show that
P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (AB)− P (AC)− P (BC) + P (ABC).
Lemma 1. For any finite sequence of events, A1, A2, ...An, we have:

P (A1 ∪ A2 ∪ ... ∪ An) ≤ P (A1) + P (A2) + ....+ P (An)

This is called Boole’s Inequality.
Note. If A1, A2, A3, ...An are mutually disjoint events, then it is always true that

P (A1 ∪ A2 ∪ .. ∪ An) = P (A1) + P (A2) + ...+ P (An)

This follows from Axiom number (3). The proof of this starts by noticing the obvious fact
that

P (A ∪B) ≤ P (A) + P (B)
Inductively, this can continue in the following way:

8



1.2. INTRODUCTORY PROBABILITY, CHAPTER 1

Proof. Assume that what we are talking about is true for n events. Given n+1 events, where
we have A1, A2, ...An and An+1 we see that:

P (
n+1⋃

1
An) = P (

n⋃
i=1

Ai ∪ An+1) ≤ P (A1) + P (A2) + ...+ P (An) + P (An+1)

Since we know that P (A ∪B) ≤ P (A) + P (B) from Boole’s inequality. This is on page (12)
of our textbook.

The Strong law of large numbers dictates that the sample average converges to the mean
in the subset of the probability space.
Theorem 2. If A1 ⊆ A2 ⊆ A2... are events and

∞⋃
i=1
Ai = A then limn→∞ P (An) = A

Proof. Let A1 = B1, B2 = A2 ∩ A′1, B3 = A3 ∩ A′2. It is true that An = B1 ∪ B2 ∪ ... ∪ Bn

which says that P (An) = P (B1) + P (B2) + ... + P (Bn) = ∑n
i=1 P (Bi). Now, look at the

infinite unions of Bi, which looks like A = B1∪B2∪ ... which is a countable infinite sequence.
And we also know that P (A) = ∑∞

i=1 P (Bi). Which says that lim∑n
i=1 P (Bi) = P (A). But

since that partial sum is P (An), we see that our proof is complete.

Going back to Boole’s inequality, we would like to prove it for a sequence of infinitely many
events:

A1, A2, A3, ....

Claim. P (⋃∞n=1An) ≤ ∑∞n=1 P (An)

Proof. Lets assume that ∑∞i=1(Ai) <∞. Look at A1∪A2∪ ...An = A1∪(A1∪A2)∪(A1∪A2∪
A3)∪...(A1∪A2∪...∪An) Now, it is clear that we have another nested sequence as we did with
the last claim. We will rename each term B1, B2, ...Bn and claim that B1 ⊆ B2 ⊆ B2 ⊆ ...

The union A =
∞⋃
i=1
Ai = ⋃n

i=1 iBi. By theorem (1) the limn→∞ P (Bn) = P (A) Let’s look at

P (Bn) ≤ P (A1) + P (A2) + ...+ P (An)

which follows from Boole’s inequality. Also,

P (Bn) ≤ P (A1) + P (A2) + ...+ P (An) ≤
∞∑
i=1

P (Ai) = M <∞

In calculus, if we have some xn ≤ M and limn→∞ xn = n ⇒ x ≤ M . Let n → ∞ in the
following double inequality:

an ≤ bn ≤ k ⇒ a ≤ b ≤M

P (A) ≤M

which is the conclusive result we wanted from Boole’s equality.
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Chapter 2
Conditional Probability

Recall, P (A|B) := P (AB)/P (B) assuming P (B) 6= 0, from which you obtain P (AB) =
P (A|B)P (B) = P (B|A)P (A). Also recall that A,B are said to be independent if P (AB) =
P (A)P (B) (and if P (B) 6= 0, P (A|B) = P (A).

Approaching the independence of three events A,B,C, we call these three events “mutually
independent” if A,B are independent, A,C are independent, B,C are independent, and
P (ABC) = P (A)P (B)P (C). It is worth mentioning that the fourth condition does not
necessarily follow from the first three:
Example. Ω = {1, 2, 3, 4} where each outcome is equally likely. Take

A = {1, 2}, B = {1, 3}, C = {1, 4}
Notice that {AB} = {AC} = {BC} = {1}. Since the probabilities P (A) = P (B) = P (C) =
P (D) = 1/2 and thus P (AB) = P (AC) = P (BC) = 1/4 and P (AB) = P (A)P (B), P (AC) =
P (A)P (C), P (BC) = P (BC) = P (B)P (C). But, P (ABC) = 1/4. However, P (A)P (B)P (C) =
1/8. Thus, the four condition is also needed, since the conditions are not mutually indepen-
dant.

P (Bn) ≤ P (A1) + P (A2) + ...+ P (An)

If Ω =
∞⋃
i=1
Bi where B1, B2, ... are disjoint, this is called a partition of the probability

space Ω. Now given an event A, the Law of Total Probability for A is that P (A) =∑∞
i=1 P (A|Bi)P (Bi)

Recall that we have the following formula: P (B|A) = P (A|B)P (B)
P (A) . By simply replacing B by

some Bk, we get P (Bk|A) = P (A|Bk)P (Bk)∑∞
i=1 P (A|Bi)P (Bi)

. This is known as Bayes formula.

2.1 Chapter 1, Question 12

Example. Select a point at random from Ω = S. In talking about the measure of |S|, we
talk about the area of S, which has a finite area. In making S a probability space, we need

11



CHAPTER 2. CONDITIONAL PROBABILITY

A ⊆ S such that P (A) = |A|
|S| . If we were talking about 3 dimensions, we would use area.

This is called a uniform probability space.

In taking the unit square, it is clear that P (Ω) = 1, since that is the area of the unit square.
using the line x + y = 1, the triangle formed by under that line has exactly half of the area
contained by the unit square. In comparing the points in x+ y = 1 and y = x, in finding the
probability P (A|B) = P (AB)

P (B) = |AB|
B

= 1/4
1/2 = 1/2

2.2 Chapter 1, Question 34

Assume that A,B are independent events. This implies that P (AB) = P (A)P (B). We
know that P (ABc) = P (A) − P (AB), and using what we know about A,B, we can factor
this into P (A)(1− P (B) = P (A)P (Bc). From this, we know that also Ac, B and Ac, Bc are
independent.

12



Chapter 3
Discrete Random Variables

Definition. A Random Variable X is a function X : Ω → (−∞,+∞). If the values of
the random variable X can be written as finite or an infinite sequence, it is called discrete
Example. Let the values look like x1, x2, ...xn, ....

There exists something called a probability function, which looks like: f(xi) = P{X =
xi}, i = 1, 2, ... In this case f is called the (discrete) density of X, or the probability function.
We can extend this to:

f(x) = P{X = x}

f becomes 0 if x is not a value of the random Variable. We have the following properties:

1. f(x) ≥ 0

2. {x | f(x) 6= 0} = {x1, x2, ...} = countable.

3. ∑i f(xi) = 1
Example. The X = Binomial(n, p) , is the number of successes of a Bernoulli trial with
probability of trial being (p) being repeated n times (under independent condition). X is
the total number of such successes, and has the following values:

X = 1, 2, ...n

And its density takes the following form: f(x) = P{X = x) =
(
n
x

)
px(1− p)n−x.

Example. The Poisson random variable: let λ > 0 be given:

X 7→ x = 0, 1, 2, 3, 4, ...

And the following is also true:

f(x) = P{X = x} = eλ · λ
x

x! ,
∞∑
x=0

f(x) = e−λ
∞∑
x=0

λx

x! = e−λeλ = 1

13



CHAPTER 3. DISCRETE RANDOM VARIABLES

Theorem 3. The Poisson Approximation Theorem says that if n is Large, and p is
small, (for example, n = 500, p = .03), then with λ = n · p, we have(

n
x

)
px(1− p)n−x ≈ e−λ

λx

x!

More formally, Let pn ∈ (0, 1) such that limn→∞ npn exists and is equal to λ > 0. Then, if

x ≥ 0 is an integer,
(
n
x

)
pxn(1− p)n)n−x = e−λ λ

x

x!

Example. Let X = Geometric(p) where 0 < p < 1 if X has values 0, 1, 2, ... and density

f(x) = P{X = x} = pqx

Where q = 1− p. This is geometric, since
∞∑
x=0

f(x) = 1 and
∞∑
x=0

pqx = p(1 + q + q2 + q3 + ...)

and since 1 + q + q2 + q3 + ... = 1
1−q , and since 1− q = p, this is really 1

p
and this sum is 1.

3.1 Calculating Probabilities

We have the following formula: Given A ⊆ R, and looking for P{X ∈ A}, we calculate this
using:

P{X ∈ A} =
∑
∀xi∈A

f(xi)

which is a monumentally important formula.
Example. Given A = [a, b], P{a ≤ X ≤ b} = ∑

all a≤xi≤b f(x). Similarly, given A = (a, b],

P{a < X ≤ b} =
∑

all q<xi≤b
f(xi)

If you took A = (−∞, x], then

F (x) := P{X ≤ x} =
∑

all xi≤x
f(xi) =

∑
∀t≤x

f(t)

And F (x) is called the cumulative distribution function, abbreviated (c.d.f) of X. Be sure
to notice the following:

F (x) =
∑
∀t≤x

f(t)

For any discrete random variable X, we have two functions f(x) and F (x) , the density
function and the c.d.f, which are related as above. Regarding F (x), we can say:

1. 0 ≤ F (x) ≤ 1

14



3.2. RANDOM VECTORS OF DISCRETE RANDOM VARIABLES

2. F (x) is a step function (a constant function that has a ‘jump’), nondecreasing, right-
continuous, with jumps exactly at the values of the random variable X.

Example. Say X = {−1, 0, 2} and f(0) = .5, f(0) = .1, f(2) = .4) This can be represented
by the picture below. The following are also true:

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1

Also notice that F (X) never goes down. For homework, suppose that X is a discrete random
variable, and we know F (x), the distribution function. How do we find f(x)?

-1 2

F (x)

.5
.6

1

3.2 Random Vectors of Discrete Random Variables

Suppose that X1, X2, ...Xr are discrete random variables. Putting them together in a vec-
tor,

(X1, X2, X3, ...Xr) = X

which is a discrete random vector of r component. A value of the random vector would be
written as follows:

x̂ = (x1, x2, ...xr)

Notice that X = x̂ if and only if X1 = x1, X2 = x2, ..., Xr = xr. Now, let’s introduce the
density of the random vector: the Density of the random vector X is a function f(x̂) is
defined as P{X = x̂} which we know to be equal to P{X1 = x1, X2 = x2, ...Xr = xr} This
density f(x̂) is also called the joint density of the random variables X1, X2, ...Xr.

15



CHAPTER 3. DISCRETE RANDOM VARIABLES

3.3 Chapter 3, Question 10

Let X = Geom(p), x = 0, 1, 2, 3, ... and f(x) = P (X = x) = pqx. We have

Y = X if X < M
M if X ≥M

Assume that M ≥ 0, and is an integer. In other words, Y is equal to the minimum between
(X,M). For example, take M = 4. Thus Y = x if x = 0, 1, 2, 3 and Y = 4 if x ≥ 4. In
finding the density of Y , note that the possible values of Y are 0, 1, 2, 3, 4. Thus,

g(0) = P (Y = 0) = P (X = 0) = p

g(1) = P (Y = 1) = P (X = 1) = pq

g(2) = P (Y = 2) = P (x = 2) = pq2

g(3) = P (Y = 3) = P (x = 3) = pq3

g(4) = P (Y = 4) = P (x ≥ 4) = 1− (p+ pq + pq2 + pq3)

From this, we should note the following lemma:
Lemma 4. If X = Geom(p), for any x ≥ 0 integer, the P (X ≥ x) = qx.

Proof. Notice that

P (X ≥ x) = P (X = x) + P (X = x+ 1) + P (X = x+ 2)...

Using what we already know, this is equal to:

= pqx + pqx+1 + pqx+2 + ...

Factoring out,
pqx(1 + q + q2 + q3 + ...) = pqx( 1

1− q ) = pqx(1
p

) = qx

thus, in general for our homework question,

g(y) = P (Y = y) = pqq if y = 0, 1, ...M − 1
qM if y = M

Now let’s look at the converse of this lemma. We have the following:
Definition. All random variables with non negative integer values will be called ‘in IV+’.
Theorem 5. If X ∈ IV+is a random variable such that for each integer x ≥ 0,

P{X ≥ x} = qx for some 0 < q < 1

We can conclude from this that X is geometric, and that p = 1− q (X = Geom(p = 1− q)).

16



3.4. CHAPTER 3, QUESTION 11(A)

Proof. We have to look at the density F (x) = P (X = x) and show that F (x) = pqx. Looking
at the following union of events:

{X = x} ∪ {X ≥ x+ 1} = {X ≥ x}

Thus,
P (X = x) = P (X ≥ x)− P (X ≥ x+ 1)

⇒ f(x) = P (X = x) = qx − qx+1 = qx(1− q) = qxp

since P (X ≥ x) = qx and P (X ≥ x+ 1) is equal to qx+1. This is also in the textbook.

3.4 Chapter 3, Question 11(a)

Given that X is geometric, and Y = X2, the values of Y are 02, 12, 22, .... Thus we can call
f(y) = P (Y = y) = P (X2 = y) = P (X = √y) = pq

√
y Looking at part (b) of this question,

notice that
Y = X + 3⇒ y = 3, 4, 5, ...

Which tells us that f(y) = P (Y = y) = P (X + 3 = y) = P (X = y − 3) = pqy−3.

3.5 Chapter 3, Question 14

3.5.1 Necessary Background in Probability Vectors

Recall that if we have: X = (X1, X2, ...Xr) then we have x̂ = (x1, x2, ...xr) and

f(x̂) = P{X = x̂} = P{X1 = x1, X2 = x2, ...Xr = xr}

called the joint (probability function) density of X1, X2, ...Xr. Let’s look at the simple case
in which r = 2, and call X1 = X,X2 = Y . We then have the vector (X, Y ) which has the
joint density

f(x, y) = P (X = x, Y = y)
And we also have

fX(x) = P (X = x), fY (y) = P (Y = y)
which are called the marginal probability functions. Looking at statement (11) in the text-
book, we have the fact that:

fX(x) =
∑
all y

f(x, y), fY (y) =
∑
all x

f(x, y)

Which is shown on page 62 in the textbook. This implies that the most important thing
to have is the joint function, since we can find the marginal functions from the joint func-
tion.

17



CHAPTER 3. DISCRETE RANDOM VARIABLES

Definition. Two discrete random variables X, Y are called independent if the joint density:

f(x, y) = fX(x) · fY (y) for all x, y

Practically, this says that ‘the joint is the product of the marginals’. In general, we say that
X1, X2, ...Xr are independent if

f(x1, x2, ...fr) = fX1(x) · fX2(x) · ... · fXr(x)

3.5.2 Chapter 3, Question 14

Given X, Y , uniform random variables over{0, 1, ...N}, we know that:

fX(x) = 1
n+ 1 = fY (y) where x, y ∈ 0, 1, ...N

And we know that X, Y are independent.
Remark. Two discrete variables X, Y are independent if and only if P{X ∈ A and Y ∈ B} =
P{X ∈ A} ·P{Y ∈ B} for any A ⊆ R, B ⊆ R. This equation 14 on page 64 in our textbook.

Going back to the question, observe that P (X ≥ Y ) = ⋃N
y=0{X ≥ Y, Y = y}. And that

Ω =
N⋃
y=0
{Y = y}

which is a partition for Ω. We know that if we have

Ω =
⋃
k

Bk, we can say the following for a set A: A =
⋃
k

ABk

which can be illustrated by the following picture:

A

Ω

And now we can see that

{X ≥ Y, Y = y} = {X ≥ y, Y = y}

18



3.6. THE DENSITY OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES

And the event X ≥ y is an event that depends only on the random variable X, and the
event Y = y is an event that only depends on the variable Y . This is nice, since the first
event in our first union was dependent on BOTH X, Y . And, we know that X ≥ y means
that X ∈ [y,+∞), and that Y = y means that Y ∈ {y}. The intersection of these events
P{X ≥ Y } can be written as ⋃Ny=0{X ∈ A, Y ∈ B} where A = [y,∞), B = {y}. The
probability of the union is the sum of the unions. Proceeding,

P{X ≥ Y } =
N∑
y=0

P{X ≥ y, Y = y} =
N∑
y=0

P{X ≥ y} · P{Y = y}
︸ ︷︷ ︸

independent

= 1
N + 1

N∑
y=0

P (X ≥ Y )

and since

P (X ≥ y) = P (X = y) + P (X = y + 1) + ...+ P (X = N) = (N − y + 1) 1
N + 1

so we have:
1

N + 1

N∑
y=0

N − y + 1
N + 1 = 1

(N + 1)2

 N∑
y=0

(N + 1)−
N∑
y=0

y


= 1

(N + 1)2

(
(N + 1)2 − N(N + 1)

2

)
= 1− N

2(N + 1)
Try the following as a homework: example 14 on pages 64,65. This is a very important idea
for our class.

We are now asked to find P (X = Y ). This can be written as:

P (X = Y ) =
N⋃
y=0
{X = Y, Y = y} =

N⋃
y=0
{X = y, Y = y}

and since X, Y are independent, the probability would be their product. Thus,

P (X = y) =
N∑
0
P (X = y) · P (Y = y) = 1

(N + 1)2

N∑
0

1 = 1 +N

(1 +N)2 = 1
N + 1

3.6 The Density of the Sum of Two Independent Ran-
dom Variables

Let X and Y be independent and discrete. Let Z = X + Y . We have:

fX+Y (z) =
∑

over all x
fX(x) · fY (z − x)

Suppose thatX, Y are non negative integer values, are in IY+. This implies thatX+Y ∈ IV+.
This ensures that our above formula becomes

fX+Y (z) =
z∑

x=0
fX(x) · fY (z − x)

This is called the ‘convolution’.
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CHAPTER 3. DISCRETE RANDOM VARIABLES

Example. Suppose we have two random variables X = Poisson(λ), Y = Poisson(λ) and
that X, Y are independent. X + Y = Z, and it is clear that Z has values 0, 1, 2, ... (possion
implies in IV+). Using our formula, we have:

fX+Y (z) =
z∑

x=0
fX(x) · fY (z − x), fX(x) = e−λ

λx

x! , fY (z − x) = e−λ · λz−x

(z − x)!

putting these back into our sum, we have

fX+Y (z) =
n∑
x=0

e−2λ λz

x!(z − x)! = e−2λλz
z∑

x=1

1
x!(z − x)!

= e−2λλz
1
z!

z∑
x=1

z!
x!(z − x)!

and since ∑ z!
x!(z−x)! = ∑

zCx which is the binomial expansion where y = x = 1, or in other
words: (1 + 1)z = 2z, so our sum is equal to

e−2λ (2λ)z
z!

3.7 Homework Questions

3.7.1 Chapter 3, Question 15

X, Y are the same independent random variables as before. We would like to calculate the
densities of the following:

1. min(X,Y)

2. max(X,Y)

3. |Y −X|

Firstly, let
Z = min(X, Y ) : 0...N, and let y(z) = {Z = z}

we will operate under the assumption that

P{Z > k} where k ∈ 0, 1, ...M

and this means that
P{Z > k} = P{X ≥ k, Y ≥ k}

since we know these events are independent, we can multiply them to get

P (X ≥ k)P (Y ≥ k) which are the same, so this equals P (X ≥ k)2 = (N − k + 1)2

(N + 1)2
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3.7. HOMEWORK QUESTIONS

notice that

{Z = z} ∪ {Z ≥ z + 1} = {Z ≥ z} where the first two probabilities are disjoint

from which we get:
P{Z = z} = P{Z ≥ z} − P{Z ≥ z + 1}

For z = 0, 1, ...N − 1 ,

g(z) = P{Z = z} = (N − z + 1)2

(N + 1)2 − (N − z)2

(N + 1)2

So when g(N) = P{Z ≥ n} = 1
(1+n)2 .

Now for the maximum, call W = max(X, Y ) : 0, 1, ...N . Looking at

P (W ≤ k) = P (X ≤ k, Y ≤ k)

we see this is equal to:
P (X ≤ k)P (Y ≤ y) = P (X ≤ k)2

where
P (X ≤ k) = 1− P (X ≥ k + 1)

using that formula that we have, we know this equals

1− N − k
N + 1 = 1 + k

N + 1 which when squared is equal to: (k + 1)2

(N + 1)2

so,
P (X ≤ k)2 = P (W = k) = (k + 1)2

(N + 1)2

We had to make the adjustment;

{W = k} ∪ {W ≤ k − 1} = {W ≤ k}

From this we get that

P{W = k} = P{W ≤ k} − P{W ≤ k − 1}

which equals
(k + 1)2

(N + 1)2 −
k2

(N + 1)2

Which is equal to
2k + 1

(N + 1)2

Thirdly, we have
T = |Y −X| : 0, ...N
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if we call t one of these values, we have

T = t ⇐⇒ |Y −X| = t ⇐⇒ Y −X = t or Y −X = −t

which we can rephrase as
Y −X = t or X − Y = t

Suppose that t = 1, 2, ...N . This means that these two joints are then disjoint. which tells
us that

P{T = t} = P{Y −X = t}+ P{X − Y = t}

These two probabilities are equal, which tell us the sum is equal to

2P{Y −X = t}

We also need to consider that t = 0, which would mean that

P{T = 0} = P{X = Y } = done in question 14 part (b)

calculating the probability,

{Y −X = t} =
N⋃
x=0
{Y −X = t,X = x} =

N⋃
x=0
{Y − x = t,X = x} =

N−t⋃
x=0
{Y = t+ x,X = x}

from which we know

P{Y −X = t} =
N−t∑
x=0

P (Y = t+ x)P (X = x) = 1
N + 1

N−t∑
x=0

P (Y = t+ x) = N − t+ 1
(N + 1)2

thus,

P (T = t) =
2(N−t+1)

(n+1)2 for t : 1, 2, ...N
14(b) if t = 0

3.7.2 Chapter 3, Question 16

Given X, Y , we have
X = G(p1), Y = G(p2)

Last time we said that

P (X ≥ Y ) =
n⋃
y=0

(X ≥ Y, Y = y) =
N⋃
y=0

(X ≥ y, Y = y)

⇒ P (X ≥ Y ) =
N∑
y=0

P (X ≥ y)P (Y = y)

and since
P (X ≥ y) = qy1 P (Y = y) = p2q

y
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so we can write this as
= p2

N∑
y=0

(q1q2)y = p2

N∑
y=0

qy

and using the following formula

1 + q + q2 + q3 + q4 + ...+ qk = 1− qk+1

1− q
we get

= p2
1− qN+1

1− q

looking at part b,

(X = Y ) =
N⋃
y=0

(X = Y, Y = y) =
N⋃
y=0

(X = y, Y = y)

P (X = Y ) =
N∑
y=0

p1q
y
1p2q

y
2 = p1p2

N∑
y=0

qy ∗

which gives us a similar answer of

p1p2
1− qN+1

1− q

3.7.3 Chapter 3, Question 18

Assume that

P (X = x, Y = y) = g(x)h(y) for all x,y (this is the joint density, h(x,y) )

we know that †

fx(x) =
∑
all y

h(x, y) =
∑
all y

g(x)h(y) = g(x)
∑
all y

h(y) = g(x)A

looking at part b,

P (Y = y) = fY (y) =
∑
all x

h(x, y) =
∑
all x

g(x)h(y) = h(y)
∑
all x

g(x) = h(y)B

so in summary,
fX(x) = Ag(x), fY (y) = Bh(y)

Now,

1 =
∑

all x, all y

h(x, y) =
∑

all x all y

g(x)h(y) =
(∑
all x

g(x)
)∑

all y

h(y)
 = AB = 1

∗q = q1q2
†recall that by convention h is the joint function. The notation here is poor, but makes sense.
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CHAPTER 3. DISCRETE RANDOM VARIABLES

Now, multiplying

fX(x)fY (y) = ABg(x)h(y) = 1g(x)h(y) = h(x, y)

from which, we can conclude that X, Y are independent. Notice that both g and h are
constants times the marginal, since:

fX(x)/A = g(x)

3.8 The Conclusion of Chapter 3

Recall that if X, Y are independent, the density of the sum X + Y is:

fX+Y (z) =
∑
all x

fX(x)fY (z − x)

Now, for X ∈ IV+, we introduce the function Φx(t) for t ∈ [−1,+1] called the probability
generating function of the random variable X. It is defined as follows:

Φx(t) =
∞∑
x=0

P (X = x)tx =
∞∑
x=0

fX(x)tx

which is a power series in the variable t. Observe that if |t| ≤ 1, we can look at
∞∑
x=0

fX(x)|t|x ≤
∞∑
x=0

fX(x) since |t| ≤ 1.

and since ∞∑
x=0

fX(x) = 1

we know that the first series must converge from |t| ≤ 1.

We know the following about power series:
∞∑
x=0

axt
x =

∞∑
x=0

bxt
x ∀t ∈ (−ε, ε)

implies that all ax = bx for x = 0, 1, ....
Example. Suppose that X is binomial(n,p). Lets find Φx(t). Well,

fX(x) =
(
n
x

)
pxqn−q x = 0, 1, 2, ...n

so looking at

Φx(t) =
n∑
x=0

(
n
x

)
pxqn−xtx =

n∑
x=0

(
n
x

)
(pt)x(q)n−x

which is a binomial expansion, which is

= (pt+ q)nwhich comes from the binomial formula
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3.8. THE CONCLUSION OF CHAPTER 3

Example. Suppose that X = Poisson(λ). Find Φx(t). Well again,

fX(x) = e−λ
λx

x! ∀x = 0, 1, 2, ...

So we know that
ΦX(t) =

∞∑
x=0

e−λ
λx

x! t
x

we can simplify this series to:

= e−λ
∞∑
x=0

(λt)x
x! = e−λ · eλt = eλ(t−1) ∀t ∈ R

For homework, find the probability generating function for X = Geom(p).

We have a few theorems about the probability generating function.
Theorem 6. Suppose that X, Y ∈ IV+ and suppose that ΦX(t) = ΦY (t) ∀ |t| ≤ 1. Then,

fX(x) = fY (x) for all x (fX ≡ fY )

Proof. We know that
∞∑
x=0

fX(x)tx =
∞∑
x=0

fY (x)tx

and based on what we know about power series, we know that the coefficients must be equal-
thus,

fX(x) = fY (x)

Theorem 7. If X, Y ∈ IV+ and independent, then ΦX+Y (t) = ΦX(t) · ΦY (t) This results
easily extends to three or more independent variables. The proof of this is based on the
convolution, and is in the book.

The following is an example of how we can combine both of these theorems and get something
interesting.
Example. Let X, Y , where X = Poisson(α), Y = Poisson(β) where X, Y are independent.
Look at X + Y :

ΦX+Y (t) = ΦX(t) · ΦY (t) = eα(t−1)eβ(t−1) = e(α+β)(t−1) = ΦW (t)

where
W = Poisson(α + β)

By theorem number 6, we know that

X + Y = Poisson(α + β)
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CHAPTER 3. DISCRETE RANDOM VARIABLES

3.9 Applications of the Theorem and the Probability
Generating Function

The following is theorem one on page (75).

3.9.1 Finding f(x) from F (x)

Assume that X is a discrete random variable with finitely many values listed in increasing
order:

x0 < x1 < x2... < xn

Suppose that F (x), the cumulative distribution function of X is given. Find the density
f(x). We know that

F (x) =
∑

all t ≤ x
f(x)

So this tells us that

F (x1) = f(x1)
F (x2) = f(x1) + f(x2)

F (x3 = f(x+ 1) + f(x2) + f(x3
...

subtracting, we can get:

f(x1) = F (x1)
f(x2) = F (x2)− F (x1)
f(x3) = F (x3)− F (x2)

...
f(xn) = F (xn)− F (xn−1)

...

3.9.2 Chapter 3, Question 17

Given X = G(p1), Y = G(p2). Looking at

Z = min(X, Y ) : 0, 1, 2, ... and call the value of the minimum ’z’

Notice that P (Z ≥ z) = P (X ≥ z, Y ≥ z), and since these events are independent (one
depends on X, the other on Y ) so we can calculate their probabilities via multiplication

P (Z ≥ z) = P (X ≥ z, Y ≥ z) = P (X ≥ z)P (Y ≥ z) = qz1q
z
2
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since P (X ≥ z) = qz. Which tells us that this this variable must be the same as the following
random variable:

Z = Geometric(p = 1− q = 1− (1− p1)(1− p2)) = 1− [1− p2− p3 + p1p2] = p1 + p2− p1p2)

Secondly
W = X + Y : 0, 1, ...

using the convolution formula:

fW (w) =
w∑
x=0

fx(x)fy(w − x) =
w∑
x=0

p1q
x
1p2q

w−x
2 = p1p2q

w
w∑
x=0

(
q1

q2

)x

so we say that say that q1
q2

= Q We have now two cases:

q1 = q2 q1 6= q2

the first tells us that Q = 1, which would tell us that p1 = p2 = p, and in this case
w∑
x=0

(1) = w + 1⇒ fW (w) = (w + 1)p2qw

In the other case, we know that Q 6= 1, and as a result,
w∑
x=0

Qx = 1 +Q+Q2 +Q3 + ... = Qw+1 − 1
Q− 1 = 1−Qw+1

1−Q

and in this case,

fW (w) = p1p2q
w
2

q1
q2

2 − 1
q1
q2
− 1

3.9.3 Chapter 3, Question 31

Suppose that X, Y are independent, and uniform from {1, ...N}. Let

Z = X + Y : 2, 3, ....2N

since these are non-negative integer values, we can use the convolution formula, which
says:

fX+Y =
z∑

x=0
fX(x)fY (z − x) =

z∑
x=1

fX(x)fY (z − x)

we want to take into account all the cases in which fX(x) 6= 0, and same for fY . So for a
fixed z ∈ {2, 3, ...2N} and and integer 1 ≤ x ≤ z we should look at

fX(x)fY (z − x) 6= 0 ⇐⇒ 1 ≤ x ≤ n and 1 ≤ z − x ≤ N
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solving these inequalities in terms of x, we see that these equations tells us:

A = max(1, z −N) ≤ x ≤ min(N, z − 1) = B

so we have the sum that
B∑
x=A

1
N2 = B − A+ 1

N2

which can actually be broken down into two cases, the first of which is that

2 ≤ z ≤ N

in this case, max(1, z − N) = 1, and A = 1. Also, we see that min(N, z − 1) = z − 1 = B,
so

fZ(z) = z − 1
N2

and in the case where
N + 1 ≤ z ≤ 2N

which tells us that max(1, z − N) = z − N = A and min(N, z − 1) = N = B. So in this
case,

fZ(z) = 2N − 1
N2

so our final answer is

fX+Y (z) =


z−1
N2 when z ∈ 2, ...N

2N−1
N2 when z ∈ N + 1...2N

3.9.4 Chapter 3, Question 32

We are looking for the probability generating function Φx(t) for fX(x) = 1
N+1

Φx(t) =
N∑
x=0

fX(x)tx = 1
N + 1

N∑
x=0

tx and we know
N∑
x=0

tx = 1 + t+ t2 + ... = 1− tN+1

1− t

so we can say that our answer is 1 if t = 1, and 1−tN+1

(1−t)(N+1) elsewhere.

3.9.5 Chapter 3, Question 33

Given X = IV+ with ΦX(t) = eλ(t2−1), λ > 0. From calculus, we know how to represent ex
for any x. So, we can say that:

∞∑
x=0

fX(x)tx = ΦX(t) = e−λeλt
2 = e−λ

∞∑
x=0

λnt2n

n!
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so,

fX(o)t0 + fX(1)t+ fX(2)t2 + ... = e−λ
[
1 + λt2

1! + λ2t4

2!

]
= e−λ + λe−λ

1! t2 + λ2e−λ

2! t4 + ...

thus, since the subscripts have to match,

fX(0) = e−λ

fX(1) = 0

fX(2) = λe−λ

1!
fX(3) = 0

...

3.9.6 Exam 1

Our First exam will be on Monday, October 17th.
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Chapter 4
Expected Value of Discrete Random
Variables

Suppose you have
X → x1, x2, ...

if you look at
E(X) :=

∞∑
i=1

xif(xi) provided that
∞∑
i=1
|xi|f(xi) <∞

you get something called “the expected value” of X. From calculus, we know that if we have
an absolutely convergent series, it must converge. Recall that the opposite is not true.
Example. Suppose that X : 1, 2, ..n and fX(x) = 1

n
. What is E(X)? Well,

E(X) =
n∑
x=1

x · 1
n

= n+ 1
2

since
n∑
x=1

= 1 + 2 + 3 + ...+ n = n(n+ 1)
2

Now suppose that X : a1, a2, ....an. In this case, we have the same formula over a uniform
random variable as before, and get:

E(X) = a1 + a2 + ...+ an
n

which is intuitively what we think of in terms of an average. We often use µ to denote this
value.
Example. Let X = Binomial(n, p). Where x = (0, 1, ...n) which tells us that

fX(x) =
(
n
x

)
pxqn−x

so
E(X) =

n∑
x=0

x

(
n
x

)
pxqn−x = np
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Example. Let
X = Poisson(λ) fX(x) = e−λ

λx

x!
and notice that

E(X) =
∞∑
x=0

x · e−λλ
x

x! = ... = λ

Example. Let

X = Geom(p)⇒ E(X) =
∞∑
x=0

xpqx = ... =?

it is a good idea to go and prove these things.

4.1 The Connection between Probability Generating
Functions and Expected Values

The connection between ΦX(t) and E(X) if X = IV+ is as follows: recall that we know the
following:

ΦX(t) =
∞∑
x=0

fX(x)tx converges for t ∈ [−1, 1]

taking the derivative with respect to t,

ΦX(t)′ =
∞∑
x=0

xfX(x)tx−1, letting t=1, ΦX(1)′ =
∞∑
x=0

xfX(x) = E(X)

4.1.1 Chapter 4, Question 5

Let us first list the properties of the expected values:

1. If X = c, a constant, the expected value is E(X) = c.

2. E(kX) = kE(X)

3. E(X + Y ) = E(X) + E(Y )

4. E(c1X1 + c2X2 + ....cnXn) = c1E(X1) + c2E(X2) + ...+ cnE(Xn)

5. If X ≥ Y , then E(X) ≥ E(Y )

6. |E(X)| ≤ E|X|
Theorem 8. Suppose you have

X = (X1, ...Xr)

where the Xi are discrete random variables, and you have

f̂(x) as its joint density
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Let ϕ : Rr → R. Let
Z = ϕ(X)

The expected value of Z looks like the following:

E(Z) =
∑
all x

ϕ(x)f̂(x)

provided if and only if ∑
all x
|ϕ(x)|f̂(x) <∞

This theorem and its proof are discussed well in the book.

We can use this result for our problem. Suppose you allowed r = 2. Then,

X = (X1, X2)

and we let
ϕ(x1, x2) = x1 + x2

in this case,
Z = X1 +X2

applying the theorem, we know that

E(Z) =
∑

over all x1, x2

(x1 + x2)f̂(x1, x2) =
∑

over all x1, x2

[x1f(x1, x2) + x2f(x1, x2)]

which we know to be equal to∑
over all x1, x2

x1f(x1, x2) +
∑

over all x1, x2

x2f(x1, x2)

which we will call,
A+B

Looking at A, we see that

A =
∑

over all (x1)

 ∑
all (x2)

x1f(x1, x2)
 =

∑
over all (x1)

x1

 ∑
all (x2)

f(x1, x2)


recognizing the right is the marginal fX1(x1), we see

A =
∑

all (x1)
x1fX1(x1) = E(X1)

similarly, B = E(X2) . Notice that as a result of our theorem, letting r = 1, we have X, and
we allow our function function ϕ to be ϕ : R→ R

Z = ϕ(x)

so
E[ϕ(X)] =

∑
all x

ϕ(x)fX(x)

another important theorem is:
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Theorem 9. If |X| ≤M , some positive constant, the random variable is said to be bounded.
Then, E(X) exists, and

|E(X)| ≤M

this can be found on page 88, theorem 3 in the book. The book instead writes that

P (|X| ≤M) = 1

which is just more appropriate. The two notions are equivalent.

Working back to our question, suppose that X, Y are two random variables such that

P (|X − Y |) ≤M = 1

which is the same as
|X − Y | ≤M

for some constant M . We want to show that if Y has finite expectation, then X has finite
expectation and |E(X)− E(Y )| ≤ M . We write X = (X − Y ) + Y , and from our theorem,
we know that E(X − Y ) exists, since X − Y is bounded. By assumption E(Y ) exists, so we
know that X must have E(X) finite. From this, we proceed, noting that

E(X − Y ) = E(X)− E(Y )∗

from theorem (3) in the book on page 88, we can say that

|E(X − Y )| ≤M or |E(X)− E(Y )| ≤M

and we are done.

4.1.2 Chapter 4, Question 2

X is of binomial density with parameters n = 4 and we have p. We know that

X : 0, 1, 2, 3, 4

so
f(X) =

(
4
x

)
px(1− p)4−x

Knowing that we want to calculate, E(sin(πX/w)) we define the function ϕ(x) = sin(πx/2).
From one of our theorems,

E[sin(πX/w)] =
4∑

x=0
(sin(πx/2))

(
4
x

)
pxq4−x

working through the finite cases, we get the sum(
4
1

)
pq3 −

(
4
3

)
p3q = 4pq(q2 − p2)

It turns out that this question is relatively easy once you use that formula when r = 1, as
we have now done twice.
∗to write this, we needed to know that E(X) is finite
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4.1.3 Chapter 4, Question

Let X be Poisson with parameter λ, compute the mean of (1 + X)−1. In other words,
find

E( 1
1 +X

)

again using our formula, we say that

E( 1
1 +X

) =
∞∑
x=0

ϕ(x)e−λλ
x

x!

by making ϕ(x) = 1
1+x . Combining ϕ(x) with the (x!) term in our sum, we get

= 1
λ

∞∑
x=0

e−λ
λx+1

(x+ 1)!

changing the notation, we call x+ 1 = n. We then have

= 1
λ

∞∑
n=1

e−λ
λn

n! = e−λ

λ
(eλ − 1) = 1− e−λ

λ

If you want, try to see if this can be extended, and find E( 1
2+x).

4.1.4 An Application of the Probability Generating Function

Last time, we saw a theorem that said if X ∈ IV+, this tells us that E(X) = Φ′X(1). Let
X = Geometric(p). Let us try to now find E(X) using this method. First, we need the
probability generating function. This can be done as follows:

ΦX(t) =
∞∑
x=0

fX(d)tx =
∞∑
x=0

pqxtx =
∞∑
x=0

p(qt)x

calling qt = r, we have

= p
∞∑
x=0

rx which converges to: = 1
1− r if the absolute value of r is less than one

so, this is doable if
q|t| < 1 ⇐⇒ |t| < 1

q
⇐⇒ −1

q
< t <

1
q

so from this, our probability generating function is

ΦX(t) = p

1− qt

where the geometric function is defined from −1
q

to 1
q
. In trying to find the expected value,

we take the derivative of our probability generating function:

Φ′X(t) = [p(1− qt)−1]′ = pq(1− qt)−2
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and
Φ′′X(t) = 2pq2(1− qt)−3

so, looking at the derivative at 1, we have

Φ′X(1) = pq(1− q)−2 = E(X)

from this, we can get
E(X) = q

p

4.2 Moments of a Random Variable

Given X, and some integer r ≥ 1. We would like to know E(Xr). By the formula we
have, ∑

all x
xrfX(x)

which is known as ‘the moment of X of order r’, or the rth moment.
Theorem 10. If the rth moment is finite, then all the previous moments were all finite.

Recall that µ := E(x). Let us assume that E(X2) is finite. We have

V ar(X) := E[(X − µ)2]

How do you calculate the variance directly from this formula? Looking for a function ϕ(x),
we have ϕ(x) = (x− µ)2, and have the following for the expected value:

=
∑
all x

(x− µ)2fX(x)

we do have the following formula:

V ar(X) = E(X2)− µ2

This follows from:

V ar(X) = E(X2)− 2µE(X) + µ2 = E(X2)− 2µ2 + µ2 = E(X2)− µ2

Notice that
V ar(X) ≥ 0

since it is the expected value of a square. This tells us the following corrolary:
Corollary 11.

(E(X))2 ≤ E(X2)

We should note the following about the variance:

1. Recall that if X = 0, then V ar(X) = 0.
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2. We say that by definition,
σ2 = V ar(x)

where σ denotes the standard deviation.

3. We know that V ar(aX + b) = a2V ar(X)

4. Generally speaking, V ar(X + Y ) 6= V ar(X) + V ar(Y ).

We now need to talk about the Variance of two random variables. Look at the variance of
the sum, V ar(X + Y ). We will call

µx = E(X), µy = E(Y )

we should notice that

V ar(X + Y ) = E(X + Y )2 − (E(X + Y ))2

doing some algebra, we see that this is equal to

E(X2 + 2XY + Y 2)−
(
µ2
x + 2µxµy + µ2

y

)
From which we say:

= E(X2) + 2E(EY ) + 2E(Y 2)− µ2
x − 2µxµy − µ2

y

grouping things together, we get

= V ar(X) + V ar(Y ) + 2(E(XY )− µxµy) = V ar(X) + V ar(Y ) + 2(E(XY )− E(X)E(Y ))

where
E(XY )− E(X)E(Y ) := Cov(X, Y )

the covariance of X, Y . From this we, have the following theorem:
Theorem 12. If X, Y are independent, then

1. E(XY ) = E(X)E(Y )

2. V ar(X + Y ) = V ar(X) + V ar(Y )

Recall that if X, Y are independent, V ar(X+Y ) = V ar(X)+V ar(Y ) which follows from the
fact that if these variables are independent, Cov(X, Y ) = 0, which implies that V ar(X+Y ) =
V ar(X) + V ar(Y ). This last line can be shown by

E(X, Y ) =
∑

all x, ally
xyf(x, y)

which follows from letting ϕ(x, y) = xy, and by independence, we know that this is equal
to:

∑
all x, all y

xyfX(x)fY (y) =
∑

all x, all y
(xfX(x))(yfY (y)) =

(∑
all x

xfX(x)
)∑

all y
yfY (y)

 = E(X)E(Y )
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4.2.1 Announcements

On October 24th, class is canceled. It will be made up on Dec. 14th. Also, on the 19th, please
come early, at 5 : 45.

4.2.2 Chapter 3, Question 13

Let X be a nonnegative integer valued random variable. We know that this means that

E(ϕ(X)) =
∑
all x

ϕ(x)fX(x)

which can lead to the following question: what is E(X(X − 1))? Well, this would be the
following sum :∑

all x
x(x− 1)fX(x) which follows from letting ϕ(X) = x(x− 1)

So now looking at ΦX(t),

Φx(t) =
∞∑
x=0

fX(x)tx

Taking the derivative of this function, (with respect to t)

Φ′X(t) =
∞∑
x=0

xfX(x)tx−1

and taking its second derivative,

Φ′′X(t) =
∞∑
x=0

x(x− 1)tx−2

plugging t = 1 in here, you have:

Φ′′X(1) = E[X(X − 1)] = E[X2 −X] = E(X2)− E(X)

also recall that the E(X) for a variable X ∈ IV+ is Φ′X(1) = E(X), so we have the for-
mula

E(X2) = Φ′X(1) + Φ′′X(1)
also recall that

V ar(X) = E(X2)− (E(X))2

plugging in what we have,
= Φ′X(1) + Φ′′X(1)− [Φ′X(1)]2

which works for positive integer valued random variables. Going back to the question and
our formula, if we let ϕ(x) = tx for a fixed t ∈ [−1, 1] what our formula is really giving us
is

E(tX) =
∑
all x

fX(x)tx = ΦX(t)

so, ΦX(t) = E(tX). The other parts are also similarly done. Before we do part (b), let us
notice the following lemma:
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Lemma 13. Suppose two random variables X, Y are independent. Then, any function α(X)
and β(Y ) are independent. More generally, suppose that you have many random variables
that are independent, X1, X2, ..., Xk, Xk+1, ..., Xl..Xn Thinking of these independent variables
in terms of three groups (separated by the ‘...’) then our functions

α(X1, ..., XK), β(Xk+1, .., Xl) γ(Xl+1...Xn)

are independent.

Back to our question, suppose that X, Y ∈ IV+ and are independent.

ΦX+Y (t) = E(tX+Y ) †

now algebra tells us this is equal to:
E(tXtY )

which must be independent, since tX and tY are functions as discussed in our above lemma.
Since these are independent, we know that:

E(tXtY ) = E(tX)E(tY )

and from a result we just had, this is equal to:

= ΦX(t)ΦY (t)

4.2.3 Chapter 3, Question 9

We want to construct an example of a density that has a finite moment of order r but has
no higher finite moment. Let us take some integer r > 0. Look at the series:

∞∑
x=1

1
xr+2

which clearly converges, for if we had some infinite sum:
∑ 1

xn

which we know converges for n > 1, otherwise it diverges.

Let us take some random variable X : 1, 2, 3, ... and let

1 < c =
∞∑
x=1

1
xr+2

now we call
f(x) = 1

cxr+2

†t is again in that same interval
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from which we can get
∞∑
x=1

f(x) = 1
c

∞∑
x=1

1
xr+2 = 1

now the expected value with this sum and these values, letting ϕ(x) = xr we have:

E(Xr) =
∞∑
x=1

xrfX(x) = 1
c

∞∑
x=1

1
x2 <∞

now looking at the next moment, using the same formula only using ϕ(x) = xr+1, we
have:

E(Xr+1) =
∞∑
x=1

xr+1fX(x) = 1
c

∞∑
x=1

1
x

=∞

thus, all future moments must be infinite.

4.2.4 Chapter 3, Question 6

Let X be a geometrically distributed random variable, and let M > 0 be a positive integer.
Let

Z = min(X,M) : 0, 1, 2, ..M

and compute the mean of Z. We know that

E(Z) =
M∑
z=0

zfZ(z)

note that if 0 ≤ z < M , saying that Z = z would be to say that X = z. And to say that
z = M , meaning that Z = M , this would mean that X ≥ M . So, we can split the expected
value into the sum:

E(Z) =
M−1∑
z=0

zfZ(z) +MfZ(m) =
M−1∑
z=0

zP (X = z) +M · P (X ≥M)

using formulas, we recall that the right hand term is equal to qM and the left hand term is
pqz. So

E(Z) = p
M−1∑
z=0

zqz +Mqm

however, we would like to reduce this sum. We can do this by noticing the following:

N∑
n=0

tn = 1 + t+ t2 + t3 + ...+ tN if t 6= 1,= 1− tn+1

1− t = u(t)

taking the derivatives on both sides, we have

1 + 2t+ 3t2 + ...NtN−1 = u′(t) when t 6= 1
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now multiplying both sides by t, we have

t+ 2t2 + 3t3 + ...+NtN = t · u′(t) =
N∑
z=0

ztz

which can then be applied to our answers, which we may not need. This is where we will
leave this question.

4.2.5 Chapter 3, Question 21

Suppose that X, Y are random variables such that ρ(X, Y ) = .5. The is called the correla-
tion coefficient, and it is defined as:

ρ(X, Y ) = Cov(X, Y )
√
σxσy

and using what we have in the question,

ρ(X, Y ) = Cov(X, Y )
√
σxσy

= 1
2

and
V ar(X) = 1 V ar(Y ) = 2

so, we want to find V ar(X − 2Y ). the question does not tell us that these variables are
independent- in fact, they must not be. We proceed in the following way:

V ar(X − 2Y ) = V ar(X) + V ar(−2Y ) + 2Cov(X,−2Y )

and since
V ar(−2Y ) = 4V ar(Y ) = 4(2) = 8

and since we have

2Cov(X,−2Y ) = E(−2XY )− E(X)E(−2Y ) = 2E(X)E(Y )− 2E(XY ) = −2Cov(X, Y )

now since
σx = 1 σy =

√
2

we know that
Cov(X, Y ) =

√
2

2
plugging in,

−2Cov(X, Y ) = −
√

2

so we see that
V ar(X − 2Y ) = 1 + 8− 2

√
2
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4.3 Chebyshev’s Inequality

Chebyshev’s Inequality is the following: suppose you had some random variable X with a
finite second moment, E(X2) <∞. This tells us that the variance is finite. Call the expected
value of X, E(X) = µ. The inequality looks at the following:

P{|X − µ| ≥ c} ≤ V ar(X)
c2

note that this event can be written as the following union:

{|X − µ| ≥ c} = {X ≤ µ− c}
⋃
{X ≥ µ+ c}

so we see that
P{|X − µ| ≥ c} = P (X ≤ µ− c) + P (X ≥ µ+ c)

The following is called Markov’s Inequality: If we have X ≥ 0, where X is discrete, and
if a > 0, if E(X) is finite, then

P{X ≥ a} ≤ E(X)
a

The questions (26-30) belong to these concepts, and should be looked at before next Mon-
day.

4.4 Markov’s Inequality

Theorem 14. let X ≥ 0 be a discrete random variable with finite expected value. Let a > 0.
Then,

P (X ≥ a) ≤ E(x)
a

this is Markov’s Inequality, and we will now prove it.

Proof. We know that

E(X) =
∑
all x

xf(x) converges by assumption

We break this into the following two sums:

=
∑

all x ≥ a
xf(X) +

∑
all x < a

xf(x)

note that all these terms are non-negative. Continuing, it is clear that:

=
∑

all x ≥ a
xf(X) +

∑
all x < a

xf(x) ≥
∑

all x ≥ a
xf(x)

Notice that
x ≥ a⇒ xf(x) ≥ af(x)
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so, the sum has the following property:∑
all x ≥ a

xf(x) ≥ a
∑

all x ≥ a
f(x) = aP (X ≥ a)

looking at the ends of this sequence, we have:

aP (X ≥ a) ≤ E(X) ⇒ P (X ≥ a) ≤ E(X)
a

Example. Say that we know that E(X) = 2, where X ≥ 0. We know that

P (X ≥ 6) ≤ 2
6 = 1

3

4.5 Chebyshev’s Inequality

Theorem 15. If X is a discrete random variable with a finite second moment, finite mean,
and finite variance, if c < 0 then

P (|X − µ| ≥ c) ≤ σ2

c2

Proof. We can agree that

|X − µ| ≥ c ⇐⇒ (X − µ)2 ≥ c2

now since (X − µ)2 is a positive random variable,

P (|X − µ|) = P{(X − µ)2 ≥ c2}

we can now apply Markov’s inequality,

P{|X − µ| ≥ c} = P{(X − µ)2 ≥ c2} ≤ E[(X − µ)2]
c2 = V ar(X)

c2

so we are done.
Example. Suppose I know that X ≥ 0, E(X) = 2 and V ar(X) = 2. What can we say
about

P (X ≥ 6)?
since we have the value of µ, we can say the following:

P (X ≥ 6) = P (X − µ ≥ 4) ≤ V ar(X)
42 = 1

16
and we can see that

P (X ≤ µ− c) + P (X ≥ µ+ c) = P (|X − µ| ≤ c)
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4.6 Chapter 4, Question 27

Suppose a bolt manufacturer knows that 5% of his production is defective. He gives a
guarantee on his shipment of 10,000 parts by promising to refund the money if more than
a are defective. How small can the manufacturer chose a to be and still be assured that he
need not give a refund more than 1% of the time?

Let X= the number of defective bolts, or for our purposes, our ‘number of successes’. We
know that X = Binomial(n = 10, 000, p = .05). A refund will be given if and only if X ≥ a.
What we are trying to do is find the smallest possible a for which the probability of a refund
is not larger than 1%. For X, what is µ? Well for a binomial random variable, we know that
E(x) = np = 500. The variance σ2 is equal to npq = 475 Looking at the probability

P (X ≥ a) = P (X − µ ≥ a− µ) ≤Cheb. Ineq.
V ar(X)
(a− µ)2

which is true provided that a − µ is positive. If we impose that V ar(X)
(a−µ)2 ≤ .01, we can solve

for a. Focusing on our inequality,

V ar(X)
(a− µ)2 = 475

(a− 500)2 ≤ .01⇒ 47, 500 ≤ (a− µ)2

taking the square root, √
47, 500 ≤ a− 500

adding 500,
a =
√

47, 500 + 500 ≈ 717.94494
so we take a = 718, which is the smallest value of a that allows the manager to pay for
returns less than 1% of the time.

4.7 Chapter 4, Question 15

Let X1, ...Xn be independent random variables having a common density with mean µ and
variance σ2. ‡ Looking at the sample mean Xn, we have:

Xn = X1 +X2 + ...+Xn

n

calculating the variance and expected value of the sample mean we have:

E(Xn) = µ

since the expected value of the sum is the sum of the expected values. In calculating the
variance:

V ar(X) = σ2

n
‡these variables are called ‘i.i.d.’ since they have the same mean and variance
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4.8. CHAPTER 4, QUESTION 29

For n ≥ 2, we need to show that:

E

(
(X1 −X)2 + ...+ (Xn −X)2

n− 1

)
= σ2

where here, we are taking the expected value of the Sample-Variance. Let us look at:
Xi −X = (Xi − µ)− (X − µ)

this leads us to:
(Xi −X)2 = (Xi − µ)2 + (X − µ)2 − 2(Xi − µ)(X − µ)

making this a sum, we have:
n∑
i=1

(Xi −X)2 =
n∑
i=1

(Xi − µ)2 +
n∑
i=1

(X − µ)2 − 2
n∑
i=1

(Xi − µ)(X − µ)

noticing that:
n∑
i=1

(X − µ) =
n∑
i=1

X − nµ = nX − nµ = n(X − µ)

and that
2
∞∑
i=1

(Xi − µ)(X − µ) = 2n(X − µ)
∞∑
i=1

(Xi − µ) = 2n(X − µ)2

plugging in, we get:
n∑
i=1

(Xi −X)2 =
n∑
i=1

(Xi − µ)2 − n(X − µ)2

taking the expected value, we have:

E

(
n∑
i=1

(Xi −X)2
)

= nσ2 − nσ
2

n
= (n− 1)σ2

4.8 Chapter 4, Question 29

Given some X ≥ 0 ∈ IV+, given ΦX(t) = E(tX) , taking a 0 < t < 1, we aim to show
that

P (X ≤ x0) ≤ ΦX(t)
tx0

It is clear that if t = 1, this is clear. Let us assume that t < 1 and fixed. Let M(x) = tX , x ∈
R. This function is clearly decreasing. We can then see that

X ≤ x0 ≡ tx0 ≤ tX

so since these events are equivalent, we have
P (X ≤ xo) = P (tX ≥ tx0)

so by Markov’s inequality,

P (X ≤ xo) = P (tX ≥ tx0) ≤ E(tX)
tx0

= ΦX(t)
tx0
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4.9 Chapter 4, Question 30

Let X have a Poisson density with parameter λ. We want to show that:

P

(
X ≤ λ

2

)
≤
(2
e

)λ/2
; P (X ≥ 2λ) ≤

(
e

4

)λ
We know the following about Poisson random variables of parameter λ:

ΦX(t) = eλ(t−1)

Take a look at:
P (X ≤ λ

2 )

from part (a) of question 29, we see that

a := P (X ≤ λ

2 ) ≤ eλ(t−1)

tλ/2

for every 0 < t ≤ 1. Focusing on the function on the right, we do the following:

eλ(t−1)

tλ/2
= e−λ

eλt

tλ/2
= e−λ ·

(
e2t

t

)λ/2
saying that

m(t) = e2t

t

we would not like to minimize m(t) on the interval 0 < t ≤ 1. This is strictly from calculus,
we proceed by taking the derivative:

m′(t) = 2e2t · t− e2t

t2
= e2t(2t− 1)

t2

so setting this equal to zero, it is clear that

m′(t) = 0⇒ t = 1
2

so for all t from 0 < t ≤ 1, we know that

e2t

t
≥ 2e which follows from plugging in t = .5

raising this to the power λ/2 and multiplying with e−λ, we put all the pieces back together
and get:

a := P (X ≤ λ

2 ) ≤ e−λ · (2e)λ/2 = 2λ/2 · e−λ/2

from which we can conclude:
P

(
X ≤ λ

2

)
≤
(2
e

)λ
2

so we have a fairly good estimate for the probability.
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4.10. CHAPTER 4, QUESTION 26

4.10 Chapter 4, Question 26

Given X a random variable with values 1, 2, 3, where

f(1) = f(3) = 1
18

and
f(2) = 16

18
we need to show that there exists δ > 0 such that

P (|X − µ| ≥ δ) = V ar(x)
δ2

first, we calculate:
µ = 1f(1) + 2f(2) + 3f(3) = 2

and
σ2 = E(X2)− µ = 12f(2) + 22f(2) + 32f(3)− 4 = 1

9
now looking at

|X − 2| ≥ δ

for some positive δ, let us first take δ to be 1. What does it mean to say |X−2| ≥ 1 in terms
of X? It means that X takes the values:

X = 1, X = 3

so thus,

P (|X − 2| ≥ 1) = P (X = 1) + P (X = 3) = f(1) + f(3) = 2
18 = 1

9 = V ar(X)
δ2

and we are done. Now notice that for any δ > 0, then |X − 2| ≥ δ would mean that X = 1
or X = 3. So for any δ > 0, the probability of |X − µ| ≥ δ is 1

18 + 1
18 = 1

9 , which we know to
be the Variance. Thus, δ must be one.

4.11 Chapter 4, Question 28

Given X = Poisson(λ), using Chebyshev’s inequality, we know that

P (X ≤ µ− c) + P (X ≥ µ+ c) = P (|X − µ| ≥ c) ≤ V ar(X)
c2

we know that for a Poisson random variable, µ = λ = σ2, so for this case, we want λ
2 to be

equal to λ− c, and in solving c, we see that c = λ
2 and in using as such,

P (X ≤ λ

2 ) ≤ V ar(X)
c2 = λ

λ2/4 = 4
λ
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and for part (b), we want the probability that P (X ≥ 2λ), and since we want 2λ = λ + c,
we see that c = λ. Plugging back in again, by Chebuchev’s inequality we know that

P (X ≥ 2λ) ≤ V ar(X)
c2 = λ

λ2 = 1
λ

4.12 The Weak Law of Large Numbers

Suppose that X1, X2, ...Xn are independent, identically distributed variables (i.i.d., all with
the same f(x). This tells us that µ and σ2 is the same for all these variables). Remember
that Xn is the ‘sample mean’, and is defined to be:

Xn = X1 +X2 + ...+Xn

n

Now, let ε > 0, fixed. Now, when looking at

lim
n→∞

P (|Xn − µ| ≥ ε) = 0

The interpretation is that, if n is large, then P (|X−µ| ≥ ε) ≈ 0, which is the same as saying
P (|Xn − µ < ε)C ≈ 1. Numerically, saying that ε = .01 we say that the distance between X
and µ being less than %1 is almost %100.

Proof. We know that E(X) = µ, and that V ar(X) = σ2

n
, so

P (|Xn − µ| ≥ ε) ≤ V ar(Xn)
ε2

= σ2

nε2

and since
lim
n→∞

σ2

nε2
= 0

we see that we have proved the weak law of large numbers.

4.13 Review for Midterm #1

4.13.1 Chapter 4, Question 6

This question uses Theorem 5, which says for a random variable X ∈ IV+, the expected
value of X exists and is finite if and only if the following series converges:

∞∑
x=1

P (X ≥ x)

and in that case,
E(x) =

∞∑
x=1

P (X ≥ x)
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So for our question, we have
M > 0 integral,

where X = Geom(p) and let

Z = min(X,M) : 0, 1, 2, ...,M

so, Z is in IV+. Looking at

∞∑
x=1

P (Z ≥ x) =
M∑
x=1

P (Z ≥ x)

so this series converges, since it is a finite sum. The minimum,

min(X,M) ≥ x ≡ X ≥ x and M ≥ x

since M ≥ x for all x,

∞∑
x=1

P (Z ≥ x) =
M∑
x=1

P (Z ≥ x) =
M∑
x=1

P (X ≥ x)

= q + q2 + ...+ qM = 1− qM+1

1− q − 1

4.13.2 Chapter 4, Question 29

We want to show that
P (X ≥ x0) ≤ Φx(t)

tx0
, t ≥ 1

now, when t = 1, we see that Φx(t = 1) = 1, so tx0 = 1. Thus, the inequality is true. Let us
assume that t > 1 and is fixed. Now, we are told that the generating function is finite for all
t. We can proceed as follows:

v(x) := tx

and we know that v(x) is increasing, since t > 1. So,

X ≥ x0 ⇒ tX ≥ tx0

and vice versa, so
X ≥ x0 ⇐⇒ tX ≥ tx0

so,
P (X ≥ x0) = P (tX ≥ tx0)

so by using Markov’s inequality, we have

P (X ≥ x0) = P (tX ≥ tx0) ≤ E(tX)
tx0

= Φx(t)
tx0
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4.13.3 Chapter 4, Question 14

We have E(2X + 3Y ) = 2a+ 3b, where we let a = E(X), b = E(Y ). If we call

σ2
x = V ar(X) σ2

y = V ar(Y )

so
V ar(2X + 3Y ) = V ar(2X) + V ar(3Y )

since X, Y are independent. Proceeding,

V ar(2X + 3Y ) = V ar(2X) + V ar(3Y ) = 4V ar(X) + 9V ar(Y ) = 4σ2
x + 9σ2

y

Recall that
V ar(X) = E(X2)− (E(X))2

so for the variance to exist, we needed the second moment to be finite, otherwise it wouldn’t
exist.

4.13.4 Chapter 3, Question 15(c)

X, Y are independent random variables having the uniform density on {0, 1, ...N}. We would
like to find the density of |Y −X|. First, notice that

|Y −X| = 0, 1, ...N

if we call one of these values z, we then say that

Z = |Y −X| = z if and only if Y −X = z or X − Y = z

these are disjoint events. I.e.,

P (Z = z) = P (Y −X = z) + P (X − Y = z)

this is o.k., as long as z ranges from 1, N . If you take an fix such a z, notice that

X − Y and Y −X

have the same density. So, we can double one and drop the other in our calculation.

P (Z = z) = 2P (Y −X = z)

we can express this event in the following way:

Y −X = z ≡
N⋃
x=0

(X = x, Y −X = z) =
N⋃
x=0

(X = x, Y = x+ z)

we want x + y to be at most N , which is equivalent to saying X ≤ N − z, and in that
case,

N⋃
x=0

(X = x, Y = x+ z) =
N−z⋃
x=0

(X = x, Y = x+ z)
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and these events are now disjoint, and the probability of their intersection is their prod-
uct:

P (Y −X = z) =
N−z∑
x=0

P (X = x)P (Y = x+ z)

notice that here, x on the right hand event is a number. Continuing,

P (Y −X = z) =
N−z∑
x=0

P (X = x)P (Y = x+ z) = (N − z + 1) 1
(N + 1)2

so,

P (Z = z) = 2(N − z + 1)
N + 1)2

and when z = 0,
P (Z = 0) = P (X = Y ) = The answer for 14(b)

4.13.5 Chapter 3, Question 17

Letting X < Y be independent random variables with X = G(p1), Y = G(p2), in finding the
density of X + Y we use the convolution formula:

fX+Y (z) =
z∑

x=0
fX(x)fY (z − x)

and since
fX(x) = p1q

x
1 fY (z − x) = p2q

z−x
2

combining, and removing things that don’t depend on x:

fX+Y (z) =
z∑

x=0
fX(x)fY (z − x) = p1p2q

z
2

z∑
x=0

(
q1

q2

)x

which gives us two cases. Suppose that q1
q2

= 1, which tells us that q1 = q2 = q, p1 = p2 = p,
so in this case, we have:

fX+Y (z) = (z + 1)pzqz

and in case two, where Q = q1
q2
6= 1, we get

fX+Y (z) = p1p2q
2
2

[
1 +Q+Q2 +Q3 + ...

]
= p1p2q

2
2
Qz+1 − 1
Q− 1 = p1p2q

2
2

qz+1
1
qz+1

1
− 1

q1
q2
− 1
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4.13.6 Chapter 3, Question 31

Given X, Y indepenent random variables of uniform distributions of {1, 2, ...N}, we would
like to find the densities of X + Y . First, notice that

X + Y : 2, 3, ...2N

since both X, Y are in IV+, we can use our convolution formula,

FX+Y (z) =
z∑

x=1
fX(x)fY (z − x) =

z−1∑
x=1

fX(x)fY (z − x) §

we have already done this question, and will now offer a different approach. Let N = 5, and
let X, Y be independent uniform variables over {1, 2, 3, 4, 5}. Notice that

ΦX(t) =
5∑

x=1
fX(x)tx = 1

5(t+ t2 + t3 + t4 + t5)

since the sum is finite, this sum converges for all t. Now,

ΦY (t) = 1
5(t+ t2 + t3 + t4 + t5)

since all the values are the same. We know that since the variables are independent,

ΦX+Y (t) = ΦX(t) · ΦY (t) = 1
25(t10 + 2t9 + 3t8 + 4t7 + 5t6 + 4t5 + 3t4 + 2t3 + t2)

ΦX+Y (T ) = 1
25(t2 + 2t3 + 3t4 + 4t5 + 5t6 + 4t7 + 3t8 + 2t9 + t10)

recall that
ΦX+Y =

∞∑
z=0

fX+Y (z)tz

so matching the coefficients,

FX+Y (2) = 1
25 FX+Y (3) = 2

25
FX+Y (4) = 3

25 FX+Y (5) = 4
25

FX+Y (6) = 5
25 FX+Y (7) = 4

25
FX+Y (8) = 3

25 FX+Y (9) = 2
25

FX+Y (10) = 1
25

so in other words, we can match these coefficients to get the densities. You can actually
extend this idea to N cases, and can get a nice formula for it.
§since when z=x, FY is zero
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4.13.7 Chapter 4, Question 14

We have X, Y independent having the uniform density over {0, 1, ..N}. here, notice that

fX(x) = 1
N + 1 = fY (y)

for all x, y. Since these variables are independent, looking at the vector (X, Y ) its joint can
be represented as:

joint(X, Y ) = f(x, y) = fX(x)fY (y) = 1
(N + 1)2

as long as x, y are from 0, N . Now, compare P (X < Y ) to P (X > Y ). We note that these
two probabilities are equal. Let us say:

P (X < Y ) = P (X > Y ) = a

for (b), notice that

(X = Y ) =
N⋃
y=0

(X = Y, Y = y) =
N⋃
y=0

(X = y, Y = y)

and now these events are disjoint, so,

P (X = Y ) =
N∑
y=0

P (X = x)P (Y = y) =
N∑
y=0

1
(N + 1)2 = N + 1

(N + 1)2 = 1
N + 1

now, notice that Ω = (X < Y )⋃(X = Y )⋃(X > Y ), which are all disjoint events. Now,
applying the probabilities,

P (Ω) = 1 = q + 1
N + 1 + a = 2a

so,
2a = 1− 1

N + 1 = N

N + 1 ⇒ a = N

2(N + 1)
so for part (a), we see that

P (X ≥ Y ) = P (X = Y ) + P (X > Y ) = 1
N + 1 + N

2(N + 1) = N + 2
2(N + 1)

thus, we have another solution to this question.

4.13.8 Chapter 4, Question 30

In part (a), P (X ≤ x0) ≤ µ(t) for all t ∈ (0, 1). In question 29, we have the following idea:
so we can eventually get

Φx(t)
tx0

= u(t)
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0 1 t

a

u(t)

t0

Figure 4.1: The idea is to find the absolute minimum value of u(t0) and then a ≤ u(t0)
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Chapter 5
Continuous Random Variables

5.1 Cumulative Distribution Function

We will abbreviate the Cumulative Distribution Function as c.d.f. For each random variable
X, there exits a corresponding function F such that:

F (x) := P (X ≤ x) x ∈ R

Recall that when when X is discrete, with probability function f(t) = P (X = t), we defined
F (x) as follows:

F (x) =
∑

all t ≤ x
f(t)

whose graph we could interpret as a step function. So, For a random variable X with
c.d.f. F (X), what general properties can we list? Well, it turns out we have the following
properties:

1. 0 ≤ F (x) ≤ 1

2. F (x) is non-decreasing (if x1 < x2, then F (x2) ≤ F (x2))

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

for example, take x1 ≤ x2 ≤ ... ≤ xn →∞

for this monotonically increasing function, all we need to show is that

F (xn)→ 1

and looking at the events

{X ≤ x1} ⊆ {X ≤ x2} ⊆ ... ⊆ {X ≤ xn} = A1 ⊆ A2 ⊆ ... ⊆ An

taking their union
A =

n⋃
i=1

Ai
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we see that
P (X ≤ xn)→ P (A)

and since A = Ω, we see that F (Xn) = P (X ≤ xn)→ P (A) = 1.

4. F (x) is always right-continuous, meaning that limx→a+ F (x) = F (a). This has an
interesting geometric discussion, and is worth looking up in the textbook, Figure 3 of
chapter 5. We say that F (a) − F (a−) is the ‘possible size of the jump at a’. We can
show without to much trouble that this is really equal to P (X = a). So, our conclusion
is that F (x) is continuous on R if and only if P (X = a) = 0 for all a.

Definition. A density (with respect to integration) is a function f(x) ≥ 0 for all x ∈ R
and such that ∫ ∞

−∞
f(x)dx = 1

Definition. A random variable X is called continuous with density if there exists a density
(with respect to integration) f(x) such that the distribution

F (x) =
∫ x

−∞
f(t)dt ⇒ F ′(x) = f(x)

We have the formula for an interval C ∈ R, that

P (X ∈ C) =
∫
C
f(x)dx

For example,
P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

Example. Recall that for variables of the form Exp(λ), we have the following density: for
λ > 0,

f(x) =
{
λe−λx if x ≥ 0

0 if x < 0
The support for a random variable is the interval such that f on the compliment of it is
equal to zero. In this case, the support for our random variable Exp(λ) is [0,∞].
Example. Let X = Exp(λ) and let Y =

√
X. We would like to find the density of Y . We

first notice that X has corresponding functions f and F . Similarly, we notice that Y has a
density function g and cumulative distribution function G. We aim to solve for g. We can
immediately see from our definition of Y that Y ≥ 0, implying that the support of g must
be the interval from 0 to ∞. So:

G(y) = P (Y ≤ y) = 0 if y is negative ⇒ G′(y) = 0 if y < 0

Immediately, we can say that g(y) = 0 if y ≤ 0. Now, let us take a y that is positive, and fix
it. We have the following relationship:

G(y) = P (
√
X ≤ y) = P (X ≤ y2) = F (y2)

which gives us a connection between G(y) and F (y). So, since

g(y) = G′(y) = F ′(y2) = 2yf(y2) = 2yλe−λy2
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5.2. FINDING THE DENSITY OF A TRANSFORMATION OF A RANDOM
VARIABLE

we say that:

g(y) =
{

2yλe−λy2 if y > 0
0 if y ≤ 0

One should review pages 110-115 and example 5 on page 117.

5.2 Finding the Density of a Transformation of a Ran-
dom Variable

The general types of questions we would like to approach are like the following: suppose that
we are given some random variable X with a density f(x). Given some function ϕ, let

Y = ϕ(X)

If Y is a continuous random variable with density, we would like to be able to find the density
of Y , g(y).
Definition. A random variable X is called Normal(µ, σ2) if the density of X is given by:

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2

The ‘standard normal’ Is Normal(µ = 0, σ2 = 1), in which case:

f(x) = 1√
2π
e−

x2
2

Notice that ∫ ∞
−∞

e−
x2
2 dx =

√
2π

The graph of such a density is the well know ‘bell curve’, where the area under this curve
from −∞ to ∞ is equal to 1.

We have the following facts for a normally distributed variable X:

1. E(X) = µ

2. V ar(X) = σ2

Example. Suppose that X = N(µ, σ2), and that a 6= 0, b are two constants. Let ϕ(x) =
ax+ b. Look at

Y = ϕ(X) = aX + b

Now find the density of Y , called g(y). Notice that X has a density f(x), and a cumulative
distribution F (x). The same is true for Y , it has a density g(y) and a cumulative distribution
G(y). We know that

fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2
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we also know that

G(y) = P (Y ≤ y) = P (aX + b ≤ y) = P (X ≤ y − b
a

)

We are assuming here that a < 0, hence making it clearly unnecessary to reverse the inequal-
ity. Continuing,

P (X ≤ y − b
a

) = F (y − b
a

)

Thus,
G(y) = F (y − b

a
)

Taking the derivative,
g(y) = G′(y) = F ′(y − b

a
) = f(y − b

a
)1
a

notice that when a > 0,
g(y) = 1

a
f(y − b

a
)

regardless of the distribution of X- we have not as of yet mentioned the fact that X is a
normal random variable. In our example,

f(y − b
a

)1
a

= 1
a
· 1√

2πσ
e−

( y−ba −µ)2

2σ2 = 1√
2π(aσ)

e
− (y−(aµ+b))2

2(aσ)2

notice that this density is normal, N(aµ+ b, a2σ2). We just proved the following theorem:
Theorem 16. Given a > 0, b ∈ R, X = N(µ, σ2) then

aX + b = N(aµ+ b, a2σ2)

As an exercise, repeat this process and see what happens if a < 0.

5.3 Chapter 5, Question 9

Let X denote the decay time of some radioactive particle and assume that the distribution
of X is given by:

X = Exp(λ)
where λ > 0 and X ≥ 0 and continuous, with density:

f(x) =
{
λe−λx if x ≥ 0

0 if x < 0

We aim to find a number t such that P (X ≥ .t) = .9. Based on the definition of our random
variable, we have the following:

F (x) = P{X ≤ x} =
∫ x

−∞
f(t)dt
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and by the properties of our random variable, F (x) = 0 if x ≤ 0, so our integral is really:

F (x) =
∫ x

0
f(t)dt = −e−λt

∣∣∣∣∣∣
t=x

t=0

= 1− eλx

so,

F (x) =
{

1− e−λx if x ≥ 0
0 otherwise

In our question we are told that P (X ≥ .01) = 1
2 , from which we notice that:

1− (1− e−.01λ) = 1− F (.01) = P (X ≥ .01) = 1
2

so,
λ = 100 ln(2)

in now finding t such that P (X ≥ t) = .9, we note that if X = Exp(λ),

1− P (X ≥ x) = P (X ≤ x) = 1− e−λx if x ≥ 0

so,
P (X ≥ x) = 1− (1− e−λx) = e−λx

thus,
e−λt = .9⇒ −λt = ln(.9)⇒ t = ln(.9)

−λ
= ln(.9)
−100 · ln(2)

5.4 Chapter 5, Question 7

Pick a point (u, v) uniformly from the square 0 ≤ u ≤ 1, 0 ≤ v,≤ 1. Let X b the random
variable that assigns to the point (u, v) the number u + b. We wish to find the cumulative
distribution function of X. This probability space Ω is represented by Figure(5.1).

Ω
v

u

1

1

0

Figure 5.1: Ω

Define:
X(u, v) = u+ v
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notice that the values X takes on lie in the following interval:
0 ≤ X ≤ 2

So, if F (x) = c.d.f. of X, in view of the above fact,{
F (x) = 0 if and only if x ≤ 0
F (x) = 1 if and only if x ≥ 2

Fix some x, where 0 < x < 2. Now look at
F (x) = P{(u, v) ∈ Ω | u+ v ≤ x}

As we did in elementary school, we would now like to graph this line and treat this as an
inequality. We now have two cases.

v

u

1

1

0
(x, 0)

(0, x)

v

u

1

1

0
(x, 0)

(0, x)

v

u

1

1

0
(x, 0)

(0, x)

v

u

1

1

0
(x, 0)

(0, x)

v

u

1

1

0
(x, 0)

(0, x)

Ω
v

u
1

1

0 u+ v = x
A

u+ v = x

Ω

B

Figure 5.2: Case(1), Case (2)

Fist, let us suppose that 0 < x < 1. In this case, the line u+ v = x can be graphed over our
square and the area corresponding to u + v ≤ x < 1 can be found, and is in fact equal to
F (x). In this case,

F (x) = x2/2 = the area of figure A
In the second case, where 1 ≤ x ≤ 2, it is easier to calculate the area of triangle B and
to then subtract its area from the area of the unit square. The sides of triangle B can be
calculated in the following way:

1− (x− 1) = 2− x
In which case,

F (x) = 1−B = 1− (2− x)2

2
so in summary,

F (x) =


0 if x < 0
x2

2 if 0 ≤ x ≤ 1
1− (2−x)2

2 if 1 ≤ x ≤ 2
1 if x ≥ 2
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5.5 Chapter 5, Question 10

Let X denote the distance of the point x from the origin where x is chosen uniformly over
the interval [0, a].

0 ax

X

The density of x is then the following, since it is selected uniformly over the interval [0, a]:

f(x) =
{
x
a

if 0 ≤ x ≤ a
0 otherwise

looking at Y = min(X, a2), the question asks us to find the distribution of Y . Notice
that:

Y = min
(
X,

a

2

)
=
{
X if X ≤ a

2
a
2 if X ≥ a

2

so clearly,
0 ≤ Y ≤ a

2
Let us call G(y) the cumulative distribution function of Y ;

G(y) = P (Y ≤ y)

If y ≤ 0, this implies that G(y) = 0. If 0 < y < a
2 , then

G(y) = P (Y ≤ y) = P (X ≤ y) = y

a

which follows from noticing that the following is true in general for X:

P (X ≤ x) = F (x) =


0 if x < 0

x
a

if 0 ≤ x ≤ a
1 if x ≥ a

Finally, if a
2 ≤ y, then:

G(y) = P (Y ≤ y) = 1
So, what kind of variable is Y ? We notice that it is neither discrete of continuous, it is a
“mixture”; it has properties of both discrete and continuous variables. Referring to the graph
of G(y) and calculating the probability P (Y = a

2), we see that

P (Y = a

2) = P (X ≥ a

2) = 1
2

which is the the size of the ‘jump’ at Y = a
2 . This is illustrated with the following figure:
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a
2

1
2

1

P (Y = a
2 )

Theorem 17. Let X is a continuous random variable, and Y = ϕ(X), where

ϕ : Iinterval → R

is differentiable, strictly increasing or strictly decreasing, and has the property: f(x) =
0,∀ x /∈ I. We have the following:

y = ϕ(x) ≡ x = ϕ−1(y)

and random variable Y = ϕ(X) is continuous with density:

g(y) = f(x) ·
∣∣∣∣dxdy

∣∣∣∣
(where here, x = ϕ−1(y)). This theorem is stated and proven in the book.
Example. Suppose that X = Exp(λ), and let β 6= 0. Take ϕ(x) = x

1
β . Assume that β < 0.

Taking the derivative,
ϕ′(x) = 1

β
x

1
β
−1 < 0 on (0,+∞)

for x > o. So, ϕ is strictly decreasing on the interval (0,∞). So,

y = ϕ(x) = x
1
β

and we would like to solve for x to get the inverse. In this case,

x = yβ ⇒ dx

dy
= βyβ−1

taking the absolute value, ∣∣∣∣dxdy
∣∣∣∣ = −βyβ−1

and using our theorem, we see that the density of Y is :

g(y) = f(yβ) · (−βyβ−1) = −βyβ−1λe−λy
β
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Example. Assume that X = Normal(0, σ2). Recall that:

f(x) = 1√
2πσ

e−
x2

2σ2

Let Y = X2. We aim to find the density g(y) of Y . It is natural to think about constructing
a function such that:

y = ϕ(x) = x2

because in that case, Y = ϕ(X). Notice that X has some density f , and a cumulative
distribution F , and similarly Y has corresponding functions g,G where G′ = g. We would
like to connect these functions in a way that allows us to find g. Clearly, since Y ≥ 0,
G(y) = 0 if y ≤ 0. This tells us that we should fix y > 0, and look at:

G(y) = P (Y = X2 ≤ y) = P (−√y ≤ X ≤ √y) = F (√y)− F (−√y)

Thus, we have a connection from G to F . Taking the derivative with respect to y,

g(y) = G′(Y ) = 1
2√yf(√y) + 1

2√yf(−√y)

since f is symmetrical, f(√y) = f(−√y), and:

g(y) = G′(Y ) = 1
√
y
f(√y) = 1

σ
√

2πye
− y

2σ2

Giving us the following density:

g(y) =
{

1
σ
√

2πye
− y

2σ2 if y > 0
0 otherwise

Notice that this is the density of Y = X2. Writing this in a different way, we have:

g(y) =

 1
σ
√

2πy
− 1

2 e(−
1

2σ2 )y if y > 0
0 otherwise

In attempting to extend this example, notice that Y = X2 > 0. So, think of X ≥ 0 as a
continuous variable of the form:

X ≥ 0 continuous  f(x) =
{
cxα−1e−λx if x > 0

0 otherwise

This leads to a natural transition into what is known as the Gamma Function, on which
we will connect these two concepts later.
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5.6 The Gamma Function

Definition. The Gamma Function : For each α > 0, the integral

Γ(α) =
∫ ∞

0
xα−1e−xdx

is finite. We have some values, specifically that:
Γ(1) = 1, Γ(α + 1) = αΓ(α), Γ(n) = (n− 1)!

Fact. If you take α > 0, λ > 0, and look at the following:∫ ∞
0

xα−1e−λxdx = Γ(α)
λα

This can be proven by a change of variable; let λx = y, and see that x = y
λ
, which preserves

the limits of integration. Also notice that λdx = dy, telling us that dx = dy
λ

.
Definition. X = Γ(α, λ), if X ≥ 0, α, λ > 0, has density

f(x) =
{

λα

Γ(α)x
α−1e−λx if x > 0
0 otherwise

5.7 Chapter 5, Question 21

Let X be a positive continuous random variable having density f . Find a formula for the
density of

Y = 1
(X + 1)

Notice that
0 < Y = 1

(X + 1) < 1

Call g(y) the density of Y . Notice that g(y) = 0 if y ≤ 0 or y ≥ 1. So,

y = ϕ(x) = 1
(x+ 1)

is a strictly decreasing function. We can find the inverse by solving for x,

x = 1
y
− 1

so,
dx

dy
= − 1

y2

and using the formula, which says g(y) = f(x)|dx
dy
| we get:

g(y) = 1
y2 · f

(
1
y
− 1

)
so in conclusion,

g(y) =
{ 1
y2f( 1

y
− 1) if 0 < y < 1
0 otherwise
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5.8 Chapter 5, Question 23

Let X be a random variable uniformly distributed on (a, b). We wish to find a linear function
ϕ such that Y = ϕ(X) is uniformly distributed on (0, 1). Notice that we always have a
function:

µ : [a, b]→ [0, 1]

defined by:
µ(x) = x− a

b− a
This follows from:

a ≤ x ≤ b ⇐⇒ 0 ≤ x− a ≤ b− a ⇐⇒ 0 ≤ x− a
b− a

≤ 1

Now take ϕ to be this function µ. It defines a homeomorphism between these two intervals.
Notice that:

X = Uniform[a, b]⇒ f(x) =
{ 1
b−a if a ≤ x ≤ b

0 otherwise

Notice that if
y = x− a

b− a
in finding the inverse, it is clear that

x = (b− a)y + a⇒ dx

dy
= b− a > 0

so using the formula g(y) = f(x)|dx
dy
|, we get:

g(y) = f((b− a)y + a)(b− a)

so we see that
g(y) =

{
1 if y ∈ [0, 1]
0 otherwise

and notice that g(y) is uniform over [0, 1].

Let us assume that X is a continuous random variable with density f(x) and with support
(a, b). In other words, f(x) > 0 for all a < x < b and f(x) = 0 for all x < a or x > b.
The cumulative distribution function of such a function f would be continuous, and would
be strictly increasing on the interval (a, b). Past b, the function F is at 1 and before a,
the function F is at 0.
Theorem 18. If we have X, a continuous random variable with density f(x) and with support
(a, b), we can call Y = F (x), and note that Y has uniform distribution on [0, 1].

Proof. First, recognize that
0 ≤ Y = F (X) ≤ 1
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The distribution function of Y , G(y), is equal to 0 if y < 0 and G(y) = 1 if y > 1. Now take
0 < y < 1, and say that

G(y) = P (F (X) ≤ y)
Convince yourself that:

F (a) ≤ b ⇐⇒ a ≤ F−1(b)
using this in our problem, we see that

G(y) = P (F (X) ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y

Putting the pieces back together, we find that Y = F (x) has the distribution function:

G(y) =


y if 0 < y < 1
0 if y ≤ 0
1 if y ≥ 1

Which is the distribution function of the uniform random variable on the interval [0, 1].

Going back to our question, notice that our density f(x) has support (b, a). When you take
the cumulative distribution function, we see that

F (x) =


0 if x < a
x−a
b−a if a ≤ x ≤ b

1 if x > b

Which was interestingly what we took our variable Y to be.

As an exercise, let X = Exp(λ). Find ϕ such that Y = ϕ(X) is Uniform[0, 1]. Notice that
the distribution function would look like:

F (x) =
{

1− e−λx if x > 0
0 otherwise

5.9 Exam 2

The date of the second exam will be Wednesday, November the 23rd.

5.10 Chapter 5, Question 19

Let X, Y = X2 be positive continuous random variables having densities f, g respectively.
Find f in terms of g and find g in terms of f .

Notice that X > 0, Y > 0. Also see that y = x2 = ϕ : (0,∞) → (0,∞) is one-to-one and
onto. Thus the inverse, is x = √y. Taking the derivative, dx

dy
= 1

2√y . According to our
theorem,

g(y) = f(x)
∣∣∣∣∣dxdy

∣∣∣∣∣ = f(√y ) 1
2√y
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which is equivalent to:
g(y) =

f(√y)
2√y

if y > 0, on our support. In finishing our question, we find f in terms of g, and get

f(√y) = 2√yg(y) ⇒ f(x) = 2xg(x2)

if x > 0, or in other words, is on our support, and we have completed our question. However,
how could we have done this question without our theorem? Notice that X has corresponding
functions f, F , and Y has corresponding functions g,G. Notice first that

G(y) = 0 if y ≤ 0

Now take a y > 0, and fix it. Thus,

G(y) = P (X2 ≤ y) = P (−
√
Y ≤ X ≤ √y) = F (√y)− F (−√y) = F (√y)

so, if y > 0, G(y) = F (√y). Now taking the derivative and using the chain rule, we can
arrive at our solution.

5.11 The Gamma Function (continued)

Recall that for α > 0,
Γ(α) =

∫ ∞
0

xα−1e−xdx

It is easy to show that Γ(1) = 1, and Γ(α + 1) = αΓ(α). For example, through integration
by parts:

Γ(α + 1) =
∫ ∞

0
xαe−xdx = −x

α

ex

∣∣∣∣∣∣
x=∞

x=0

− α
∫ ∞

0
xα−1e−xdx = αΓ(α)

by letting u = xα, v′ = e−x.

Recall that for X = Γ(α, λ), if X ≥ 0, α, λ > 0, X has density:

f(x) =
{

λx

Γ(α)x
α−1e−λx if x > 0

0 otherwise

Also recall that we have the fact that if X = Normal(0, σ2), Y = X2, the density of Y
is

g(y) =
{

1
σ
√

2πy
−1/2e−

y

2σ2 if y > 0
0 otherwise

thus when examining g(y), we observe that it is Γ(α = 1
2 , λ = 1

2σ2 ) By equating the constants
of the two random variables, we arrive at the following,

1
σ
√

2π
=

(
1

2σ2

) 1
2

Γ(1
2) ⇒

1
σ
√

2π
= 1√

2σΓ(1
2)
⇒ Γ

(1
2

)
=
√
π
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CHAPTER 5. CONTINUOUS RANDOM VARIABLES

since we have f(x) = cu(x) a < x < b and g(x) = du(x), a < x < b, and being on the same
support, we can conclude that c = d.
Theorem 19. Let X1, ..., Xn be independent random variables such that Xi has the gamma
density Γ(αi, β) for i = 1, ...n. Then, X1 + X2 + ... + Xn has the gamma density Γ(α, β)
where:

α = α1 + α2 + ...+ αn

Consider a density f with support on the interval (a, b). Can we produce a continuous
random variable X with density exactly equal to f? It turns out that the answer is yes, and
we can begin our construction in the following way: Let

F (x) =
∫ x

−∞
f(t)dt

This function F has an inverse F ′. Take a random variable Y = Uniform[0, 1]. Let

X = F−1(Y )

Claim. This random variable X has density f(x) and cumulative distribution function F (X).

For now, the proof of this claim will be skipped. Look at question (45), which uses this
theorem to solve the question.

5.12 Chapter 5, Question 39

Let X be an exponentially distributed random variable with parameter λ. Let Y be the
integer valued random variable defined in terms of X by Y = m if m ≤ X < m+ 1 where m
is a nonnegative integer. How is Y distributed? In other words, Y is the ‘floor function’ of
X, and it takes the following values:

Y : 0, 1, 2, ....

Let us look at P (Y ≥ m). The following are equivalent:

P (Y ≥ m) ≡ P (X ≥ m) = e−λm = qm

where q = e−λ. P (X ≥ m) = e−λm because given X = Exp(λ),

P (X ≥ m) = 1− P (X ≤ m) = 1− F (x) = 1−
∫ a

0
λe−λtdt =

∣∣∣∣∣∣
m

x=0

− e−λt = e−λm

Then, from what we know about Geometrically distributed random variables,

Y = Geom(p = 1− q = 1− e−λ)
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5.13 Chapter 5, Question 33

Let X be normally distributed with parameters µ and σ2. We want to find

P (|X − µ| ≤ σ)

We have shown that if X is normal, then aX+ b must also be a normally distributed random
variable. In this case, assume that X = N(µ, σ2), thus

aX + b = N(aµ+ b, a2σ2)

So, using this knowledge we can transform X to the following variable Z:

X = N(µ, σ2)→ X − µ
σ

= Z = N(0, 1)

since
X − µ
σ

= 1
σ
X + (−µ

σ
) = Z

where Z is a new random variable with the following distribution and density:

Φ(x) =
∫ x

−∞
ϕ(t)dt, ϕ(x) = 1√

2π
e
−x2

2

ϕ is its density and Φ is its cumulative density, where Φ(x) is the integration of a standard
bell curve from −∞ to x. Notice that

Φ(x) + Φ(−x) = 1

Now notice that

P (|X − µ| < σ) = P (|X − µ
σ
| < 1) = P (|Z| ≤ 1) = Φ(1)− Φ(−1) = 2Φ(1)− 1

since Φ(−1) = 1−Φ(1). We have a table in the back to calculate Φ(1). Referring to a table
in the back of our textbook, we can find an explicit solution to this problem.

5.14 Chapter 5, Question 25

Let g(x) = x(1 − x)2, 0 ≤ x ≤ 1 and g(x) = 0 elsewhere. How should g be normalized to
make it a density? In other words, what should c 6= 0, a constant, be so that c · g(x) is a
valid density? Formally, we would like to solve for c so that:

1 =
∫ 1

0
cx(1− x)2dx = c

∫ 1

0
x(1− x)2dx = c

(
x2

2 −
2x3

3 + x4

4

) ∣∣∣∣∣∣
x=1

x=0

= c

12

so thus, c = 12, and

g∗(x) =
{

12x(1− x)2 if 0 ≤ x ≤ 1
0 otherwise
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5.15 Chapter 5, Question 44

Let Y be uniformly distributed on (0, 1). Find a function ϕ such that X = ϕ(Y ) has the
density f given by f(x) = 2x, 0 ≤ x ≤ 1 and f(x) = 0 elsewhere. Notice that f(x) is
strictly increasing on the support (0, 1), and

F (X) =
∫ x

0
2x dx = x2

with the properties:

F (x) =


0 if 0 ≤ 0
x2 if 0 ≤ x ≤ 1
1 elsewhere

By a theorem, if Y = U(0, 1) then F−1(Y ) = X has density f(x). So to find the inverse of
F : [0, 1]→ [0, 1], we solve for x and see that

x = √y = F−1(y)
Thus,

ϕ(x) =
√
x, X =

√
Y

5.16 Chapter 5, Question 45

Let Y be uniformly distributed on (0, 1). Find a function ϕ such that ϕ(Y ) has the gamma
density Γ

(
1
2 ,

1
2

)
. First define f such that

Γ
(1

2 ,
1
2

)
= f(x) =

 (1/2)
1
2√

π
x−

1
2 e−

1
2x if x > 0

0 otherwise
So, for x > 0,

F (x) =
∫ x

0

1√
2πt

e−
t
2dt

calling
√
t = u, t = u2 dt = 2udu we have

=
∫ √x

0

1
u ·
√

2π
e−

u2
2 2u · du = 2

∫ √x
0

1√
2π
e−

u2
2 du =

∫ √x
−
√
x

1√
2π
e−

u2
2 du

And as we saw in Chapter 5 Question 33, this is equal to:
F (x) = 2Φ(

√
x)− 1 ∗

Notice that F−1(Y ) has density f(x), as defined above. Solving for x, we get

y = F (x)→ y = 2Φ(
√
x)− 1⇒ 2Φ(

√
x) = y + 1⇒

√
x = Φ−1

(
y + 1

2

)
so,

x =
[
Φ−1

(
y + 1

2

)]2
= F−1(y) = ϕ(y)

∗Here, Φ is the distribution function for a Normally distributed random variable where µ = 0, σ = 1
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Chapter 6
Jointly Distributed Random Variables

6.1 A Brief Review of the Double Integral

E

a b

β(x)

α(x)

x

Let us first remark that ∫ ∫
E

1 dxdy = Area(E)

Recall that in taking the integral of the above area E, we proceed in the following way:
∫ ∫

E
f(x, y) dxdy =

∫ b

a

(∫ β(x)

α(x)
f(x, y)dy

)
dx

Example.
f(x, y) = xy2
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Taking the double integral over E, where E is the triangle bounded by the x, y axes and the
line y = 1− x, we have∫ ∫

e
f(x, y) dxdy =

∫ 1

0

(∫ 1−x

0
xy2dy

)
dx =

∫ 1

0

1
3(x− 3x2 + 3x3 − x4)dx

at which point, we can proceed in the usual manner.

6.2 Multivariate Continuous Distributions

We approach this topic by looking at a simple example: suppose we have a pair (X, Y )
where X and Y are continuous random variables. We know that these random variables have
corresponding densities fX(x), fY (y) and cumulative distribution functions FX(x), FY (y). We
say that together, X, Y have a joint cumulative distribution function,

F (x, y) = P{X ≤ x, Y ≤ y}

Definition. X, Y are said to be independent if and only if for any subset A ⊆ R, B ⊆ R,

P{X ∈ A, Y ∈ B} = P{X ∈ A} · P{Y ∈ B}

We would like to ask ourselves how the cumulative distribution functions of each variable is
related to the cumulative distribution function of the pair (X, Y ). Notice the following:
Fact.

FX(x) = lim
y→∞

F (x, y) Fy(y) = lim
x→∞

F (x, y)

Notice that armed with F (x, y), you can take limits to compute FX(x), FY (y).
Definition. We say that two random variablesX, Y have a joint density f(x, y) if f(x, y) ≥ 0
for all x and y, and:

F (x, y) =
∫ x

−∞

(∫ y

−∞
f(u, v)dv

)
du =

∫ y

−∞

(∫ x

−∞
f(u, v)du

)
dv

Figure (6.1) represents this graphically.
Note. If f(x, y) is a joint density, then:∫ ∞

−∞

∫ ∞
−∞

f(x, y)dxdy = 1

Fact. It is true that X, Y are independent if and only if:

f(x, y)O = fX(x) · fY (y)

We now arrive naturally at the following questions:

1. How is f(x, y) related to the marginals fX(x), fY (y)?
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6.2. MULTIVARIATE CONTINUOUS DISTRIBUTIONS

A(x, y)

(x, y)

Figure 6.1: Above is a picture of the area A where the shading represents all those points
less than (x, y).

2. How are the functions f(x, y), F (x, y) related?

In answering the first question, we say that:

fX(x) =
∫ ∞
−∞

f(x, y)dy fY (y) =
∫ ∞
−∞

f(x, y)dx

Example. Suppose that X, Y are continuous random variables with joint density:

f(x, y) =
{

axy if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2
0 otherwise

First, what is the value of a? Second, what are the marginal densities fX(x), fY (y)?

Notice first that the support, S, is equal to the following shaed area:

1

2
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In solving for a, we claim that:

1 =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)dy dx =
∫ ∫

S
f(x, y)dy dx = a

∫ 1

0

(∫ 2

0
x2y dy

)
dx

Calculating the following integrals:

=
∫ 2

0
y dy = y2

2

∣∣∣∣∣∣
2

0

= 2
∫ 1

0
x2dx = x3

3

∣∣∣∣∣∣
1

0

= 1
3

We see that a = 3
2 . Now looking for the marginal densities, we note that the marginal density

fX(x) = 0 if x ≤ 0 or x ≥ 1. So, fix some 0 < x < 1 and using our drawing, we see that:

fX(x) =
∫ ∞
−∞

f(x, y)dy =
∫ 2

0

3
2x

2y dy =

So in summary,

fX(x) =
{

3x2 if 0 < x < 1
0 otherwise

For the other marginal, fY (y), we see that if we fix some 0 < y < 2, then:

fY (y) =
∫ 1

0

3
2x

2y dx = y

2
and thus:

fY (y) =
{

y
2 if 0 < y < 2
0 otherwise

∗

Now suppose we want to find P{X + Y ≤ 1}. In other words, we want to find the points:

{X + Y ≤ 1} = {(X, Y ) ∈ A}

where
A = {(x, y)|x+ y ≤ 1}

One approach is to notice the following:

P{X + Y ≤ 1} =
∫ ∫

A
f(x, y) dx dy

Which follows from recalling the fact that ff A ⊆ R2, then

P{(X, Y ) ∈ A} =
∫ ∫

A
f(x, y) dx dy

Which is illustrated in figure (6.2). So, integrating over ∆ = A ∩ S where S is the support,∫ ∫
∆

=
∫ 1

0

(∫ 1−x

0
x2y dy

)
dx = 1

2

∫ 1

0

(
x4 − 2x3 + x2

)
dx = C

So, P{(X + Y ≤ 1} = a · C = 3
2C. Going back to our second question, we claim that:

f(x, y) = ∂2F

∂x∂y
= ∂

∂y

(
∂F

∂x

)
= ∂

∂x

(
∂F

∂y

)
∗in reality you can let y range from 0 ≤ y ≤ 2 without ambiguity.
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6.2. MULTIVARIATE CONTINUOUS DISTRIBUTIONS

(1, 0)

(0, 1)

A ∩ S = ∆ x+ y = 1

Figure 6.2: Above is a representation of the intersection of A and the support.

Example. On page 144, example 2, we have a pair of continuous random variables (X, Y )
with joint density:

f(x, y) = ce−
(x2−xy+y2)

2

Notice that the support of this function is all of R2. So, in finding c, we have to integrate as
such:

1 =
∫ ∞
−∞

∫ ∞
−∞

ce−
(x2−xy+y2)

2 dx dy

completing the square, we have

x2 − xy + y2 = (x− y

2)2 + (y2 −
(
y

2

)2
) = (x− y

2)2 + 3y2

4
So,

1 =
∫ ∞
−∞

∫ ∞
−∞

ce−
(x2−xy+y2)

2 dx dy =
∫ ∞
−∞

(∫ ∞
−∞

e−
(x− y2 )2

2 e−
3y2

8 dx

)
dy

now notice that: ∫ ∞
−∞

e−
(x− y2 )2

2 dx

takes the form: ∫ ∞
−∞

e−
(x−µ)2

2σ2 dx =
√

2πσ

so, letting σ = 1 and µ = y
2 : ∫ ∞

−∞
e−

(x− y2 )2

2 dx =
√

2π

so what we have is:

∫ ∞
−∞

(∫ ∞
−∞

e−
(x− y2 )2

2 e−
3y2

8 dx

)
dy =

√
2π
∫ ∞
−∞

e−
3y2

8 dy =
√

2π
∫ ∞
−∞

e

− (y−µ)2

2·
(

2√
3

)2

dy =
√

2π·
√

2π· 2√
3

= 4π√
3
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6.3 Chapter 6, Question 1

X and Y are continuous random variables with a joint density function f(x, y). We would
like to look at the following random variables:

W = a+ bX

Z = c+ dY

Where b > 0, d > 0 and a, c are constants. We would like to show that if X, Y are
independent, then W,Z are also independent. Recall that if we have a continuous random
variable X with a density f(x) and if we have a function ϕ(x) that is strictly monotonic,
such that:

Y = ϕ(X)

Then g(y) is the density of Y where:

g(y) = f(x)
∣∣∣∣dxdy

∣∣∣∣ = f(x)
| dy
dx
|

While there is a way to continue in the fashion, we turn to a new method of solving these
types of questions (this is a result from pages 166-168). Suppose we have a pair of continuous
random variables (X, Y ) with joint density f(x, y). We can define random variables U, V by
the following functions:

U = u(X, Y ), V = v(X, Y )

The Jacobian Transformation Matrix, denoted J , is determinant of the following ma-
trix:

J = det

([
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

])

Then, the joint density of (U, V ) is:

g(u, v) = 1
|J |

f(x, y)

Notice that in applying this to our question, we can say the following:

u(x, y) = a+ bx

v(x, y) = c+ dy

Now looking at the Jacobian, we have the following:

J = det

([
b 0
0 d

])
= bd

So the joint of (U, V ) is:
g(u, v) = 1

|bd|
f(x, y)
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6.4. CHAPTER 6, QUESTION 7

Using our definitions of the functions u, v, we have:

u = a+ bx→ x = u− a
b

v = c+ dy → y = v − c
d

So,
g(u, v) = 1

|bd|
f
(
u− a
b

,
v − c
d

)
For the second half of this question, suppose that X and Y are independent. This tells us
that:

f(x, y) = α(x)β(y)
where α, β are not necessarily the marginals of X, Y . From our answer to part (1), we notice
that:

g(u, v) = 1
|bd|

α
(
u− a
b

)
β
(
v − c
d

)
g(u, v) can be represented as the product of two functions α, β, one of u and one of v, which
tells us that U, V are independent. While there is a direct approach to this question involving
double integrals, notice that we did not need it to solve this problem.

6.4 Chapter 6, Question 7

Let X, Y be continuous random variable with the joint density:

f(x, y) = λ2e−λy, 0 ≤ x ≤ y

and f(x, y) = 0 elsewhere. Let us call S = 0 ≤ x ≤ y the support of this density. We have
the following:

F (x, y) =
∫ ∫

A(x,y)
f(s, t)dsdt

x = y

(1, 0)

Support

Clearly if (x, y) is in quadrant 2,3 or 4, then F (x, y) = 0. So, we focus only quadrant one.
We can split this problem into two cases.
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x = y

T

(x, y)

x

y

s

x = y

(x, y)

(y, y)(1) (2)

Figure 6.3: Case (1) and (2)

In case one, (x, y) ∈ Quadrant 1 ∩ S = T , so:

F (x, y) =
∫ ∫

T
λ2e−λy =

∫ x

0

(∫ y

s
λ2e−λtdt

)
ds

where:
∫ y

s
λ2e−λtdt = −λe−λt

∣∣∣∣∣∣
t=y

t=s

= λe−λs − λe−λy

So we have: ∫ x

0
(λe−λs − λe−λy)ds =

∫ x

0
λe−λsds−

∫ x

0
λe−λyds

∫ x

0
λe−λsds = −e−λs

∣∣∣∣∣∣
s=x

s=0

= 1− e−λx

∫ x

0
λe−λyds = λse−λy

∣∣∣∣∣∣
s=x

s=0

= λxe−λy

so,
F (x, y) = 1− e−λx − λxe−λy

in case two, suppose that (x, y) ∈ I ⋂Sc. Thanks to the bounds on x and y, we can see that
F (x, y) = F (y, y) and from our previous result,

F (y, y) = 1− e−λy − λye−λy

And we have our distribution function for both cases. Looking at our support, since we now
that X ≥ 0, we know that fX(x) = 0 if x ≤ 0. So, for x > 0 and fixed.

fX(x) =
∫ ∞
−∞

f(x, y)dy =
∫ ∞
x

λ2e−λydy = −λe−λy
∣∣∣∣∣∣
y=∞

y=x

= λe−λx − 0
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so,

f(x) =
{
λe−λx for all x > 0

0 otherwise = Exp(λ)

Since Y ≥ 0, this tells us that fY (y) = 0 for all y ≤ 0. Fix some y > 0. We know that :

fY (y) =
∫ ∞
−∞

f(x, y)dx =
∫ y

0
λ2e−λydx = λ2ye−λy

so,

fY (y) =
{
λ2ye−λy if y > 0

0 otherwise

∣∣∣∣∣ = Γ(α = 2, λ = λ)

6.5 Chapter 6, Question 8

We have the following:

f(x, y) =
{
c(y − x)α if 0 ≤ x < y ≤ 1

0 otherwise

The support of this density looks like the following:

(0, 1)

(1, 0)

S

Assume that c, α make f(x, y) into a joint density. In this case, 0 ≤ X ≤ 1, and

fX(x) = 0 if x ≤ 0 or x ≥ 1

so, take and fix 0 < x < 1.

fX(x) =
∫ ∞
−∞

f(x, y)dy =
∫ 1

x
f(x, y)dy =

∫ 1

x
c(y − x)αdy = c

(y − x)α+1

α + 1

∣∣∣∣∣∣
y=1

y=x

from this, we see that we need α + 1 to be positive. If α + 1 is positive, then from 0 < x <
1,

fX(x) = c
(y − x)α+1

α + 1

∣∣∣∣∣∣
y=1

y=x

= c
(1− x)α+1

α + 1 − 0
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for this to be a density, the following must be true:

∫∫
f(x, y)dydx = 1 =

∫ 1

0
c
(1− x)α+1

α + 1 dx = − c(1− x)α+1

(α + 1)(α + 2)

∣∣∣∣∣∣
x=1

x=0

= c

(α + 1)(α + 1)

So in summary, we need c > 0, α + 1 > 0 ,and (α > −1). In fact, this result tells us that:
c = (α + 1)(α + 2). Looking back at the marginals, we see that:

fX(x) =
{

(α + 2)(1− x)α+1 if 0 < x < 1
0 otherwise

Definition. For α > 0, β > 0,

f(x) =
{
cxα−1(1− x)β−1 if 0 < x < 1

0 otherwise

is called a B(α, β) density.

Suppose that (X, Y ) have the joint density for f(x, y). Let:

Z = X + Y

We would like to find the density fZ(z) in terms of f(x, y). We have the following:
Theorem 20.

fZ(z) =
∫ ∞
−∞

f(x, z − x)dx

As a homework, it is recommended that we memorize this formula and read the proof of its
derivation in the book. Notice that if X, Y are independent, then

fZ(z) =
∫ ∞
−∞

fX(x)fY (z − x)dx

Suppose that X ≥ 0 and Y ≥ 0. This tells us that Z ≥ 0. So, for z > 0,

fZ(z) =
∫ z

0
fX(x)fY (z − x)dx

As a homework, try the following: take X = Exp(λ), Y = Exp(λ) where X and Y are
independent. Find the density of their sum.

6.6 Chapter 6, Question 21

Let X, Y be independent random variables each having an exponential distribution with
parameter λ. We want to find the density of the random variable Z = Y

X
.

Look at the transformation
(X, Y )→ (U, V )
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6.7. CHAPTER 6, QUESTION 13

where we associate f with X, Y and g with U, V , u = u(x, y) = x and v = v(x, y) = y
x

We
want to find x, y in terms of u, v. We have the following:

x = u

y = u · v

So in finding the Jacobian,

J = det

([
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

])
= det

([
1 0
− y
x2

1
x

])
= 1
x

= 1
u

so putting all our pieces back into our equation, we get:

g(u, v) = 1
1
u

f(u, uv) = uf(u, uv) = xf(u, uv)

In finding the marginal density of V , which is equal to Y
X

, we have:

fV (v) =
∫ ∞

0
g(v, u) du =

∫ ∞
0

uf(u, uv) du

so,
fY
Z

(z) =
∫ ∞

0
xf(x, xz)dx

Notice that this is identical to equation 22 on page 151. When X, Y are independent and
identically distributed with density f(x), then:

f Y
X

(z) =
∫ ∞

0
xf(x)f(xz)dx

for all z > 0. In our case, x > 0, f(x) = λe−λx, so:

f Y
X

(z) = g(z) =
∫ ∞

0
xf(x)f(xz)dx = λ2

∫ ∞
0

xe−λxe−λxzdx = λ2
∫ ∞

0
xe−λx(z+1)dx

so after evaluating, our conclusion is that:

f Y
X

(z) = g(z) = 1
(1 + z)2 , if z > 0 and 0 otherwise.

6.7 Chapter 6, Question 13

Let X and Y be independent and uniformly distributed on the interval (a, b). We want to
find the density of Z = |Y − X|. Suppose we have the following: W = Y − X. We would
like to find fW (w). Looking at the following transformation:

(X, Y )→ (U = X, V = Y −X)
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we have f(x, y) and we define the density of the other pair g(u, v). We assign the follow-
ing:

u = x

v = y − x

which is equivalent to:

x = u

y = u+ v

So in finding the Jacobian, we have:

J = det

([
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

])
= det

([
1 0
0 1

])
= 1

so,
g(u, v) = 1 · f(u, u+ v)

So in finding the marginal density of V , which is equal to Y −X = W , we have:

fW (w) =
∫ ∞
−∞

f(u, u+ w) du

and when X, Y are independent,

fW (w) =
∫ ∞
−∞

f(u, u+ w) du =
∫ ∞
−∞

fX(x)fY (x+ w)dx

To proceed, we need to solve the following inequalities:

a ≤ x ≤ b and a ≤ x+ w ≤ b

⇒ max(a, a− w) ≤ x ≤ min(b, b− w)
This splits us into two cases:

1. Case (1), w < 0. In this case, we have the following:

fW (w) =
∫ min(b,b−w)

max(a,a−w)
fX(x)fY (x+ w)dx =

∫ b

a−w

1
(b− a)2dx = (b− a) + w

(b− a)2

2. Case (2), w > 0. In this case, we have the following:

fW (w) =
∫ min(b,b−w)

max(a,a−w)
fX(x)fY (x+ w)dx =

∫ b−w

a

1
(b− a)2dx = (b− a)− w

(b− a)2

Now Z = |W | has the following density h for some z such that: 0 ≤ z ≤ b− a:

h(z) = fW (z) + fW (−z) = (b− a)− z
(b− a)2 + (b− a)− z

(b− a)2 = 2
b− a

[
1− z

b− a

]
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6.8. FINDING THE DENSITY OF THE ABSOLUTE VALUE OF A CONTINUOUS
RANDOM VARIABLE

6.8 Finding the Density of the Absolute Value of a
Continuous Random Variable

Suppose X is a continuous random variable with density f(x). Letting Y = |X|, we wish to
find the density g(y) of Y in terms of f(x).

We can suppose that we have F (x), the cumulative distribution function of X, and G(y),
the cumulative distribution function of Y . We have:

G(y) = P (Y = |X| ≤ y) = 0 if y < 0

For y > 0,
G(y) = P (−y ≤ X ≤ y) = F (y)− F (−y)

taking the derivative, we have:

G′(y) = g(y) =
{
f(y) + f(−y) if y > 0

0 otherwise

6.9 Chapter 6, Question 4

Let X, Y be independent random variables having the normal density N(0, σ2). Find P (X2 +
Y 2 ≤ 1).

We know that X2 has a particular density:

X2 = Γ
(
α = 1

2 , λ = 1
2σ2

)
(Look at example 12 on page 128 to help verify this fact). Recall that we also have the
following: If X = Γ(α1, β) and Y = Γ(α2, β) (with the same β), where X and Y are
independent,

X + Y = Γ(α1 + α2, β)
Looking at theorem 5 on page 159, we have this result for n random variables. So, we see
that:

X2 = Γ
(1

2 ,
1

2σ2

)
Y 2 = Γ

(1
2 ,

1
2σ2

)
and since X, Y are independent, we use our result to get:

X2 + Y 2 = Γ
(

1, 1
2σ2

)
Remember that we have the following definition of Γ-distributed variables:
Definition. X = Γ(α, λ), if X ≥ 0, α, λ > 0, has density

f(x) =
{

λα

Γ(α)x
α−1e−λx if x > 0
0 otherwise
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So, since the first parameter of X2 + Y 2 is 1 its density looks like the following when X >
0:

X2 + Y 2 = λ1

1 x
0e−λx = Exp

(
λ = 1

2σ2

)
and if T = Exp(λ), P (T ≥ a) = e−λa. So,

P (X2 + Y 2 ≤ 1) = 1− P (x2 + Y 2 > 1) = 1− e−
1

2σ2

Theorem 21. If X = Γ(α1, λ), Y = Γ(α2, λ), then X + Y = Γ(α1 + α2, λ)

Proof. Z = X + Y has a density given to us by the convolution. Thus,

g(z) =
∫ z

0
fX(x)fY (z − x)dx

Now, fX(x) = c · xα1−2e−λx and fY (z − x) = d · (z − x)α2−1e−λ(z−x) So,

g(z) =
∫ z

0
fX(x)fY (z−x)dx =

∫ z

0
cdxα1−1(z−x)α2−1e−λz dx = cde−λz

∫ z

0
xα1−1(z−x)α2−1dx

for z > 0 fixed. It turns out that:∫ 1

0
xα−1(1− x)β−1 = Γ(α)Γ(β)

Γ(α + β)

Now call x = tz. Now, dx = zdt, and we have the following:∫ z

0
xα1−1(z − x)α2−1dx =

∫ 1

0
tα1−1zα1−1 · zα2−1(1− t)α2−1zdt

taking out some constants, we have:

zα1+α2−1
∫ 1

0
tα1−1(1− t)α2−1dt = zα1+α2+1 · b

where b is a constant we will relate to the Γ function. Putting the pieces back together, we
have for z > 0:

g(z) = bcd zα1+α2−1e−λz

We know two things:

1. g(z) is a density

2. g(z) is a density of a random variable of the type: Γ(α1 + α2, λ).

So, there are some constants that must be the same. By the definition of a Γ random variable,
the following are true:

c = λα1

Γ(α1) d = λα2

Γ(α2)
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and the constant of the density Γ(α1 + α2, λ) is:

λα1+α2

Γ(α1 + α2)

Since the constants have to agree, we have:

bcd = λα1+α2

Γ(α1 + α1)

or,

b · λα1+α2

Γ(α1)Γ(α2) = λα1+α2

Γ(α1 + α2)
therefore,

b = B(α, β) = Γ(α)Γ(β)
Γ(α + β)

where B(α, β) is called the Beta Function.
Definition. The following is the density of a Beta Density with parameters α1, α2:

f(x) =
{ Γ(α1+α2)

Γ(α1)Γ(α2) · x
α1−1(1− x)α2−1 0 < x < 1

0 elsewhere

6.10 Chapter 6, Question 19

Let X, Y be independent random variables each having the normal density N(0, σ2). This
tells us that:

fX(x) = fY (x) = 1√
2πσ

e
−x2
2σ2

We want to show that Y/X and Y/|X| both have the Cauchy Density.

The Cauchy Density is the following:

f(x) = c · 1
1 + x2

where x ∈ R, and the constant is such that f is a valid density. We know that:

∫ ∞
−∞

dx

1 + x2 = arctan(x)

∣∣∣∣∣∣
x=∞

x=−∞

= π

2 −
(
−π2

)
= π

so, c = 1
π
. Unfortunately, if X is a variable with this density, the expected value E(X) does

not exist - recall that E(X) exists if and only if:∫ ∞
−∞
|x|f(x)dx <∞
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This can be shown by noticing the following:

∫ ∞
0

x

1 + x2dx = 1
2 ln(1 + x2)

∣∣∣∣∣∣
x=∞

x=0

diverges at x =∞

so, E(X) does not exist. Back to our question, we introduce the variable Z = Y
X

. Then, by
our formula,

fZ(z) = fY/X(z) =
∫ ∞
−∞
|x|fX(x)fY (xz)dx =

∫ ∞
−∞
|x| 1

2πσ2 e
− x2

2σ2 (1+z2)dx

Notice that if g(−x) = g(x), ∫ ∞
−∞

g(x)dx = 2
∫ ∞

0
g(x)dx

so, ∫ ∞
−∞
|x| 1

2πσ2 e
− x2

2σ2 (1+z2)dx = 2
∫ ∞

0
x · 1

2πσ2 e
− x2

2σ2 (1+z2)dx

calling 1+z2

2σ2 = a, and noticing the following:

∫ ∞
0

xe−ax
2
dx = e−ax

2

−2a

∣∣∣∣∣∣
∞

x=0

= 1
2a

So,

2
∫ ∞

0
x · 1

2πσ2 e
− x2

2σ2 (1+z2)dx = 1
2πσ2 · 2 ·

1
1+z2

σ2

= 1
π(1 + z2)

so, we have finished our objective.

6.11 Chapter 5, Question 31

Let X have the normal density N(0, σ2). We want to find the density of Y = |X|. Associate
F, f with X and G, g with Y . Clearly, G(y) = 0 if y ≤ 0. For y > 0,

G(y) = P (|X| ≤ y) = P (−y ≤ X ≤ y) = F (y)− F (y)⇒ g(y) = f(y) + f(−y)

For Y = |X|, if X = N(0, σ2) then the density of Y for y > 0 is:

g(y) =
√

2
π
· 1
σ
e
−y2

2σ2 †

†notice that since g(y) = f(y) + f(−y), the 2 comes out and changes the coefficient to
√

2
π
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6.12 Chapter 6, Question 29

Let X1, ..., Xn be independent random variables having a common normal density. We want
to show that there exist constants An, Bn such that:

X1 + ...+Xn − An
Bn

has the same density as X1, N(µ, σ2). We know that X1 + X2 + ... + Xn = N add up to
a variable that is normal, based on what we know about the sum of normally distributed
random variables. Notice that:

X1 +X2 + ...+Xn = N(nµ, nσ2)

Since aU + b is normal when U is a normal random variable, a 6= 0 and b constants. So, let
us notice the following:

Y = X1 + ...+Xn − An
Bn

= N(µ, σ2)

where now,
Y = 1

Bn

S +
(
−An
Bn

)
Thus, we can see that for any An, bn 6= 0 Y must be normal with the following parame-
ters:

Y = 1
Bn

S +
(
−An
Bn

)
= N(nµ

Bn

− An
Bn

,
nσ2

B2
n

)

But, we want the following:

N(nµ
Bn

− An
Bn

,
nσ2

B2
n

) = N(µ, σ2)

So, we match the following:

nσ2

B2
n

= σ2 ⇒ Bn =
√
n

µ = nµ− An√
n

⇒ An = nµ−
√
nµ = (n−

√
n)µ

6.13 Chapter 6, Question 9

We have the following:

f(x, y) = ce(−x2−xy+4y2)/2 −∞ < x, y <∞

We would like to chose c such that f is a density, and we would like to find the marginal
densities of f . Notice that:

x2 − xy + 4y2 = (x− y

2)2 + 15y2

4
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so,
f(x, y) = ce(−x2−xy+4y2)/2 = ce−

(x−y/2)2
2 e−15y2/8

In finding the marginal density of Y , we have:

f2(y) =
∫ ∞
−∞

f(x, y)dx = c · e−15y2/8 ·
√

2π
∫ ∞
−∞

1√
2π
e−

(x−y/2)2
2︸ ︷︷ ︸

N(µ= y
2 ,σ

2=1)

= (c
√

2π)e−15y2/8 · 1 ‡

now notice that:
e−15y2/8 = e

− y2

2· 4
15

Our variable takes the form:

(c
√

2π)e−15y2/8 = Normal(0, 4/15)

But for a normal variable of this form, the normalizing constant is as follows:

1√
2π · 2/

√
15

which must be equal to
(c
√

2π)
so, equating them, we solve for c:

c(
√

2π) =
√

15
2
√

2π
⇒ c =

√
15

4π

and we have the marginal of Y . Alternatively, in finding the marginal for X, notice that:

4y2 − xy + x2 = (2y − x

4 )2 + 15x2

16 = 4(y − x

8 )2 + 15x2

16
and we can proceed in the same was as we did with the marginal for Y . It will again be a
normal random variable.

6.14 Chapter 6, Question 30

Let X1, X2, X3 be identically distributed random variables on (0, 1), all uniformly distributed.
Call U = X1 + X2, and V = X3. We aim to find the density of the random variable
Y = X1 +X2 +X3. On page 147, we have the result:

fu(u) =


u if 0 < u < 1

2− u if 1 < u < 2
0 otherwise

‡The integral evaluates to 1 based on what we know about the Normal density.
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We know that U, V are independent, since they are functions of independent random vari-
ables. We now call W = U + V . The support of w is as follows; f(w) = o if w /∈ [0, 3]. We
now need to use the convolution:

fW (w) =
∫ w

0
fU(u)fV (w − u)du

We notice that the support of fV is from [0, 1]. Now notice that:

fU(u) · fV (w − u) =
{
fU(u) if 0 < u < 2 and 0 < w − u < 1

0 otherwise

Now let us look at this double inequality. Notice that:

0 < u < 2 and 0 < w − u < 1

tells us that:
A = max(0, w − 1) < u < min(2, w) = B

so,

fW (w) =
∫ w

0
fU(u)fV (w − u)du =

∫ B

A
fU(u)du

Which gives us the following three cases:

1. 0 < w < 1

2. 1 < w < 2

3. 2 < w < 3

We have the following answers:

1. A = 0, B = w. In this case,

fW (w) =
∫ w

0
fU(u)du = u2

2

∣∣∣∣∣∣
w

0

= w2

2

2. A = w − 1, B = 2. In this case,

fW (w) =
∫ 2

w−1
fU(u)du =

∫ 1

w−1
udu+

∫ w

1
(2− u)du = −w2 + 3w − 3

2

3. Case 3 was left as an exercise, but the answer is:

fW (w) = w2

2 − 3w + 9
2

89



CHAPTER 6. JOINTLY DISTRIBUTED RANDOM VARIABLES

6.15 Chapter 6, Question 12

Let X, Y have a joint density f :

f(x, y) =
{

(α + 1)(α + 2)(y − x)α if 0 ≤ x < y < 1
0 otherwise

The support of Z = X + Y is one of the triangles constructed by the unit square and the
line y = x. We want to find the density of Z, which is given by:

g(z) =
∫ ∞
−∞

f(x, z − x)dx

We know that 0 ≤ X + Y ≤ 2, based on what we know about X and Y . So, g(z) = 0 if
z /∈ [0, 2]. So, fix such a z ∈ [0, 2]. We need 0 ≤ x < y = z − x ≤ 1, which happens if and
only if:

A = max(0, z − 1) < x <
z

2
So we have to deal with the two cases in which z < 1, and z > 1. Then,

g(z) = c
∫ z

2

A
(z − 2x)αdx = c · (z − 2x)α+1

−2(α + 1)

∣∣∣∣∣∣
x=z−2

x=A

where c = (α + 1)(α + 2). In case one, we let 0 < z < 1. In this case, A = 0, so:

g(z) = (α + 2)
−2 (z − 2x)α+1

∣∣∣∣∣∣
x= z

2

x=1

= α + 2
−2 (0− zα+1)

and in case two, where 1 < z < 2, this tells us that A = z − 1 so,

g(z) = (α + 2)
−2 (z − 2x)α+1

∣∣∣∣∣∣
x= z

2

x=z−1

6.16 Chapter 6, Question 10

Let X and Y be continuous random variables having joint density f . We want to derive a
formula for the density of the random variable Z = Y −X.

Let us make the following transformation;

(X, Y )→ (U, V )

using the following functions:

u = x→ x = u

v = y − x→ y = u+ v
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We define g(u, v) to be the joint density of (U, V ). Notice that:

g(u, v) = f(u, u+ v)

And that the marginal density of V = Y −X, which is the density we want to find. Recall
that we have the following formula:

g(u, v) = 1
|J |

f(x, y)

So in calculating the Jacobian,

J = det

([
1 0
−1 1

])
= 1

So,
hV (v) =

∫ ∞
−∞

1 · f(u, u+ v)du

6.17 Chapter 6, Question 14

Let X and Y be continuous random variables having joint density f . We want to derive a
formula for the density of Z = aX + bY , where b 6= 0.

As we did in the previous question, we transform (X, Y ) → (U, V ) via the following trans-
formations:

u = x

v = ax+ by

where a, b are non-zero constants. In calculating the Jacobian, we can see that J = b. This
implies that:

faX+bY (v) = fV (v) = 1
|b|

∫ ∞
−∞

f
(
x,
v − ax
b

)
dx

6.18 Chapter 6, Question 16

Let X and Y be independent random variables having respective normal densities N(µ1, σ
2
1)

and N(µ2, σ
2
2). We want to find the density of Z = Y − X. We have the following theo-

rem:
Theorem 22. Let X1, ..., Xn be independent random variables such that Xm has the normal
density N(µm, σ2

m), where m = 1, 2, ...n. Then, X1 + ...+Xn has the normal density N(µ, σ2)
where:

µ = µ1 + µ2 + ...+ µn σ2 = σ2
1 + σ2

2 + σ2
n

Using this theorem, the density of Z is as follows:

Z = Y − Z = N(µ1, σ
2
1)−N(µ2, σ

2
2) = N(µ1, σ

2
1) +N(−µ2, σ

2
2) = N(µ2 − µ1, σ

2
1 + σ2

2)

91



CHAPTER 6. JOINTLY DISTRIBUTED RANDOM VARIABLES

6.19 Chapter 6, Question 18

Let X and Y be continuous random variables having joint density f . We would like to derive
a formula for the density of Z = XY .

We transform the pair of random variables (X, Y ) to the pair (U, V ) under the following
functions:

u = x→ x = u

v = xy → y = v

x
= v

u

Recall that we associate the function f with the density of (X, Y ) and the function g with
the density of (U, V ). In calculating the Jacobian, we have:

J = det

([
1 0
y x

])
= x

So, the density g(u, v) is the following:

g(u, v) = 1
|x|
f(x, y) = 1

|u|
f
(
u,
v

u

)

Since we defined V to be: V = XY , finding the marginal density of V is the same as finding
the density of XY :

fXY (z) = fV (v) =
∫ ∞
−∞

1
|u|
f
(
u,
v

u

)
du

6.20 Chapter 6, Question 22

Let X and Y be independent random variables having respective gamma densities Γ(α1, λ)
and Γ(α2, λ). We want to find the density of Z = X/(X + Y ).

We can transform the pair of random variables (X, Y ) to the pair (U, V ) with the following
functions:

u = x

v = x

x+ y

The steps to find g(u, v), the density of the pair (U, V ) can be found using the same method
we’ve used before. We have the following:

g(u, v) = 1
|J |

f(x, y) = u

v2 f(u, u
v
− u)
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since J = −x
(x+y)2 . So,

g(u, v) = u

v2 · f(u)f(u
v
− u)

= u

v2 ·
λα1

Γ(a1)u
α1−1e−λu · λα2

Γ(α2)(u
v
− u)α2−1e−λ(u

v
−u)

= λα1λα2

Γ(α1)Γ(α2)u
α1+α2−1 (1− v)α2−1

vα2−1 e−λ
u
v

So in finding the density of X
X+Y , we can find the density of gV (v), which is the following:

gV (v) =
∫ ∞

0
g(u, v)du = (Constant) · (1− v)α2−1

vα2+1 · Γ(α1 + α2)(
λ
v

)α1+α2

which follows from noticing that:∫ ∞
0

xα−1e−λxdx = Γ(α)
λα
⇒
∫ ∞

0
uα1+α2−1e−λ

u
v = Γ(α1 + α2)(

λ
v

)α1+α2

6.21 Test Review

Suppose you have f(x), with support = (a, b). We can find F (x), the cumulative distribution
function f , by the following:

F (x) =
∫ x

−∞
f(t)dt

Now notice that F (x) is strictly increasing on the interval (a, b). So,

F (a, b)→ (0, 1)

must have an inverse. Let ϕ = F−1. Then X = ϕ(U) where U =Uniform[0, 1] , and X has
the density f(x) and c.d.f. F (x). We have the following example from the formula:

6.22 Chapter 5, Question 44

Given U = Uniform(0, 1),

f(x) =
{

2x if 0 ≤ x ≤ 1
0 otherwise

We want to find a function ϕ so that ϕ(U) = X has density f(x). We know the follow-
ing:

F (x) =


0 if x < 0

x2 if 0 ≤ x ≤ 1
1 if x > 1
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So,
y = F (x) = x2 : (0, 1)→ (0, 1)

Solving F (x) for x, we have:
x = √y = F−1(y)

And so, ϕ(x) =
√
x. So,

√
U has the density f(x).

6.22.1 Chapter 5, Question 43

Let X = Γ(α, λ). Let Y =
√
X. We would like to find the density of Y , which we will call

g(y). We see that:
Y = ϕ(X) ϕ(x) =

√
x

is strictly increasing. According to a theorem in the book, since this function ϕ is strictly
increasing,

g(y) =

∣∣∣∣∣∣dxdy
∣∣∣∣∣∣f(x)

Since:
y = ϕ(x) =

√
x, ⇒ x = y2 ⇒ dx

dy
= 2y

So,

g(y) =

∣∣∣∣∣∣dxdy
∣∣∣∣∣∣f(x) = f(y2) · 2y

and so,

g(y) =
{

2y · λα

Γ(α)(y
2)α−1e−λy

2 = 2λα
Γ(α)y

2α−1e−λy
2 ify > 0

0 otherwise

6.22.2 Chapter 6, Question 5

Let X and Y have a joint density f that is uniform over the interior of the triangle with
vertices at (0, 0), (2, 0) and (1, 2). Find P (X ≤ 1 and Y ≤ 1). So, (X, Y ) has density:

f(x, y) =
{

1
2 if (x, y) ∈S
0 otherwise

Where S is the support. Notice that If we want to integrate a density over space C, it should
be clear that all we really need to integrate over is the space C ∩ S, since the density is 0
outside of the support.

So, we continue in the following way:

P{X ≤ 1, Y ≤ 1} =
∫ ∫

T

1
2dxdy = 1

2

∫ ∫
T

1dxdy = 1
2Area(T )
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(1, 2)

(2, 0)(0, 0)

S

x

y

(X ≤ 1, Y ≤ 1)
T

Where T = C ∩ S. In calculating the are of the trapezoid T , we see that the area of T = 3
4 .

As a result:
P{X ≤ 1, Y ≤ 1} = 1

2Area(T ) = 3
8

6.22.3 Chapter 6, Question 16

Let Xand Y be independent random variables having respective densities N(µ1, σ
2
1) and

N(µ2, σ
2
2).

We know that Y − X is a normal variable, since it is a non-constant linear combination of
independent normal variables. Thus,

Y −X = N(µ2 − µ1, σ
2
1 + σ2

2)

Since we have the following theorem:
Theorem 23. If X1, ...Xk are independent random variables,

V ar(a1X1 + a2X2 + ....+ akXk + b) = a2
1V ar(X1) + a2

2V ar(X2) + ...+ a2
kV ar(Xk)

Implying that:
V ar(Y −X) = V ar(Y ) + V ar(X)

6.23 Chapter 6, Question 9, Continued

In finding the marginal density of X

x2 − xy + 4y2 = 4y2 − xy + x2 = 4(y − x

8 )2 + 15x2

16

95



CHAPTER 6. JOINTLY DISTRIBUTED RANDOM VARIABLES

So,

f1(X) =
∫ ∞
−∞

f(x, y)dy = ce−
15x2

16

∫ ∞
−∞

e−2(y−x8 )2
dy︸ ︷︷ ︸

must evaluate to a constant ‘a’

= ae
− (x−0)2

2· 16
15

Since we know that f1(x) is a density, we recognize that we have a variable that is normal,
such that:

f1(x) = N(mean = 0, variance = σ2 = 16
15)

and:
a = 1√

2π 4√
15
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Chapter 7
The Expectations of Continuous Random
Variables and the Central Limit Theorem

7.1 Expected Values of Continuous Random Variables

Suppose you have a random variable X : Ω → (−∞,∞). In section 7.1 of the textbook,
there is a good attempt at explaining what the expected value of X should be.

The idea is, for each ε > 0, define Xε as follows:
Definition. Xε = εk if εk ≤ X ≤ ε(k + 1)

This type of random variable Xε is discrete. In this case, we know that the expected value
of Xε:

E(Xε) =
∑

εk · P{εk ≤ X ≤ ε(k + 1)}
The expected value of X is then the limit,

E(X) = lim
ε→0+

E(Xε)

This definition can be seen on page 176.

Let us assume that X is a continuous random variable with a probability density function
f(x). The expected value of X,

E(X) =
∫ ∞
−∞

xf(x)dx if
∫ ∞
−∞
|x|f(x)dx <∞

In fact, we can show that:

E [ϕ(X)] =
∫ ∞
−∞

ϕ(x)f(x)dx if
∫ ∞
−∞
|ϕ(x)|f(x)|dx <∞

For two or more continuous random variables, the following is true:

E [ϕ(X, Y )] =
∫ ∞
−∞

∫ ∞
−∞

ϕ(x, y)f(x, y)dxdy

Where f(x, y) is the joint density of X, Y and ϕ : R× R→ R.
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THE CENTRAL LIMIT THEOREM

Example. Let X = Γ(α, λ). This means that X ≥ 0. According to our formula,

E(x) =
∫ ∞
−∞

x · λα

Γ(α)x
α−1e−λx = λα

Γ(α

∫ ∞
0

x(α−1)+1e−λxdx

Using the fact that: ∫ ∞
0

xα−1e−λxdx = Γ(α)
λα

we see that: ∫ ∞
0

x(α−1)+1e−λxdx = Γ(α + 1)
λα+1

So,
E(X) = α

λ

This is the first moment of the random variable X. The nth moment of X = Γ(α, λ) is
E(Xn), and using the same technique,

E(Xn) =
∫ ∞

0
xn

λα

Γ(α)x
α−1e−λxdx = λα

Γ(α)

∫ ∞
0

x(n+α)−1e−λxdx

Again using our formula, ∫ ∞
0

x(n+α)−1e−λxdx = Γ(α + n)
λα+n

So,
λα

Γ(α)

∫ ∞
0

x(n+α)−1e−λxdx = Γ(α + n)
λnΓ(α)

As a result,

E(X2) = Γ(α + 2)
λ2Γ(α) = (α + 1)α

λ

So,

V ar(X) = E(X2)− (E(X))2 = (α + 1)α
λ2 − α2

λ2 = α

λ2

Thus, V ar(X = Γ(α, λ)) = α
λ2 .

Example. Suppose that X is a random variable, where µ = E(X) and E(Xn) is the nth
movement of X. Then, E(X − µ)n is the nth central moment of X, which we are sometimes
interested in finding.

Fix a random variable X = Normal(µ, σ2). We want to now find the central moments of X,
meaning E(X − µ)n.

Suppose that n is odd. We claim that E(X − µ)n = 0. Recall that X−µ
σ

is the standard
normal, which implies that we can represent X − µ as σZ, where Z is the standard normal.
Thus, (X − µ)n = σnZn. Since σn is a constant,

E(X − µ)n = σnE(Zn)
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Now suppose that N = 2m+ 1. Then,

E(Z2m+1) =
∫ ∞
−∞

x2m+1 1√
2π
e−

x2
2 dx

We can try to use integration by parts, calling u = x2m, and v′ = x · 1√
2πe
−x

2
2 . Then,

v = −1√
2π
e−

x2
2 v′ = 2mx2m−1

in which ase,

E(Z2m+1) =
∫ ∞
−∞

x2m+1 1√
2π
e−

x2
2 dx = − 1√

2π
x2m

e
x2
2

∣∣∣∣∣∣
∞

−∞︸ ︷︷ ︸
0

+2m
∫ ∞
−∞

x2m−1 · 1√
2π
e−

x2
2 dx

Repeating the use of L’Hopital’s rule, left hand term evaluates to 0. So,

E(Z2m+1) = 2m
∫ ∞
−∞

x2m−1 · 1√
2π
e−

x2
2 dx = 2mE(Z2m−1)

Continuing in this fashion, we eventually get a string of constants acting on E(Z). Recall
that the expected value of the standard normal is equal to 0, and we are done. As another
application from the book, look at E(Z2m). This is the same as E(X2)m. We know that if
X = N(0, σ2) then X2 = Γ(1

2 ,
1

2σ2 ). This tells us that Z2 = Γ(1
2 ,

1
2). By our formula,

E(Z2)m =
Γ(1

2 + n)(
1
2

)n
Γ(1

2)

So, we get
E(Z2m) = 2m√

π
Γ(m+ 1

2)

In conclusion, if X +Normal(µ, σ2),

E(X − µ)2 =
{

0 if n = odd
2mσ2m
√
π

Γ(m+ 1
2) if n = 2m,m ∈ Z+

7.2 The Central Limit Theorem

Fix a sample, X1, X2, X3, ..., Xn identically distributed random variables with finite second
moments. Let µ = E(X1) = E(X2) = ... = E(Xn). Also let σ2 = V ar(X1) = V ar(X2) =
... = V ar(Xn). We are interested in the following sum:

Sn = X1 +X +2 +...+Xn

We would like to know what we can say about P{Sn ≤ x}. The central limit theorem will
shed some light on this question.
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Theorem 24. For each fixed x ∈ R,

lim
n→∞

P{Sn − nµ
σ
√
n
≤ x} = Φ(x) = P{Z ≤ x} =

∫ x

−∞
ϕ(x)dt

Where ϕ(x) = 1√
2πe
− t

2
2 .

If Xi = Bernoulli(p), 1 ≤ i ≤ n, then

Sn =
n∑
i=1

Xi = Binomial(n, p)

As n gets large, look at the following probabilities:

P (Sn = k) =
(
n
k

)
pk(1− p)n−k

P{a ≤ Sn ≤ b} =
∑

all k a≤k≤b
f(k)

How do we approximate the probability P (Sn ≤ x) if n is large? We will show the follow-
ing:

P (Sn ≤ x} ≈ Φ
x− E(Sn)√

V ar(Sn)


In central-limit theorem considerations, we proceed as follows: if n is large,

Sn − nµ
σ
√
n
≈ Z

Notice that E(Sn) = nµ, and that σ
√
n =

√
V ar(Sn). Then,

P (Sn ≤ x) = P

(
Sn − nµ
σ
√
n

)
≤ x− nµ

σ
√
n
≈ P

(
Z ≤ x− nµ

σ
√
n

)
= Φ

(
x− nµ
σ
√
n

)

Example 11 on page 187 is a useful illustration.

7.3 Final

Our final will be on December 21st, from 6 : 30− 8 : 30, in KY 431.
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7.4 The Beta Function

We have the following:
B(α, β) =

∫ ∞
0

xα−1(1− x)β−1

and we say that the following is the Beta Density:

f(x) = 1
B(α, β)x

α−1(1− x)β−1

if 0 < x < 1 and 0 otherwise is called the ‘Beta(α, β) density’. We once proved that:

B(α, β) = Γ(α)Γ(β)
Γ(α + β)

7.5 Chapter 7, Question 5

Let X have a Beta density with parameters α, β. We would like to find the moments and
variance of X.

We know the following:

E(Xn) = c
∫ 1

0
xnxα−1(1− x)β−1dx

= Γ(α + β)
Γ(α)Γ(β)

∫ 1

0
x(n+α)−1(1− x)β−1dx = B(n+ α, β)

using the formula for B(α, β), we have the following:

B(n+ α, β) = Γ(n+ α)Γ(β)
Γ(n+ α + β)

Thus, our answer when multiplied with c is the following:

cB(α + n, β) = Γ(n+ α)Γ(α + β)
Γ(α)Γ(α + β + n

So, wen n = 1,
E(X) = α

α + β

Now notice that Γ(α + 2) = (α + 1)Γ(α). So,

E(X2) = (α + 1)α
(α + β)(α + β + 1)

101



CHAPTER 7. THE EXPECTATIONS OF CONTINUOUS RANDOM VARIABLES AND
THE CENTRAL LIMIT THEOREM

7.6 Chapter 7, Question 4

Let X have exponential density with parameter λ and let Xε be defined in terms of X and
ε < 0, where Xε = kε if kε ≤ X < (k + 1), where k ≥ 0 and is an integer. We would like to
find the distribution of Xε/ε. We can find E(Xε), and evaluate its limit as ε→ 0.

Notice that saying Xε = kε is the same as saying Xε
ε

. So,

g(k) = P (Xε

ε
= k) = P{kε ≤ X < (k + 1)ε} = F ((k + 1)ε)− F (kε) = e−λε − e−λ(k+1)ε

Which follows from the fact that X is exponentially distributed. Notice that:

e−λε − e−λ(k+1)ε = e−λkε(1− e−λε)

So,
P (Xε

ε
= k) = pqk

For k taking values from 0, 1, 2, ..., and for q = e−λε and p = 1 − q. So, this tells us that
Xε
ε

is Geometric(p = 1 − e−λε). Recall that for Y = Geometric(p), E(Y ) = q
p
. using this

formula,
E(Xε)
ε

= e−λε

1− e−λε
Thus,

E(Xε) = ε

eλε1
So,

lim
ε→0

E(Xε) = lim
ε→0

ε

eλε − 1 = 1
λ

= E(x)

where you get 1
λ

by applying L’Hopital’s rule to ε
eλε−1

As an exercise, let
A =

∫ ∞
0

e−
x2
2 dx

Fix α > 0, and let x = αy. This is a change of variable. From this, we get y = x
α

.

1. Use the change of variable to express A as a definite integral of a function y, dy.

2. Using the new definite integral,

A =
∫ ∞

0
e−

α2y2
2 αdy

multiply this integral by e−α2/2 and integrate from 0 to α dα. You get the following:

A2 =
∫ ∞

0

(∫ ∞
0

e−
α2y2

2 αdy
)
e−

α2
2 dα

Switch the order of integration in this integral, and obtain your answer.
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7.7 Chapter 7, Question 6

Definition. A continuous random variable X ≥ 0 is called χ2 if X = Γ
(
n
2 ,

1
2

)
. Recall

that when X = N(0, σ2), we found that X2 = Γ(1
2 ,

1
2σ2 ). In particular, if Z1, Z2, ...Zn are

independent distributed standard normal random variables (i.e., σ = 1), Notice that

Z2
1 , Z

2
2 , ...Z

2
n

will also be independent with a distribution Γ(1
2 ,

1
2). Taking their sum,

n∑
i=1

Z2
i = Γ(n2 ,

1
2)

Let X have a χ distribution with n degrees of freedom. We want to find the mean of
Y =

√
X.

We have the following:

f(x) = 1/2)n/2
Γ(n2 ) xn/2−1e−x/2 if x > 0

So,
E(Y ) = E(

√
X) =

∫ ∞
0

√
xf(x)dx =∫ ∞

0
x1/2 1

2n/2Γ(n/2)x
n/2−1e−x/2dx = 1

2n/2Γ(n2 )

∫ ∞
0

x(n+1)/2−1e−x/2dx

= 1
2n/2Γ(n2 ) · 2

(n+1)/2Γ(n+ 1
2 )

=
√

2Γ(n+1
2 )

Γ(n2 )

Notice that Γ(3/2) = (1/2)Γ(1/2) =
√
π

2 .

7.8 The Strong Law of Large Numbers

Suppose that X1, X2, ...X are independent identically distributed random variable whose
mean = 0 and var = σ2 is finite. We know that X is the following:

Xn = X1 +X2 + ...+Xn

n

and is called the sample mean. The following is true:

E(Xn) = 0, V ar(X) = σ2

n
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We proved the weak law of large numbers, which says that for each fixed ε > 0,

lim
n→∞

P{|Xn| ≥ ε} = 0

The Strong Law of Large Numbers says the following:

{ω ∈ Ω| lim
n→∞

Xn(ω) = 0} = A

Implies that the probability P (A) = P (ω ∈ Ω) = 1.

Let A1, A2, A3, ... be an infinite sequence of events in a probability space Ω. Let E = { all ω ∈
ω| ω belongs to infinitely many events Ai of the sequence}. This set is called An ‘infinitely
often’, or Ani.o..

Under what sufficient conditions can we guarantee that P (An i.o) = 0?

Suppose you took the relations An = (|Xn| ≥ ε) for some ε > 0. Thinking of the compliment
of Ani.o., would look like the following:

(An i.o)c = {ω| |Xn| < ε, all n that are sufficiently large}

If we could show that the probability of An i.o would be 0, the probability of this set would
have to be 1. We have the following lemma:
Lemma 25. If the series ∑∞n=1 P (An) converges, then P (An i.o) = 0. This is called the
Borel-Cantelli lemma.

7.9 Chapter 7, Question 9

LetX, Y be independent random variables each having an exponential density with parameter
λ, and set Z = max(U1, U2). Find the mean and variance of Z.

Since Z = max(X, Y ), this tells us that Z ≥ 0. Looking at P (Z ≤ z), we have:

P (Z ≤ z) = P (X ≤ z, Y ≤ z) = P (X ≤ z)P (Y ≤ z)

Since P (X ≤ z) = 1− e−λz, we have:

P (X ≤ z)P (Y ≤ z) = (1− e−λz)2 = 1− 2e−λz + e−2λz)

The density of Z is then:

g(z) = (1− 2e−λz + e−2λz)′ = 2λe−λz − 2λe−2λz

We know the following;

E(Z) =
∫ ∞

0
zg(z)dz = 2λ

∫ ∞
0

(ze−λz − ze−2λz)dz

This integral can be found through integration by parts of z(e−λz − e−2λz). Finish this
question as an exercise.
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7.10 Chapter 7, Question 15

Let X have the normal density n(0, σ2). Find the mean and variance of the following random
variables:

1. |X|

2. |X2

3. etX

Solutions:

1. See Next Chapter

2. We know that if Z is normally distributed, Z2 = Γ(1
2 ,

1
2). Also, notice that for Y =

Γ(α, λ), the mean is α
λ
, and var = α

λ2

Call X
σ

= Z. In other words, X2 = σ2Z2. Based on what we know of the distribution
of X2 and our formula, E(Z2) = 1 and V ar(Z2) = 2. Notice that from the variance,
we can find that E(Z4) = 3. So,

E(X2) = σ2E(Z2) = σ2, V ar(X2) = σ4V ar(Z2) = 2σ4

3. See Next Chapter
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Chapter 8
Moment Generating Functions

Definition. For any random variable X, the moment generating function (mfg) is:

MX(t) = E(etX) (Provided this expectation exists)

where t ∈ R. Notice that MX(0) = 1. If MX(t) exists for some t 6= 0, then we can show that
the moment generating function MX(t) exists for all t ∈ (−ε, ε).

Recall from calculus that:
eu =

∞∑
n=0

un

n!
Replacing u by tX, we have:

etX =
∞∑
n=0

(tX)n
n! =

∞∑
n=0

tnXn

n!

Now taking the expected value, we have the following:

E(etX = E

( ∞∑
n=0

tnXn

n!

)
=
∞∑
n=0

E(Xn)
n! tn

where the right-most term is a power series. Recall that:

f(t) =
∞∑
n=0

f (n)

n! t
n

So,

MX(t) =
∞∑
n=0

M
(n)
X (0)
n! tn = E(Xn) = M

(n)
X (0)

For all n ≥ 1.

For Z, a normal variable with the standard distribution, let us find MZ(t). We have the
following:

MZ(t) = E(etX) =
∫ ∞
−∞

etX
1√
2π
e−

x2
2 dx
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For some fixed t 6= 0. Notice that:

−x
2

2 + tx = −(x2 − 2tx+ t2) + t2

2 = −(x− t)2

2 + t2

2

So,
E(etX) =

∫ ∞
−∞

etX
1√
2π
e−

x2
2 dx = e

t2
2

∫ ∞
−∞

1√
2π
e−

(x−t)2
2 dx

Notice that 1√
2πe
− (x−t)2

2 is normally distributed with mean=t and var = 1, the integral of

which is 1. Thus, our answer is simply, e t
2
2 - i.e., for a normally distributed random variable

with the standard distribution, its moment generating function is e t
2
2 . Using our expansion,

we have:
e
t2
2 =

∞∑
n=0

t2n

2nn!

Regarding the moments of the standard random variable, we have the following remarks:

1. The expected value of Zodd = 0. This follows from setting our expansion above equal to
our definition of MX(t), and thinking realizing that the coefficients of the power series
need to agree. In other words, we have the following:

E(Z2n)
(2n)! = t2n

2nn! ⇒ E(Z2n) = (2n)!
2nn!

2. Suppose that a, b are two constants. How do we relate the moment generating function,
MaX+b(t) and MX(t)? By definition,

MaX+b = E(Et(aX+b)) = etbE(etaX) = etbMX(at)

So, MaX+b = etbMX(at).

If X = N(µ, σ2), then
X − µ
σ2 = Z ⇒ X = σZ + µ

So, MX(t) = MσZ+µ = eµtMZ(σt) = eµt · eσ
2t2
2 . So, X = N(µ, σ)⇒ MX(T ) = eµt+

σ2t2
2 .

Notice that Given etX , looking for E(X)) we have:

E(etX) = MX(t) = e
σ2t2

2

And that:

V ar(etX) = E(e2tX)− [(E(etX)]2 = MX(2t)− eσ2t2 = e2σ2t2 − eσ2t2

Which follows from letting t = 2t in our formula for MX(t).
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8.1 Chapter 7, Question 14

Let X be the sine of an angle in radians chosen uniformly from (−π/2, π/2). Find the mean
and variance of X.

Let θ̂ = Uniform[ −π/2, π/2]. The random variable X = sin(θ̂). We have the following:

f(θ) =
(

1
π

−π
2 ≤ θ ≤ π

2
0 otherwise

We know that E(X) = E(sin(θ̂). Notice that:

E(X) = E(θ̂) =
∫ ∞
−∞

sin(θ)f(θ)dθ = 1
π

∫ π/2

−π/2
sin(θ)dθ = 1

π
· −cos(θ)

π

∣∣∣∣∣∣
θ=π/2

θ=−π/2

= 0

Simultaneously, we want:

E(X2) = E(sin2(θ̂)) =
∫ ∞
−∞

sin2(θ)f(θ)dθ = 1
π

∫ π/2

−π/2
sin2(θ)dθ = 1

π

∫ π/2

−π/2

1− cos(2θ)
2 dθ =

= 1
π
· θ − sin(2θ)/2

2

∣∣∣∣∣∣
θ=π/2

θ=−π/2

= π

4 + π

4

Since sin2(θ) = 1−cos(θ)
2 .

8.2 Chapter 7, Question 31

Let X1, X2, ... be independent, identically distributed random variables having mean 0 and
finite nonzero variance σ2. Set Sn = X1 + ...Xn. We want to show that if X1 has finite third
moment, then

E(S3
n) = nE(X3

1 )
and

lim
n→∞

E

(
Sn
σ
√
n

)3

= 0

We here assume that E(X3
1 ) is finite. What we really have to look at is E(S3

n)
σ3n
√
n
. Notice that

S3
n takes the following form:

S3
n = (X1 +X2 + ...+Xn)3 =

n∑
i=1

X3
i +

∑
i 6=j

X2
iXj +

∑
i 6=j 6=k

XiXjXk

Taking the expected value,

E(S3
n) =

n∑
i=1

E(X3
i ) +

∑
i 6=j

E(X2
iXj) +

∑
i 6=j 6=k

E(XiXjXk)
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=
n∑
i=1

E(X3
i ) +

∑
i 6=j

E(X2
i )E(Xj) +

∑
i 6=j 6=k

E(Xi)E(Xj)E(Xk)

Notice that ∑n
i=1E(X3

i ) = nE(X3
i ). So,

E(S3
n)

σ3n
√
n

= nE(X3
1

σ3n
√
n

= E(X3
1 )

σ3√n
→ 0 as n→∞

From the central limit theorem, we have:

(X1 + ...+Xn)− nµ
σ
√
n

→D Z

which tells us that:

lim
n→∞

P

(
(X1 + ...+Xn)− nµ

σ
√
n

≤ x

)
= Φ(x) ∀x

In other words, we have:
Sn
σ
√
n

converges to Z

So,

E

(
Sn
σ
√
n

)3

→ E(Z3)

8.3 Chapter 7, Question 35

Let X1, X2, ...X100 be independent normally distributed random variables having mean 0 and
variance 1. To indicate that they are standard normally distributed variables, we denote
them as Z1, Z2, ...Z100. Notice that Zi = Γ(1

2 ,
1
2). Since Z2

i is independent from Z2
j when

i 6= j, we have:
U = Z2

1 + ...+ Z2
100 = Γ(n2 ,

1
2) = χ2

n

We then have:
E(U) = n V ar(U) = 2n

By the central limit theorem,

U − n√
2n
≈ Z standard normal

Approaching our problem:

1. P (U ≤ 120) = P (U−100
10
√

2 ≤
120−100

10
√

2 ≈ P (Z ≤ 1.41) = Φ(1.41) = .9207

2. P (80 ≤ U ≤ 120) = P (80−100
10
√

2 ≤
U−100
10
√

2 ≤
120−100

10
√

2 ≈ P (01.41 ≤ Z ≤ 1.41) = P (|Z| ≤
1.41) = 2Φ(1.41)− 1 = .8414
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3. We aim to find c such that: P (100 − c ≤ I ≤ 100 + c) = .95 We change this question
to:

P ( −c
10
√

2
≤ U − 100

10
√

2
≤ c

10
√

2
) = .95

⇒ 2Φ( c

10
√

2
)− 1 ≈ .95⇒ Φ( c

10
√

2
) = .975 = Φ(1.96)⇒ c = 1.96 · 10

√
2 = 27.718

8.4 Chapter 7, Question 32

We have Sn = X1 +X2 +...+Xn, as in question 31. We know that E(X1) = 0, and that:

E(X4
1 ) <∞

We have the following:

S4
n = (X1 + ...+Xn)4 =

∑
i

X4
i +

∑
i 6=j

X2
iX

2
j +

∑
i 6=k 6=j

X2
iXjXk +

∑
i 6=j 6=k 6=l

XiXjXkXl +
∑
i 6=j

X3
iXj

Looking at the terms of type X2
iX

2
j , we would like to find out how many variables we have

of that type. We proceed using the counting principal:

1. Fix locations of S4
n:

S4
n = (X1 + ...+Xn)︸ ︷︷ ︸

1

(X1 + ...+Xn)︸ ︷︷ ︸
2

(X1 + ...+Xn)︸ ︷︷ ︸
3

(X1 + ...+Xn)︸ ︷︷ ︸
4

For example, locations 1 and 3.

2. From 1, 2, ...n we pick a pair (i, j) such that i 6= j. For example, 5 and 12 (suppose that
n ≥ 12). Then, we’re thinking of X5 from location location 1, and X12 from location
2, which when multiplied, gives us a term: X2

5 ·X2
12. So, if we can find the number of

choices we have in step 1, and the number of choices for step two, we can calculate the
number of total possibilities we have.

In step 1, we have (4C2 possibilities (since there are four locations). In step 2, we have nC2
choices. So, by the multiplication rule in S4

n, we have 4C2 × nC2 terms of the type X2
iX

2
j

where i 6= j. Reducing our equation, we have:

6 · n(n− 1)
2

So,
E(S4

n) = nE(X4
1 ) + 3n(n+ 1)σ4

Since E(X2
i )E(X2

j ) = σ4.
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8.5 Chapter 7, Question 34

Let X1, X2, ...Xn be independent normally distributed random variables having mean 0 and
variance σ2. Recall that:

X2
i = Γ(1

2 ,
1

2σ2 )

from which we know: E(X2
i ) = σ2, and V ar(X2

i ) = 2σ4.

8.6 Chapter 7, Question 37

Twenty numbers are rounded off to the nearest integer and then added. Assume that the
individual round-off errors are independent and uniformly distributed over U = (−1

2 ,
1
2).

Find the probability that the given sum will differ from the of the original twenty numbers
by more than 3.

In other words, |sum− rounded sum| > 3. Looking at sum- rounded sum, we have the sum
of the errors, which is equal to ε1 +ε2 + ...+ε20. We know that all εi are distributed uniformly
over our interval U . Notice that the mean of these variables is µ = 0, since the average of
the values of U is 0. The variance, σ2 = 1

12 . Using the central limit theorem (since n = 20)
we can say that:

ε1 + ε2 + ...+ ε20
1√
12

√
20

≈ Z

Where 1.291 = 1√
12

√
20. So,

P{|ε1 + ...+ ε20} ≈ P{|Z| > 3
1.29 = 2.32}

Recall that:
P{|Z| ≤ a} = 2Φ(a) = 1

So,
P{|Z| > 3

1.29 = 2.32} = 2− 2Φ(2.32) = .0204

8.7 Chapter 7, Question 38

A fair coin is tossed until 100 heads appear. Find the probability that at least 226 tosses will
be necessary.

Let:
Xi =

{
1 if Heads on the ith toss

1 otherwise
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So, if we make n tosses, the total number of heads is equal to X1 +X2 + ...+Xn = Sn. Let
N ≥ 1 be a random variable such that SN = 100, and that SN−1 < 100. What we now look
for is: P{N ≥ 226}. Forcing N ≥ 226, we see that the sum:

X1 +X2 + ..+X225 < 100

Observe that this statement is equivalent to the statement that P{N ≥ 226}. So, we
want:

P{X1 +X2 + ...+X225 < 100}

Notice that X1 + X2 + ... + X225 is binomial, where n = 225, p = 1
2 . Thus, the mean

is µ = np = 225 · 1
2 and the variance is σ2 = np2 = 225 · 1

4 . So, by the central limit
theorem,

X1 +X2 + ...+X225 − 112.5
7.5 ≈ Zs.n.

We then have:

P (X1 +X2 + ...+X225 < 100) ≈ P (Z < −.167) = .0475

which comes from the use of a table.

8.8 Chapter 7, Question 39

Using the same set up as question 38, we want to find the probability that N = 226.

Here, we can say that (N = 226) ∪ (n ≥ 227) = (N ≥ 226). So,

P (N = 226) = P (N ≥ 226)− P (N ≥ 227

which can be calculated in the same manner as question 38.

Alternatively, notice that from the independence of our result, we have:

{N = 226}{X1+X2+...+X225} = 99 and X226 = 1 = P (X1+X2...+X225 = 99)P (X226 = 1
2)

Which would be:
(

225
99

)
· (1

2
226). If you would like, look at Stirling’s formula, which has

applications to our solution.

8.9 Chapter 8, Question 3

Let X have a Poisson distribution with parameter λ. We are asked to find the mean and
variance of X by using the moment generating function.
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We have the following:

MX(t) = E(etX) =
∞∑
x=0

etxe−λ
λx

x! = e−λ
∞∑
x=0

(λet)x
x! = e−λ · eλet

Now, we take the derivative, and say:

M ′
X(t) = e−λ · eλetλet

Now, looking at the following:

E(X) = M ′
X(0) = e−λ · eλλ = λ

Notice that M ′
X(t) = λe−λet+λe

t . Now taking the second derivative,

M ′′
X(t) = λe−λet+λe

t(1 + λet)

Again using properties of the moment generating function,

E(X2) = M ′′
X(0) = λ(1 + λ)

Calculating the variance,

V ar(X) = E(X2) = E(X)2 = λ(1 + λ) = λ2 = λ

8.10 A Relationship Between MX(t) and ΦX(t)

Remember that for X ∈ IV+, for which we have the following functions:

ΦX(t) =
∞∑
x=0

f(x)tx = E(tX) MX(t) = E(etX)

Can we find a relationship between these two generating functions?

Formally, for any positive number a > 0, can be represented as a = eln(a). Doing this for tX ,
we have:

tX = eln(t)X = eXln(t)

This tells us that:
ΦX(t) = E(eln(t)·X) = MX(ln(t))

Calling ln(t) = s, then es = t and we arrive at the following:

MX(s) = ΦX(es)
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8.11 Chapter 8, Question 5

Let X be a continuous random variable having the density:

fX(x) = 1
2e
−|x|, −∞ < x <∞

This is called a ‘double exponential’ distribution. We want to show that:

MX(t) = 1
(1− t2) , −1 < t < 1

Fix some t 6= 0. Then,

E(etX) =
∫ ∞
−∞

etx
1
2e
−|x|dx =

∫ 0

−∞
etx

1
2e

xdx+
∫ ∞

0
etx

1
2e
−xdx = 1

2

(∫ 0

−∞
e(t+1)xdx+

∫ ∞
0

e(t−1)xdx
)

Clearly, these integrals would not be finite if t = −1, 1. Notice that if t 6= ±1, then the anti
derivatives of the following are true:

∫
e(t+1)x = e(t+1)x

t+ 1

∫
e(t−1)x = e(t−1)x

t− 1

Notice that for a 6= 0,

lim
x→∞

eax = finite if and only if a > 0 (in which case the limit = 0)

Similarly,
lim
x→∞

eax finite if and only if a < 0 (in which case the limit = 0)

So, we have the following evaluations:

= 1
2
e(t+1)x

(t+ 1)

∣∣∣∣∣∣
∞

x=−∞

+ 1
2
e(t−1)x

(t− 1)

∣∣∣∣∣∣
∞

0

= 1
2(t+ 1) −

1
2(t− 1) = 1

(1− t2)

which followed from assuming that −1 < t < 1. We know that we have the following power
series expansion of the moment generating function:

MX(t) =
∞∑
n=0

E(Xn)
n! tn

In our case, for the double exponential,

MX(t) = 1
(1− t2)

Recall that if 0 ≥ q < 1 then:

1
1− q = 1 + q + q2 + q3 + ...
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Taking t2 = q, and assuming that 0 < t2 = q < 1:

MX(t) = 1
(1− t2) = 1 + t2 + t4 + t6 + ...

Noticing that:

MX(t) =
∞∑
n=0

E(Xn)
n! tn = 1 + E(X)

1! t+ E(X2)
2! t2 + E(X3)

3! t3 + ..

Matching up the coefficients, clearly E(X2k+1) = 0 for all k ≥ 0. We end up with the
following:

E(X2)
2! = 1 E(X4)

4! = 1 E(X6)
6! = 1...

Which tells us that E(X2n) = (2n)!, e.g., E(X100) = 100!.

8.12 Properties of Moment Generating Functions

We have the following Important properties for moment generating functions:

1. If X, Y are two random variables such that for all t ∈ (−ε, ε) MX(t) = MY (t), then X
and Y have the same distribution.
Example. For a Poisson random variable X with parameter λ, the moment generating
function is MX(t) = eλ(et−1). If for some random variable Y , MY (t) = e3(et−1) then
we can say that since e3(et−1) = MX(t) when X = Poisson(3), we have that Y =
Poisson(λ = 3).

2. If random variables X1, ..., Xn are independent, then

MX1+X2+...+XN (t) = MX1(t) ·MX2(t) · ... ·MXn(t)

This follows from seeing that:

E
[
et(x1+x2+...+xn)

]
= E(etx1 · etx2 · ... · etxn) = E(etx1) · E(ext2) · ... · E(etxn)

where the last step follows from the independence of Xi, Xj when i 6= j.
Example. Let X = Γ(α, λ). MX(t) =

(
λ
λ−t

)α
for all t < λ. Notice that if you take

α = 1, then Γ(1, λ) = Exp(λ), so = Exp(λ) and MX(t) = λ
λ−t . Read the proof of this

in the textbook.

Suppose one is asked to prove the following result: If X1 = Γ(α1, λ), X2 = Γ(α2, λ), ..., Xn =
Γ(αn, λ) are independent, then X1 +X2 + ...+Xn is Γ(α1 + ...+αn, λ). We have the following
method to prove this statement using our two properties:

We know that MXi(t) =
(

λ
λ=t

)α
i

for all t < λ. We also know that:

MX1+X2+...+Xn = MX1(t) ·MX2(t) · ... ·MXn(t)
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Since the X ′s are independent. Substituting,

·MX2(t) · ... ·MXn(t) =
(

λ

λ = t

)α
1
·
(

λ

λ = t

)α
2
· ... ·

(
λ

λ = t

)α
n

Doing some algebra, we have:
(

λ

λ = t

)α
1
·
(

λ

λ = t

)α
2
· ... ·

(
λ

λ = t

)α
n

=
(

λ

λ− t

)α1+α2+...+αn=MY (t)

where Y = Γ(α1 +α2 + ...+αn, λ). By property 1, the sum X1 +X2 + ...+Xn has the same
distribution as Y , and we are done.

8.13 Chapter 8, Question 8

Let X be a random variable such that MX(t) is finite for all t. We would like to use the same
argument as in the proof of Chebyshev’s Inequality to show that:

P (X ≥ x) ≤ e−txMX(t) = MX(t)
etx

, t ≥ 0

First, let us note that if t = 0, the moment generating function of t is 1, and we know that
the probability of anything is ≤ 1. So, we assume that t > 0. Notice that the following
statements are equivalent:

X ≥ x ⇐⇒ tX ≥ tx ⇐⇒ etX ≥ etX

So, for t > 0,
P (X ≥ x) = P (etX ≥ etx)

By Markov’s inequality,

P (X ≥ x) = P (etX ≥ etx) ≤ E(etX)
etx

= MX(t)
etx

And we have finished our exercise.

Now if we suppose that x is fixed and call:

MT (x)
etx

= g(t)

It follows that:
P (X ≥ x) ≤ min(g(t)) for all t ≥ 0

This is discussed in problem 9, which we will discuss next class.
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8.14 Chapter 8, Question 6

Let X have a binomial distribution with parameters n and p. We want to find dMX(t)/dt
and d2MX(t)/dt2.

Since X = Binnomial(n, p), we know that:

MX(t) = E(etX) =
∞∑
x=0

etx(nCx)pxqn−x =
n∑
x=0

(nCx)(pet)xqn−x

Since
E(ϕ(X)) =

∑
x

ϕ(x)f(x)

and in our case, ϕ(x) = etx. Recalling that

∞∑
x=0

(nCx)axbn−x = (a+ b)n,

we have:
n∑
x=0

(nCx)(pet)xqn−x = (pet + q)n

Once we arrive here, we can take some derivatives and solve for the mean and variance.

It also may be helpful to notice that the probability generative function for a Binomial
random variable is as follows:

ϕX(t) = (pt+ q)n

Using our connection between the moment generating and probability generating functions,
we could have arrived at the same answers (which can be found as formula (3) on page
198).

8.15 Chapter 8, Question 7

Let X1, X2, ...Xn be independent, identically distributed random variables such that MX(t)
is finite for all t. We want to show using moment generating functions that:

E(X1 +X2 + ...Xn)3 =

Calling MX1(t) = m(t). Let

M(t) = MX1+X2+...+Xn(t) = [m(t)]n

We know that:
E(X1 +X2 + ...Xn)3 = M ′′′(0)
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So, taking derivatives, we have:

M ′(t) = n(m(t))n−1m′(t)
M ′′(t) = n(n− 1)(m(t))n−2(m′(t))2 + n(m(t))n−1 ·m′′(t)

M ′′′(t) = n(n− 1)(n− 1)(m(t))n−3[m′(t)]3 + n(n− 1)(m(t))n−22m′(t) ·m′′(t)
+n(n− 1)[m(t)]n−2m′(t)m′′(t) + +n[m(t)]n−1 ·m′′′(t)

So,

E(X1+X2+...Xn)3 = n(n−1)(n−1)[1]0E(X3
1 )+2n(n−1)E(X1)E(X2

1 )+n(n−1)E(X1)E(X2
1 )+nE(X3

1 )

Since notice that m′(0) = E(X1), m′′(0) = E(X2
1 ) and m′′′ = E(X3

1 ). This gives us the result
we were looking for.

8.16 Chapter 7, Question 36

A runner attempts to pace off 100 meters for an informal race. His paces are independently
distributed with µ = .97 and standard deviation σ = .1 meter. Find the probability that his
100 paces will differ from 100 meters by no more than 5 meters.

Let X = pace. We have X1, X2, ...X100. These are naturally identically distributed indepen-
dent random variables. We are looking for the probability of the following event:

P{−5 ≤ X1 +X2 + ...+X100 − 100 ≤ 5}

By the central limit theorem for the sum,

X1 +X2 + ...+X100− nµ
σ ·
√
n

= X1 +X2 + ...+X100− 97
1 ≈ Zs.n

So, we can change our event to the following:

P{−5 ≤ X1 +X2 + ...+X100 − 100 ≤ 5}
= P{−2 ≤ X1 +X2 + ...+X100 − 97 ≤ 8} ≈ P{−2 ≤ Z ≤ 8}

= Φ(8)− Φ(−2) ≈ .0288

8.17 Announcement for the Final

We should be comfortable with setups like the following:

(X, Y )︸ ︷︷ ︸
f(x,y)

7−→ (U, V )︸ ︷︷ ︸
g(u,v)

Now find a formula for the density of X · Y , or X + Y , or X
Y

, etc.
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Example. Suppose X = Exp(λ). We want to find the density of Y = 1
1+X . Notice that

0 < Y ≤ 1. We want to find something along the lines of:

g(y) =
{
... if 0 < y ≤ 1

0 otherwise

8.18 Review for the Final

8.18.1 Chapter 8, Question 9

Let X have a gamma distribution with parameters α, λ. Use the following result:

A = P{X ≥ a} ≤ e−taMX(t)

to show that P (X ≥ 2α/λ) ≤ (2/e)α.

If X = Γ(α, λ), and X ≥ 0, we know that MX(t) = ( λ
λ−t)

α for all t < λ. In our case,
0 ≤ t < λ:

g(t) = e−αt
(

λ

λ− t
)α
)

So, we see that when we set g′(t) = 0, we get that α
λ−t = a, which is the same as saying that

t = λ− α
a

= λ. For our choice of a, which is 2α/λ, we see that t0 = λ
2 ∈ (0, λ). Using a chart

,we can see that this value truly is the minimum value of g(t) on our interval. So, A ≤ g(λ2 ).
Notice that Since aλ2 = α.

8.18.2 Exam Question Number 6

A point is chosen at random uniformly in the spacex = (0, 1) and y = (0, 3). We let
X(u, v) = u+ v. When 0 < x < 2, we want to find the density.

First, we can find the distribution. Fix some 0 < x < 2. Let F (X) be the probability that
F (x) = P{X ≤ x}. This event, {X ≤ α} = {(u, v) | X(u, v) ≤ x} = {(u, v) | u + v ≤ x}
Notice that:

F (x) = P (δx) = |δx|
|Ω| = x2

12 ⇒ f(X) = F ′(x) = x

6

8.18.3 General Question

Suppose that X and Y are independent and X = Geom(p) and Y = U(0, 1, 2, 3, 4, 5). We
would like to find P (Y ≤ X). We can express this event as follows:

{Y ≤ X} =
∞⋃
x=0
{Y ≤ X,X = x} =

∞⋃
x=0
{Y ≤ x,X = x} = Ax
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This union is the following sum:

P (Y ≤ X) =
∞∑
x=0

(Ax) = P (A0) + P (A1) + P (A2) + P (A3) + P (A4) + P (A5) + P (A6) + ....

Notice that starting with P (A5), that P (Ax) = 1, since Y ≤ 5 by definition. But, we also
have the following:

P (A0) = P (Y ≤ 0, X = 0) = P (Y ≤ 0)P (X = 0) = 1
6 · p

P (A1) = P (Y ≤ 1, X = 1) = P (Y ≤ 1)P (X = 1) = 2
6 · pq

P (A2) = P (Y ≤ 2, X = 2) = P (Y ≤ 2)P (X = 2) = 3
6 · pq

2

And so on. Finishing in this fashion, we can find our sum, and we can be done. The tail of
this sum is simply:

pq5 + pq6 + pq7 + ... = pq5(1 + q + q2 + ...) = pq5 1
1− q = q5

8.18.4 Chapter 6, Question 11

Let X and Y be independent continuous random variables having the indicated marginal
densities. Find the density of Z = X + Y where X is uniform on (0,1) and Y is Exp(λ).
Before we begin, notice that X ≥ 0 and Y ≥ 0, so Z = X + Y ≥ 0. Thus, we could use the
convolution:

fZ(z) =
∫ z

0
fX(x)fY (z − x)dx

Notice that
fY (z − x) = λe−λ(z−x)

We have to distinguish cases based on where z is. We have the following cases:

1. Suppose that 0 < z < 1. Now,

fZ(z) =
∫ z

0
1 · λe−λ(z)eλxdx = e−λz

∫ z

)
λeλxdx =

Since
∫ z

0 e
λx = eλz−1

λ
, we have:

fZ(Z) = eλz − 1
λ

· λe−λz = 1− eλz

2. Suppose that z > 1. We now split our function to the following:

fZ(z) =
∫ 1

0
1 · λe−λzeλxdx+

∫ z

1
0 dx =

∫ 1

0
λe−λzeλxdx

And since we have the answer to case one, we take that answer when z = 1, and we
have:

fZ(z) = λe−λz · (eλ − 1)
λ

= (eλ − 1)e−λz
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So,

fZ(z) =


1− e−λz if z < 1

(eλ − 1)e−λz if z > 1
0 if z < 0

8.18.5 Chapter 7, Question 15

Let X = Normal(0, σ2). This tells us that E(X) = 0 and E(X2) = σ2. We would like to
find V ar(|X|). Recall that we have E(|X|) =

√
2
π
. Notice now that:

V ar(|X|) = E(|X|2)− E(|X|)2 = E(X2) = (σ
√

2
π

)2 = σ2 − 2
π
σ2 = (1− 2

π
)σ2

8.18.6 Information About the Exam

Question one is similar to what we just did with X ≤ Y . The second is to find the density
of the minimum of discrete random variables. By the way, min(U, V ) ≥ a) is U ≥ a, V ≥ q.
When you deal with the minimum, you deal with greater than or equal. The third is finding
the density of some function of x. One was given in our second exam. X is exponential,
what is Y = X/X+1, for example. We apply a theorem to do these questions. The next is a
moment-generating function question, you have a MGF of some function and you are asked
to find the mean, variance, and other moments. Then there is a problem about finding the
mean of the Gamma distributed variable. There is then a question about what we just did
with the convolution, and in general if you want to find the density of 5X−Y , there is a way
to do it by taking (X, Y ) → (U, V ). Using the Jacobian and integrating you can get what
you are looking for. If the joint density f(x, y) > 0 if (x, y) ∈ S and 0 otherwise, when you
write g(u, v) = 1

|J |f(u, v) you get something, and you will need to explain where the pairs
are in S, i.e., where they aren’t zero.

E.G., g(u, v) = 1
3f(3u−v, u+v). Suppose that you know that f(x, y) 6= 0 when x ∈ (0, 1), y ∈

(0, 2). So, we would want:

0 < 3u− v < 1
0 < u+ v < 2

This needs to be taken into account. Suppose that X + Exp(λ), and Y = U(0, 1). We
can eventually find that: g(u, v) = f(u, u − v) and this gives us the conditions u > 0 and
0 < u − v < 1, which reduces to u − 1 < v < u. Finding the marginal requires integrating
the joint density. Notice that we would fix v, so this means that u > 0 and v < u < v + 1,
for a fixed v. If we would have v > 0, then

gV (v) =
∫ v+1

v
g(u, v)du =

∫ v+1

v
λe−λudu = −eλu

∣∣∣∣∣∣
u=v+1

u=v

= e−λv − e−λv+λ
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There is one about moment generating functions again, related to the idea that if X is gamma
alpha 1 lamaba Y is alpha 2 lamabda and they are independent, there is something similar
that we did similar to this in class a few days ago.

There will be on on the cetnral limit theorem.

{
√
x1 +

√
X2 + ...+

√
Xn ≤ x} ≈ Φ(something)

We have to find E(
√
X1) and V ar(

√
X2). There were some questions like this in the book.

34 and 35 dealt with squares, but we here have radicals.
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