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Chapter 1
Introduction

The book we will be using for this class is Real Analysis by H.L. Royden .We are using the 3rd
edition, or the 4th, depending on your interests.

1.0.1 Office Hours and Contact Information

Dr. Saric’s office is in KY 405, and office hours will be Tuesday/Thursday from 2-3 p.m. My email
is Dragomir.Saric@qc.cuny.edu. In case you need it, my office phone is 718-997-5824.

The grading policy is as follows:

1. Homework (30 %)

2. One in-class Exam (30 %)

3. A (cumulative) Final Exam (40 %)

The general plan of our course is to cover part I sections 2-5 in our textbook. Also we will jump
to chapters 11-12 or so, to go through some measure theory.

1.1 Set Theory: Intersections, Unions, and Complements

Suppose we have a set, X. All other sets will be subsets of X. P(X) is ‘the set of all subsets of
X’, and is called the power set of X.
Example.

X = {1, 2, 3}

So,
P(x) = {{}, {1}, {2}, {3}, {1, 2}{1, 3}, {2, 3}, {1, 2, 3}}

Notice that if |X| = n, then |P(X)| = 2n.
Definition. If A,B ⊂ X (or A,B ∈ P(X)) Then we have:

A
⋂
B = {x : x ∈ A and x ∈ B}
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CHAPTER 1. INTRODUCTION

We have the following facts:

1. A ∩B = B ∩ A

2. A ∩B ⊂ A

3. A ∩B = A ⇐⇒ A ⊂ B

4. (A ∩B) ∩ C = A ∩ (B ∩ C)

Proof of 3.

• Let us assume that A∩B = A. By property two, we see that A∩B ⊂ B. Since A∩B = A,
we know that A ⊂ B.

• Let us assume that A ⊂ B. We wish to show that A ∩ B = A, which we can do by showing
that A ∩ B ⊂ A and that A ⊂ A ∩ B. By 2, we have that A ∩ B ⊂ A. Now let x ∈ A. By
A ⊂ B, we have that x ∈ B as well. Then, x ∈ A and x inB, which equivalent to saying
that x ∈ A ∩B. This shows that A ⊂ A ∩B, so we have that A ∩B = A.

Definition. We have the following definition for union:

A ∪B = {x : x ∈ A or x ∈ B}

We have the following facts about union:

1. A ∪B = B ∪ A

2. A ∪ (B ∪ C) = (A ∪B) ∪ C = A ∪B ∪ C

3. A ⊂ A ∪B

4. A = A ∪B ⇐⇒ B ⊂ A

The following facts are known about both union and intersection:

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Proof of (2). First let us try to show the following:

A ∪ (B ∩ C) ⊂ (A ∪B) ∩ (A ∪ C)

Take an element x ∈ A ∪ (B ∩C). By definition, this means that x ∈ A or X ∈ (B ∩C), which is
equivalent to saying that that x ∈ B and x ∈ C. We have two cases to deal with now:

Notice that if x ∈ A, then clearly x must be in A ∪B and A ∪ C. Then x ∈ (A ∪B) ∩ (A ∪ C).

Notice also that if x ∈ B and x ∈ C, then x ∈ x ∈ A ∪ B and A ∪ C, from which it follows that
x ∈ (A ∪B) ∩ (A ∪ C).

So, we are done. The proof of (1) will be left to you.
Definition. The empty set, denoted ∅, is the set that has no elements.
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1.1. SET THEORY: INTERSECTIONS, UNIONS, AND COMPLEMENTS

We have the basic facts about the empty set:

1. A ∪ ∅ = A

2. A ∩ ∅ = ∅
Definition. If A ⊂ X, then the complement AC of A (relative to X ) is as follows:

AC = {x ∈ X : x /∈ A}

Example. If X = {1, 2, 3} and A = {1}, then AC = {2, 3}. Notice that ∅C = X and that XC = ∅.

We have the following facts:

1. (AC)C = A

2. A ∪ AC = X

3. A ∩ AC = ∅

4. A ⊂ B ⇐⇒ BC ⊂ AC

Definition. DeMorgan’s Laws:

1. (A ∪B)C = AC ∩BC

2. (A ∩B)C = AC ∪BC

(1) follows from noticing that x ∈ (A ∪ B)C is the same as saying that x /∈ (A ∪ B) and this says
that x /∈ A and x /∈ B. From this it follows that x ∈ AC ∩ Bc. Going the other way, saying that
x ∈ AC ∩BC , this tells us that x ∈ AC and X ∈ BC , from which we see that x /∈ A and x /∈ B, so
x /∈ (A ∪B), telling us that x ∈ (A ∪B)C .
Definition. We have the following definition of the difference, or relative complement of two
sets A and B: let A,B ⊂ X. Then

B − A = {x ∈ X : x ∈ B and x /∈ A}

notice that the following is true:
B − A = B ∩ AC

Definition. A4B is called the symmetric difference of A and B, and is defined as follows:

A4B = (B − A) ∪ (A−B) = A ∪B − (A ∩B)

Definition. If A ∩B = ∅, then we say that A and B are disjoint sets.
Definition. A collection C of sets is a disjoint collection or a collection of pairwise disjoint sets
if any two sets in C are disjoint.
Definition. The intersection of the collection C is the set of all elements of X that belong to each
member of C. This can be denoted as follows:⋂

A∈C
A or

⋂
{A : A ∈ C}

7



CHAPTER 1. INTRODUCTION

We have that: ⋂
A∈C

A = {x ∈ X : (∀A)(A ∈ C ⇒ x ∈ A}

We also have the union of an arbitrary collection of a set,⋃
A∈C

= {x ∈ X : (∃A)(A ∈ C and x ∈ A}

Again, we have DeMorgan’s laws, telling us that:
( ⋂
A∈C

A

)C
=
⋃
A∈C

AC
( ⋃
A∈C

A

)C
=
⋂
A∈C

AC

In trying to prove the right-most identity, we have the following:

Proof. Let x ∈ (⋃A∈C A)C . This tells us that x /∈ ⋃A∈CA, which tells us that (∀A)(A ∈ C ⇒ x /∈ A)
which tells us that (∀A)(A ∈ C ⇒ x ∈ AC)⇒ x ∈ ⋂A∈C AC .

We have the following distributive laws:

1. B ∩ [⋃A∈C A] = ⋃
A∈C[B ∩ A]

2. B ∪ [⋂A∈C A] = ⋂
A∈C[B ∪ A]

Also, the union of the empty collection of sets is empty, and the intersection of an empty collection
of set is X, since by definition since the collection is empty there is nothing to check, and we wind
up with all x ∈ X.

If a collection is given in a sequence, C = {Ai}∞i=1 then

∞⋂
i=1

Ai =
⋂
A∈C

A,
∞⋃
i=1

Ai =
⋃
A∈C

A

Definition. {Ai}i=1, i ∈ N is called a index set. We can also talk about {Aλ : λ ∈ λ}, and we
can talk about their unions and intersections:⋃

λ∈A
AA = {x : ∃λ ∈ A and x ∈ Aλ}

⋂
λ∈A

Aλ = {x : (∀λ)(λ ∈ A)⇒ x ∈ Aλ}

Let
f : X → X

be a function. Then let {Aλ}λ∈A be a collection of subsets of X, in which case:

f [
⋃
λ∈A

A− λ] =
⋃
λ∈A

f(Aλ)

f [
⋂
λ∈A

A− λ] ⊂
⋂
λ∈A

f(Aλ)
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1.2. HOMEWORK

Now we assume that {Bλ}λ∈A is an indexed collection of subsets of Y , then we have that

f−1[
⋃
λ

Bλ] =
⋃
λ

f−1(Bλ)

and that
f−1

[⋂
λ

Bλ

]
=
⋂
λ

f−1(Bλ)

Notice that we have the following chain of events:

x ∈
⋂
λ

f−1(Bλ)⇒ ∀λ ∈ A, f(x) ∈ Bλ ⇒ f(x) ∈
⋂
λ

Bλ ⇒ x ∈ f−1(
⋂
λ

Bλ)

We also have that

f−1[BC ] ⊂ (f−1[B])C , f(f−1[B]) = B f−1(f [A]) ⊃ A

1.2 Homework

Page 17 questions (16, 17) and Page 19 question (19).

1.3 Algebras of Sets

Definition. A collection A of subsets is called an algebra of sets (or boolean algebra), if:

1. For all A,B ∈ A, then A ∪B ∈ A

2. For ever A ∈ A, AC ∈ A.

Given A,B ∈ A, we would like to show that A ∩ B is in A. Based on what we know (along with
DeMorgan’s laws) we have:

(A ∩B)C = AC ∪BC ⇒ AC ∪BC ∈ A ⇒ (AC ∪BC)C ∈ A ⇒ A ∩B = (AC ∪BC)C ∈ A

Finite unions and finite intersections are also in the algebra.
Proposition 1. Given any collection C of subsets of X, there is a smallest algebra A which
contains C.

Proof. P(X) is an algebra, and it contains C

Consider the family F of all algebras that contain C. Then,

A =
⋂
{B : B ∈ F} ⊃ C

Now we just need to verify that A is an algebra. This follows from seeing the following: let
A,B ∈ A. Since both A,B are in A, this implies that A,B ∈ B, for all B ∈ F . Since B is an
algebra, this implies that A ∪B ∈ B for all B ∈ F , from which we see that A ∪B ∈ A.
Definition. The smallest algebra containing C is called an algebra generated by C.

9



CHAPTER 1. INTRODUCTION

Proposition 2. Let A be an algebra of subsets of X, and {Ai}∞i=1 is a sequence of sets in A.Then,
there exists a sequence {Bi}∞i=1 of sets in A such that Bn∩Bm = ∅ for n 6= m, and ∪∞i=1Bi = ∪∞i=1Ai
.

Proof. Define the following: B1 = A1. B2 = A2 − A1 = A2 ∩ AC1 . Generally, for n > 1, we define:

Bn = An − (A1 ∪ A2 ∪ ... ∪ An−1) = An ∩ AC1 ∩ Ac2 ∩ ... ∩ ACn−1

So, Bn ⊂ A, and Bn ⊂ An. Given some m < n, we can look at Bm ∩ Bn. Well, Bm ∩ Bn ⊂
Am ∩ Bn = Am ∩ (An ∩ AC1 ∩ AC2 ∩ ... ∩ ACn−1) = ∅ since m < n, and since you’ll have m some
where in that chain of complements, so you’ll hit the empty set somewhere when you take the
intersection of Am with ACm.

We also know that Bi ⊃ Ai ⇒ ∪∞i=1Bi ⊃ ∪∞i=1Ai. So, let

x ∈ ∪∞i=1Ai.

Then, x belongs to at least one Ai. Let i0 be the smallest such index such that x ∈ Ai0 . Then,

x ∈ Bi0 = Ai0 − (A1 ∪ A2 ∪ ... ∪ Ai0−1)

So this implies that
∪∞i=1Ai ⊃ ∪∞i=1Bi ⇒ ∪∞i=1Ai = ∪∞i=1Bi

Definition. An algebra A of sets is called a σ-algebra or a Borel field, if every union of a countable
collection of sets in A is also in A.

Any σ-algebra contains countable intersections, which follows again from union.
∞⋃
i=1

Ai ∈ A ⇒ (
∞⋃
i=1

Ai)C =
∞⋂
i=1

Ai ∈ A

Proposition 3. Given any collection C of subsets of X, there is a smallest σ-algebra that contains
C (this is a homework question)

1.4 The Axiom of Choice

Let C be any collection of non-empty sets. Then, there is a function F defined on C which assigns
to each set A ∈ C an element F (A) in A. The function F is called a choice-function. If our
collection

C = {Xλ}λ∈Λ

Notice that
A×B = {(a, b) : a ∈ A, b ∈ B}.

How to we talk about the direct product of an infinite collection, C = {Xλ}λ∈Λ? Well, it is a
collection of all sets {xλ}λ∈Λ indexed by Λ such that xλ ∈ Xλ.
Remark. If one Xλ is the empty set, then

10



1.5. COUNTABLE SETS

∏
λ∈Λ

Xλ

is empty. If all Xλ 6= ∅, then ∏
λ∈Λ

Xλ 6= ∅

1.5 Countable Sets

Definition. A set is countable if it is the range of some sequence.
Definition. A set is finite if it is either empty or the range of a finite sequence.

A set is countably infinite if it can be put in a one-one correspondence with the natural numbers
N.
Proposition 4. Every subset of a countable set is countable.

Proof. Let E = {xn} be a countable set, and A ⊂ E. If A is empty, then we are done by definition.
Otherwise, let x ∈ A. Define a sequence {yn}∞n=1 as follows: if xn ∈ A, then yn = xn. If xn /∈ A,
then yn = x. We now have a sequence {yn}, and its range is A- thus it is countable.

Proposition 5. Let A be a countable set. Then the set of all finite sequences of A is countable.

Proof. We establish a one-one correspondence between the set of all finite sequences of elements
of A and N. Since A is one-one with N, let us look at sequences of the following type:

< 2, 3, 5, 7, ..., Pnk, ... >

Now,
n = 2x1 · 3x2 .... · P xk

k

Notice that
f : n 7→ (x1, x2, ..., xk)

which is a finite sequence in N ∪ {0}. The range of f are all finite sequences in N ∪ {0}, which
contains all finite sequences in N- and thus is countable.

Proposition 6. The set of all rational numbers is countable- they map into all sequences of length
2.
Proposition 7. The union of a countable collection of countable sets is countable.

Proof. C, {An}∞n=1. Each An is a set {xm n}∞m=1, indexed by the natural numbers. Thus,

∞⋃
n=1

An is indexed by sequences of length 2, {m,n}

11



CHAPTER 1. INTRODUCTION

1.6 Relations and Equivalences

R is a relation on set X is a subset of X ×X. We write the following:

(x, y) ∈ R xRy

Some examples of relations on the set R are =, or ≤. We denote them in the following way:

= {(x, x) : x ∈ R ≤ {(x, y) : x, y ∈ R, x ≤ y}

Definition. A relation R is transitive on X if

xRy, xRz ⇒ xRz

Notice that the examples above are transitive relations.
Definition. A relation R is symmetric if

xRy ⇒ yRx

Notice that = is symmetric, but ≤ is not a symmetric relation.
Definition. A relation R on X is reflexive if

xRx

For all x ∈ X. Again, = is an example of a reflexive relation. Notice that < is not reflexive on R.
Definition. A relation R on X is an equivalence relation if it is reflexive, symmetric, and
transitive. For example, = is an equivalence relation on R. However, ≤ is not an equivalence
relation.

Suppose that ≡ is an equivalence relation on some set X. Then, we can define:

Ex = {y ∈ X : x ≡ y}

If y, z ∈ Ex, then x ≡ y, and x ≡ z.Then, y ≡ z. This set Ex is called an equivalence class.
Thus, either Ex = Ey or Ex ∩ Ey = ∅. One nice construction of such equivalence relations is a
partition on a set, where each pair of sets in your partition are either disjoint or the same. So, we
get this:

X/ ≡ = {Ex : x ∈ X} = A Collection of Equivalence Classes

Since x ∈ Ex, then Ex 6= ∅ for all x ∈ X.
Definition. A binary operation on X is a mapping map : X × X → X. One example is the
addition of real numbers. An equivalence relation ≡ is compatible with a binary operation + if

x ≡ x′ and y ≡ y′ ⇒ x+ y ≡ x′ + y′

If + is compatible with ≡, then + defines a new binary operation on the set Q = X/ ≡. For
example,

x/ ≡, ; y/ ≡ ∈ Q, (x/ ≡) + (y/ ≡) = (x+ y/ ≡)

One good example is the addition of rational numbers.
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1.7. HOMEWORK 2/7/2012

1.7 Homework 2/7/2012

On page 23, do questions 24 and 25.

1.8 Partial Orderings and the Maximal Principle

Definition. A relation R on a set X is antisymmetric if

xRy and yRx⇒ x = y

One example would be the ≤ relation on R. Similarly, ⊆ on P(X) is an antisymmetric relation.
Definition. A relation < is a partial ordering on X if it is transitive and antisymmetric. Some
examples of such a relation include ≤ on R, and ( on P(X).
Definition. A partial ordering < on a set X is a linear ordering if for all x, y ∈ X either x < y
or y < x. One such example is ≤ on R. However, ⊂ on P(X) is not a linear ordering if X has
more than one element (for example you could pick two disjoint subsets of X, neither of which will
then be contained in each other).

We read
a < b

As ‘a precedes b’, or ‘a less than b’. Alternatively, we can say that ‘b is greater than a’.
Definition. If E ⊆ X, an element a ∈ E is the smallest element in E if for every x ∈ E, if x 6= a
then a < x. It is very simple to show that this smallest element must be unique.
Definition. A minimal element of E is an element a ∈ E such that there is no x ∈ E with x 6= a
and x < a.
Example.

X = {1, 2, 3, 4} C = {{1}, {1, 2}, {3}}
Notice that with the relation ⊆, C has two minimal elements: {1}, {3}. But, there is no smallest
element.
Fact. The smallest element is a minimal element. This can be shown from their definitions.
Definition. If for all x ∈ X, x < x then < is a reflexive partial ordering. If it is never true that
x < x, then < is called a strict partial ordering.

1.9 Hausdorff Maximum Principle

Let < be a partial ordering on a set X. Then, there exists a maximal linearly ordered subset S of
X.
Remark. X is maximal with property M if a any S ′ ⊃ S does not have property M .

1.10 Well ordering

A strict linear ordering on a set X is called a well-ordering if every nonempty subset of X
contains the smallest element.

13
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Example. Take the set N with the relation <. This is well-ordered. Alternatively, if we take R
and the relation <, it is not well-ordered. This follows from taking an open interval on R, which
does not have a smallest element.

1.10.1 The well-Ordering Principle

Every set X can be well-ordered.
Proposition 8. There is an uncountable set X that is well-ordered by a relation < in the following
way:

1. There is the largest element Ω in X.

2. If x ∈ X, and x 6= Ω, then
{x ∈ X : y < x}

is countable.

Proof. (i) Let Y be an uncountable set. By the well-ordering principle, Y has a well-ordering <.
If Y does not have the largest element, then we introduce Z = Y ∪ {α}, where α /∈ Y . Ordering
on Z extends the ordering < on Y by saying that for all y ∈ Y , y < α. Then, α is the largest
element of Z.

(ii) The set of all y ∈ Z such that {x ∈ Z : x < y} is countable is nonempty, because α is in this
set. Let Ω be the smallest element in this set. Let

X = {x ∈ Z : x < Ω or x = Ω}

Then, X satisfies (i) and (ii).

Ω is called the first uncountable ordinal, and anything less that Ω is called a ‘countable ordi-
nal’.

1.11 The Real Numbers

Definition. The set R is a set that consists of two binary operations + and ·, and can be con-
structed from the following axioms:

1. (R,+, ·) is a field, or in other words, (R,+) is a commutative group (for all x, y ∈ R, x+y ∈ R,
addition is commutative, there exists an identity element (0), and there exists an additive
inverse for all elements in R) and (R,×) for all x, y ∈ R we have that x·y ∈ R, · is associative,
there exists a multiplicative identity (1) in R, and for all the non-zero elements in R there
exists another element in R that is its multiplicative identity, multiplication is commutative,
and multiplication distributes over addition.

We have the axioms of order: there is a set P of positive real numbers that satisfies:

1. For all x, y ∈ P , x+ y ∈ P

2. For all x, y ∈ P , x · y ∈ P

14
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3. For all x ∈ P , −x /∈ P

4. For every x ∈ R, x = 0 or x ∈ P or −x ∈ P

Thus, our set is called an ‘ordered field’. Such examples of an ordered field include Q, and of course
R.

We can introduce the following relation by definition:

x < y ⇐⇒ y − x ∈ P

Similarly, by definition
x ≤ y ⇐⇒ y < x or y = x

Definition. Let S ⊆ R. The number b is an upper bound for S if for every x ∈ S, x ≤ b.
Definition. The least upper bound for S is a number b such that if c is an upper bound of S,
then b ≤ c. Sometimes this is denoted:

sup(S) = b

And called ‘the supremum’ of S
Definition. A lower bound for S is a if for all x ∈ S, a ≤ x. Similarly, the greatest lower bound
for Sis a if for any lower bound d for S, we have that d ≤ a. Sometimes this is denoted

imf(S) = a

Pronounced ‘infimum’.
Example. Let

S = { 1
n

: n ∈ N}

Notice that 2 is an upper bound for S. However, also notice that sup(S) = 1. Similarly, - 6 is a
lower bound for S, however the imf(S) = 0.

1.11.1 The Completeness Axiom

Every non-empty set of real numbers which has an upper bound has a least upper bound.

1.11.2 The Natural Numbers

We have the following definition:
N = {1, 2, 3, 4, ...}

Notice that N ⊆ R.

1.11.3 Axiom of Archimetes

For all x ∈ R, there exists n ∈ N such that x < n. This axiom isn’t particularly helpful, but it
does give us the following:
Corollary 9. Between any two real numbers, there is a rational number.

15
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1.11.4 The Extended Real numbers

The extended real numbers are the set R, along with the two numbers +∞,−∞. Notice that

−∞ < x <∞

And that

x+∞ =∞ x−∞ = −∞ x · ∞ =∞ if x is positive,∞+∞ =∞ −∞−∞ = −∞

∞(±∞) = (±∞) −∞(±∞) = ∓∞
∞−∞ = undefined 0 · ∞ = 0 by convention

Definition. If S has no upper bound, then sup(S) =∞. If S has no lower bound then imf(S) =
−∞.

1.11.5 Sequences of Real Numbers

A sequence is a map f : N→ R, f(n) = xn, denoted

{xn}∞n=1, or {xn}

and we have that
lim
n→∞

xn = x

if for all ε > 0 there exists N ∈ N such that for all n ≥ N ,

|xn − x| < ε

Definition. {xn} is a Cauchy sequence if for all ε > 0 there exists N such that for all n,m ≥ N
we have that

|xn − xm| < ε

Fact. If a sequence has a limit, then it is unique.
Fact. If a sequence of real numbers is Cauchy, then it has a limit. This follows from the Com-
pleteness axiom.
Definition. x is a cluster point of a sequence {xn} if every neighborhood of x contains infinitely
many elements of the sequence.
Definition.

lim
n→∞

xn =∞

If for all C > 0, there exists N(C) ∈ C such that if m ≥ N(C) then xn > C. Similarly,

lim
n→∞

xn = −∞

If for all D ∈ R, there exists N(D) ∈ N such that if n ≥ N(D), then xn < D.
Example. xn = n!. Then

lim
n→∞

xn =∞

Also, if xn = −n then
lim
n→∞

xn = −∞

16
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Definition. Let {xn} be a sequence of real numbers. The limit superior of {xn} is defined by

lim
n→∞

xn = infnsupk≥nxk = lim
n→∞

supk≥nxk

Example. We can show that the limit superior of the following sequence is 0:

xn = (−1)nn
n2 + 1 = 0

Definition. The limit inferior of {xn} is:

lim
n→∞

xn = supn infk≥nxk

Notice that unlike wit the limit superior, infk≥nxk is monotonically increasing.
Fact. x = limn→∞xn if and only if it satisfies:

1. For all ε > 0, there exists n such that xk < l + ε for all k ≥ n

2. For all ε > 0 and for all n, there exists k ≥ n such that xk > l − ε.
Example. xn = sin(nπ2 ) + 1. Notice that

lim
n→∞

xn = 2, lim
n→∞

xn = 0

Fact.
lim
n→∞

(−xn) = − lim
n→∞

xn

and
lim
n→∞

xn ≤ lim
x→∞

xn

lim xn + lim yn ≤ lim(xn + yn) ≤ lim xn + lim yn ≤ lim(xn + yn) ≤ lim xn + lim yn

Let us prove that lim(−xn) = −lim xn.

Proof. We have that

lim
n→∞

(−xn) = infnsupk≥n(−xk) = infn(−infk≥nxk) = −supn(infk≥nxk)

We have the following fact:
−A = {−a : a ∈ A}

So,
sup(−A) = −infA

This follows from seeing that
−sup(−A) = infA

So, letting b = sup(−A) we notice that b is an upper bound for −A, namely for all a ∈ A we have
that b ≥ −a. From this, −b ≤ a, for all a ∈ A. Thus, −b is a lower bound for A. Let c be a lower
bound for A, so c ≤ a for all a ∈ A. In this case, −a ≤ −c for all a]inA, so −c is an upper bound
for the set −A. Since b is the least upper bound, we have that b ≤ −c, or sup(−A) = −b ≥ C.
This implies that −sup(−A) is the greatest lower bound, and is the infinitum of A.
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1.11.6 Homework

Prove the last two of the above claims that aren’t finished.

1.12 Open and Closed Set of Real Numbers

We have the standard open interval on R,

(a, b) = {x : a < x < b}

and we have
(a,∞){x;x > a}

which is an infinite open interval, similarly

(−∞, b) = {x : x < b}

which is also an infinite open interval. Alternatively,

[a, b] = {x : a ≤ x ≤ b}

which is a closed interval. Notice that [a, b) and (a, b] are half-open and half-closed intervals.
Definition. A set O of real numbers is called ‘open’ if for every x ∈ O, there exists some δ > 0
such that each y with |y − x| < δ belongs to O. Another way to say this, is to say that

(x− δ, x+ δ) ⊂ O

Open sets, for example, include things like open intervals, R, ∅
Proposition 10. The intersection of two open sets O1 and O2 is an open set.

Proof. Let x ∈ O1 ∩ O2. We know that there exists some δ1 > 0 such that (x − δ1, x + δ1) ⊂ O,
because O1 is open. Similarly, O2 has some δ2, so defining δ = min{δ1, δ2}, we see that

(x− δ, x+ δ) ⊂ O1 ∩O2

So, O1 ∩O2 must be open.

As a corollary, this implies that the finite intersection of open sets is open.
Proposition 11. The union of any collection C of open sets is open.

Proof. Suppose we took U = ⋃
O∈C O. If x ∈ U , this implies that there exists some O1 in our

collection such that x ∈ O1, and since O1 is open there must exist some δ > 0 such that the
interval around x of radius δ is open.
Example.

∞⋂
n=1

(− 1
n
,

1
n

) = {0}

Notice that this infinite intersection of open sets is {0}- which isn’t open.
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Proposition 12. Every open set of real numbers is the union of a countable collection of disjoint
open intervals.

Proof. Let O be an open set. For all x ∈ O, there exists y > x such that (x, y) ⊂ O. There also
exists some z < x such that (z, x) ⊂ O. Let

b = sup{y : (x, y) ⊂ O}

and
a = inf{z : (z, x) ⊂ O}

This implies that a < x < b, also, Ix = (a, b). Our first claim is that

Ix ⊂ O.

Let w ∈ Ix. We can say that x < w < b. Then, there exists some y such that y > w and (x, y) ⊂ O.
This implies that w ∈ O.

Also, b /∈ O. If b ∈ O, then you know that there would have to exist some δ > 0 such that
(b − δ, b + δ is a subset of O. But if this were true, then b would not be the supremum of all
{y : (x, y) ⊂ O}, since (x, b + δ

2) ⊂ O. This would imply that (x, b + δ) ⊂ O), and then b is not
the supremum. There is a similar proof that a /∈ O. It can follows that ∪x∈OIx = O.

If we have to intervals (a, b) and (c, d) that are elements of {Ix{x∈O and (a, b)∩ (c, d) 6= ∅, then we
want to show that (a, b) = (c, d). If their intersection was nonempty, then c < b, and also, a < d.
Since c /∈ O, then c ≤ a. Since a /∈ O, then we know also that a /∈ (c, d), which implies that a ≤ c.
Putting these two together, we have that a = c. Similarly, we get that b = d. Thus, (a, b) = (c, d).
Thus, {Ix}x∈O is a disjoint family of open sets. Each open interval contains a rational number,
since the intervals are disjoint this gives a well-defined function from Q→ {Ix}x∈O, thus {Ix}x∈O
is countable.

Proposition 13. Let C be a collection of open sets of real numbers. Then there exists a countable
sub-collection {Oi}∞u=1 such that ⋃O∈C O = ⋃∞

i=1Oi

Proof. Let U = ⋃
O∈C O. Let x ∈ U . This implies that there exists some O ∈ C such that x ∈ O.

Since O is open, there exists Ix such that Ix (an open interval) such that x ∈ Ix ⊂ O. Suppose
that Ix = (a, b). This implies that there exists Jx, an open interval with rational endpoints such
that x ∈ Jx and Jx ⊆ Ix. The collection of all intervals with rational endpoints is a countable set.
Thus {Jx}x∈U is a countable collection, and ⋃

x∈U Jx = U , because x ∈ Jx. For each Jx, choose
one O ∈ C such that JX ⊂ O–we get a countable collection.

Definition. A real number x is a point of closure of E if for all δ > 0, there exists some y ∈ E
such that |x− y| < δ.
Remark. Every point of E is a point of closure of E.
Definition. E is the set of points of closure of E. Notice that E ⊂ E.
Proposition 14. If A ⊂ B, then A ⊂ B, and also A ∪B = A ∪B.

Proof. Since A ∪ A ∪B, then A,B ⊂ (A ∪B), so

A ∪B ⊂ (A ∪B)
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Let x /∈ A ∪ B. Then there exists δ1 > 0 such that no y ∈ A satisfies |x − y| < δ1. Similarly
there exists δ2 > 0 such that no y ∈ B satisfies |x− y| < δ2. Simply, take δ = min(δ1, δ2) > 0. If
|x−y| < δ, then y /∈ A, and y /∈ B, which implies that y /∈ A∪B. This means that x /∈ A ∪B.

Definition. A set F is closed if F = F .
Example. Some examples of closed sets include closed intervals, R, and ∅. Also, [a,∞) and
[−∞, b) are closed.
Proposition 15. For any set E, the set E is closed. It is also true that E = E.

Proof. Let x ∈ E. Given δ > 0, there exists y ∈ E such that |x− y| < δ
2 . Since y ∈ E, there then

exists some z ∈ E that |y − z| < δ
2 . Finally, we get that |x − z| ≤ |x − y| + |y − z| < δ

2 + δ
2 = δ,

which also implies that x ∈ E.

Proposition 16. If F1 and F2 are closed, then F1 ∪ F2 is closed.

Proof. Based on what we proved before,

F1 ∪ F2 = F1 ∪ F2 = F1 ∪ F2

which must be closed.

Corollary 17. The union of finitely many closed sets is closed.
Example. Look at ⋃∞n=1[ 1

n
, 2− 1

n
]. Taking their union, we’ll get (0, 2), which is open- despite the

fact that each one of these sets is closed.
Proposition 18. The intersection of any collection F of closed sets is closed.

Proof. Let x ∈ (⋂F∈F F ). Then for any δ > 0 there exists some y ∈ ⋂F∈F F such that |x− y| < δ.
Then y is in each F ∈ F . Then, x ∈ F . But since F = F (remember, F is closed) we thus have
that x ∈ ⋃F∈F F . So, ⋂F∈F F is closed, since “any point in the closure of this intersection is in
the intersection”.

Proposition 19. The complement of any open set is closed, and the complement of any closed set
is open.

Proof. Let O be open. If x ∈ O, then there exists δ > 0 such that if |x − y| < δ, then y ∈ O.
Then, x /∈ OC . Thus, OC = OC , from which we gather that OC is closed.

Let F be closed, and say that x ∈ FC . Then x is not a point of closure of FC , which implies that
there exists δ > 0 such that if |x− y| < δ, then y ∈ FC . Thus, FC is open.

Definition. A collection C of sets covers a set F is F ⊂ ∪{O : O ∈ C}. If each O is open, we say
that C is an open cover. If C is finite, then C is a finite cover.
Theorem 20. Heine-Borel: Let F be a closed and bounded set of real numbers. Then each open
cover of F has a finite subcover.

Proof. Assume a covering C of F is given. First, we assume that F = [a, b]. We define

E = {x : x ≤ b such that for [a, x] there is a choice of finite subcover of C }

First, we observe that a ∈ E. In particular, this tells us that E 6= ∅. E is bounded, let c =
sup(E) ∈ R. Since b is an upper bound for c, we have that c ≤ b. We need to show that
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c = b. Since c ∈ [a, b], there exists some open set O ∈ C such that there exists some ε such that
(c− ε, c+ ε) ⊂ O. Since c = sup(E), this implies that there exists some x ∈ E and x > c− ε. This
implies that there exists some finite sub-collection {O1, O2, .., On} of C that covers [a, x]. Then
{O1, ..., On} covers [a, c+ 1

2ε].

a bc

( )
x

c− ε c+ ε

] ][ ]
c+ ε/2

Thus c is not the supremum of E unless c = b. This finishes our first case, when F = [a, b].

Now let F be any closed bounded set of the reals. Then, there exists some [a, b] ⊃ F . Then we
define the following:

C∗ := C ∪ FC

which is also an open cover of [a, b]. By the first case, there exists some {O1, ..., On, F
C}, a sub-

collection of C∗ which covers [a, b]. Restricting this set to {O1, ..., On}, we have a sub-collection of
C, and covers F .
Proposition 21. Let C be a collection of closed sets with the property that every finite subcollection
of C has a non-empty intersection and suppose that one of the sets in C is bounded. Then,⋂

F∈C
F 6= ∅

This will be left as an exercise, the idea is to apply the Heine-Borel Theorem.

1.13 Continuous Functions

Suppose we have E ⊆ R and we have f : E → R. f is continuous at x ∈ E if for all ε > 0 there
exists some δ > 0 such that for all y ∈ E if |x− y| < δ then |f(x)− f(y)| < ε.
Definition. f is continuous on A ⊂ E if f is continuous at each point of A.
Proposition 22. Let f : F → R be a continuous function, and F ⊆ R is closed and bounded.
Then f is bounded on F , and it assumes it is maximal and minimal on F .

Proof. For all x ∈ F . there exists an interval Ix such that x ∈ Ix where if y ∈ Ix ∩ F then
|f(x) − f(y)| < 1. This implies that |f(y)| < |f(x)| + 1 for all y ∈ IX ∩ F . Then, {Ix}x∈F is an
open cover of F . By the Heine-Borel theorem, we have that there exists a finite subcover {Ix1 ...Ixk}
of F . Let

M = max{|f(x1) + 1|, ..., |f(xk)|+ 1}
Let y ∈ F . Then there exists some interval Ixi that contains y. Then |f(y)| < |f(xi)| + 1 ≤ M .
Thus f is bounded on F by the constant M .
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Since f is bounded, m = supx∈F f(x) is finite. We need t o show that there exists some x1 ∈ F .
such that f(x1) = m. Suppose such x! does not exist. Then f(x) < m for each x ∈ F . Then by
the continuity of f , for each x ∈ F there exists an interval Ix containing x such that for all y ∈ Ix
we have

1
2f(y) + 1

2f(y) = f(y) < 1
2(f(x) +m)

(we abandoned the above proof to do the following) There exists an interval Ix such that x ∈ Ix.
For all x ∈ Ix ∩ F , we have

|f(y)− f(x)| < 1
2(m− f(x))

so
f(y)− f(x) < 1

2(m− f(x))

f(y) < 1
2(m+ f(x))

Well, {Ix}x∈F is an open cover of F . By the Heine-Borel theorem again, there exits a finite subcover
{Ix1 , ..., Ixn} of F . Let a = max{f(x1), ..., f(xn)} < m. For y ∈ F , there exists Ix containing y,
and we have

f(y) < 1
2(f(xi) +m) ≤ 1

2(a+m) < 1
2(m+m) = m

This implies that m is not the least upper bound because 1
2(a + m) is an upper bound which is

less than m. This is a contradiction, thus f must achieve tis maximum.
Proposition 23. Let

f : (−∞,∞)→ R

Then f is continuous if and only if f−1[O] is open for each open O ⊂ R.

Proof. For all O open subsets of R, we want to show that f−1[O] is open. Given x ∈ R, for all
ε > 0 we have I = (f(x)− ε, f(x) + ε) ⊂ R and is open, and x ∈ f−1(I). This implies that there
exists some δ > 0 such that

(x− δ, x+ δ) ⊂ f−1(I)
so

f((x− δ, x+ δ)) ⊂ (f(x)− ε, f(x) + ε)

Working in the other direction, let f be a continuous function and let O ⊂ R that is open. Let
x ∈ f−1(O). Then f(x) ∈ O, O is open implies that there exists some ε > 0 such that

(f(x)− ε, f(x) + ε) ⊂ O

There then exists some δ > 0 such that

f((x− δ, x+ δ)) ⊂ (f(x)− ε, f(x) + ε)

which in turn implies that

(x− δ, x+]delta) ⊂ f−1((f(x)− ε, f(x) + ε)) ⊂ f−1(O)

which implies that f−1(O) is open.
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Definition. A real-valued function f on a set E is uniformly continuous if for all ε > 0 there exists
δ > 0 such that if x, y ∈ E and |x− y| < δ then |f(x)− f(y)| < ε
Example. Uniformly continuous functions are also continuous. However, it is not true that con-
tinuous functions are uniformly continuous. For example,

f(x) = 1
x
, x > 0

is continuous, but not uniformly continuous. This follows from the fact that the function f(x) as
x→ 0 gets so steep so quickly, the δ’s disappear as you choose ε.

Another example is
f(x) = x2

Proposition 24. If a function f is a continuous function defined on a closed and bounded set F ,
then f is uniformly continuous.

Proof. Given ε > 0, x ∈ F (where f : F → R), then there exists δx > 0 such that if |x−y| < δx and
y ∈ F then |f(x)− f(x)| < 1

2ε. Let Ix = (x− 1
2δx, x+ 1

2δx), x ∈ Ix, is an open cover of F as x ∈ F .
By Heine-Borel, there exists a finite subcover {Ix1 , ..., Ixn}. Let δ = min1

2δx1 , ...
1
2δxn} > 0 ∈ R. We

let y, z ∈ F , and assume that |y − z| < δ. There exists some Ixi containing y and Ixj containing
z, which implies that

|z − xi| ≤ |z − y|+ |y − xi| < δ + 1
2δxi < δxi

This implies that |f(z)− f(xi)| < 1
2ε. It is also true that |f(y)− f(xi)| < 1

2ε. We now have that

|f(z)− f(y)| ≤ |f(z)− f(xi)|+ |f(xi)− f(y)| < 1
2ε+ 1

2ε = ε

so we are done.

Definition. A sequence {fn} of functions defined on a set E converges point-wise on E to a
function f if for each x ∈ E we have that

lim
n→∞

fn(x) = f(x)

Definition. A sequence of functions {fn} on E uniformly converges on E to a function f if for
all ε > 0 there exists some N ∈ N such that for every x ∈ E we have that

|fn(X)− f(x)| < ε

for all n ≥ N .
Example. Suppose that

fn(X) = xn

for 0 ≤ x ≤ 1. In this case, fn converges point-wise to f(x) = 0 for all 0 ≤ x < 1 and 1 for
x = 1. However, fn does not converge uniformly to f . This idea follows from what happens to the
distance at the point (1, 0): the functions fn do not get closer to f nicely.
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1.14 Borel Sets

Remark. A countable union of closed sets is not necessarily closed.
Definition. The collection B of Borel Sets is the smallest σ-algebra which contains all of the open
sets. It is certain that B is generated by all closed sets. It is also true that B is generated by all
open intervals.

A set is Fσ if it is a countable union of closed sets. Notice that every closed set is Fσ. Also, notice
that every countable set Fσ. An example of a Fσ set that is not countable is the following set: N,
which follows directly from our last example. Alternatively,

{ 1
n

: n ∈ N
}

is another example.
Definition. A set is Gδ if it is a countable intersection of open sets.

An open interval is Fσ, for one could do the following:

(a, b) =
∞⋃
n=1

[
a+ 1

n
, b− 1

n

]

1.15 Lebesgue Measure

Taking the interval I = [a, b], the length ` of l(I) of I is

`(I) = b− a.

The length is an example of a set function ( it associates a real number to each set in a collection
subsets of a set). ` is a set function on the collection of intervals in R. The length of an open set
is defined as follows: the sum of the lengths of the open intervals of which it is composed.

Given a collection M of sets, with m a set function on M such that for every E ∈ M, we
would like to define m such that m(E) ∈ R≥0 ∪ {∞} and such that m satisfies our “wish-list” of
properties:

1. m(E) defined for all E ⊂ R.

2. For every interval I, we would like to have that m(I) = `(I).

3. If {En} is a disjoint sequence then m(∪nEn) = ∑
N m(En)

4. m(E + y) = m(E) for all E and for each y ∈ R. In other words, we want E to be invariant
under translation. With intervals, we can notice that

[a, b] + y = [a+ y, b+ y]

which preserves distance trivially.
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Unfortunately, it is not possible to satisfy all four properties for any set function m. What we will
end up doing is weakening (1): m(E) will be defined on as many sets as possible, and we will keep
properties 2-4.

We will require thatM is a σ-algebra. Any suchM has to contain a Borrel σ-algebra, by property
number 2 (since the Borel σ-algebra is the smallest σ-algebra which contains all of the open sets
in some collection).

1.15.1 Outer Measure

For any subset A ⊆ R, we will consider a countable collection {In} of open intervals which covers
A; in other words

A ⊂
⋃
n

In

Definition. Lebesgue outer measure of A is as follows:

m∗(A) = inf
A⊂∪nIn

∑
n

`(In)

From the definition, it is immediate that m∗(∅) = 0. Also, if A ⊂ B, then m∗(A) ≤ m∗(B). It also
follows that m∗{x} = 0. One way to see this would be to let

In =
(
x− ε

2n + 1 , x+ ε

2n + 1

)
in which case,

∞∑
n=1

`(In) = ε
∞∑
n=1

( 1
2n
)

= ε

and since our choice of ε was arbitrary, we let ε→ 0.
Proposition 25. The outer measure of an interval is its length.

Proof. Notice that ∅ is considered an open interval. We have [a, b], and that for all ε > 0, that
(a− ε, b+ ε) ⊃ [a, b]. This tells us that the outer measure

m∗ ([a, b]) ≤ b− a+ 2ε

Where we define
In = (a− ε, b+ ε), In = ∅, n ≥ 1

since this holds for all ε > 0,it follows that m∗([a, b]) ≤ b − a. It remains to be shown that
m∗([a, b]) ≥ b − a. Let {In} be an arbitrary collection of open intervals that covers [a, b]. By the
Heine-Borel Theorem, {In} has a finite subcover

Since a ∈ [a, b], there exists an interval (a1, b1) containing a which is in that finite subcover. If
b1 < b, let (a2, b2) be an interval in the finite sub-cover which contains b1. Then

a2 < b1 < b2

We can continue this process, were we would then say that

a3 < b2 < b3
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and we can continue this process until b is in an interval, which must happen (this process stops
because the collection is finite, which we have from the Heine-Borel theorem). We have now that

ai < bi−1 < bi

So,

∞∑
n=1

`(In) ≥
k∑
i=1

`((ai, bi)) = bk−ak + bk−−ak−1 + ...+ b1−a1 = bk− (ak− bk−1)− ...− (a2− b1)−a1

Notice that each term ak − bk−1 is negtive, so we can remove them:

≥ bk − a1 ≥ b− a⇒ m∗[a, b] ≥ b− a

from which we conclude that
m∗[a, b] = b− a = `([a, b])

If I is any finite interval, then given ε > 0 there exists a closed interval J ⊂ I such that

`(J) > `(I)− ε

Since
`(I)− ε < `(J) = m∗(J) ≤ m∗(I) ≤ m∗(I) = `(I) = `(I)

This implies that as ε→ 0, then
`(I) = m∗(I)

For homework, prove this when I is an interval: if I is any infinite interval, then given some ε > 0
there exists a closed interval J ⊂ I such that

`(J) > `(I)− ε

1.16 Review Questions

Notice that
[a, b)

Is a Borel set, since it is a Fσ set. This can be shown by looking at the union:
∞⋃
n=1

[a, b− 1
n

]

of closed sets.

Notice that
fn(x) = xn 0 ≤ x ≤ 1

2
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uniformly converges to f(x) = 0. This takes some work to show: given ε > 0, we need to find N
such that if n ≥ N then

|xn − 0| < ε

First notice that
|xn − 0| = |xn| = xn ≤ 1

2n < ε

for every x in the interval x ∈ [0, 1
2 ]. We want to find n from the following:

1
2n = ε⇒ n log 1

2 = log ε

So,
N = [ log ε

log 1
2

] + 1

1.17 Outer Measure

If A ⊆ R then
m∗(A) = inf

A⊂
⋃
n
In

∑
`(In)

This definition has some consequences: for example, if A ⊂ B, then m∗(A) ≤ m∗(B). This follows
directly from the fact that A has more covers than B does.
Proposition 26. If I is an interval, then m∗(I) is the length of I, `(I).

Proof. First, look at a closed interval [a, b]. We have to show that m∗[a, b] ≤ b − a and that
m∗[a, b] ≥ b− a. The first one follows quickly, choosing I1 = [a− ε, b + ε] and for all others to be
In = ∅, n = 2, 3, .... In this case, the sum of the lengths of In is b− a+ 2ε. Notice that

m∗[a, b] ≤
∑

`(In) = b− a+ 2ε⇒ m∗[a, b] ≤ b− a

Since we let ε to go zero. For the second case, we have to work a bit harder - but we can us
the Heine-Borel theorem. Suppose that we have a cover {In}. There must exists I1, ..Ik, a finite
sub-cover for [a, b]. Based on how this interval should look, it has to look like (a1, b1), containing
a. If this set doesn’t contain b, we look at point b1. Since we have a cover, we have to add another
set that contains b1. This process continues k times, since we have a finite cover. We can then
show that (thanks to the overlaps of these sets) that the sums of this alternative cover is greater
than or equal to b− a.

If I is finite, in this case there exists a closed set J such that J ⊂ I, and that `(J) ≥ `(I) − ε
(there is a trick that you can do to make this work) given some ε > 0. So,

m∗(J) = `(J)

since J is a closed interval. Since J ⊂ I, this implies that

m∗(J) ≤ m∗(I)

But we also note that I ⊂ I. Then,

m∗(I) ≤ m∗(I) = `(I) = `(I)
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Thus what we have is

`(I)− ε ≤ m∗(J) = `(J) ≤ m∗(I) ≤ m∗(I) ≤ `(I)

Which ultimately tells us that m∗(I) = `(I).

We now approach the case in which I is infinite. Suppose we had something like (a,∞) or (−∞, b).
Well suppose had some infinite interval: in any case, given some M > 0 it is possible to find some
closed set J ⊂ I such that

`(J) = m∗(J) ≥M

This then implies that m∗(I) ≥ m∗(J) > M for all M > 0. This then implies that m∗(I) = ∞,
which is the length of I, `(I).

Proposition 27. Let {An} be a countable collection of sets of real numbers. Then

m∗(
⋃
An) ≤

∑
m∗(An)

In other words, m∗ is ‘countably sub-additive’.

Proof. For An, there exists a cover {In, i}i=1 by open intervals such that

m∗(An) ≥
∑
i

`(In, i)−
ε

2n

So ∑
m∗An ≥

∑
n

(∑
i

`(In, i)−
ε

2n

)
=
(∑

n

∑
i

`(In, i)
)
− ε ≥ m∗(

⋃
An)− ε

Since ∑
n

ε

2n = ε

Because {In, i}∞,∞n=1,i=1 is a cover of the union of all An. Notice that N × N is countable, therefore
our set {In, i}∞,∞n=1,i=1 is countable. Let ε→ 0, in which case you get the conclusion we wanted.

Just a s a remark, we need to consider the case when one m∗(An) =∞ separately. However, it is
a trivial case, we don’t have anything to check.

Corollary 28. If A is countable, then m∗(A) = 0. This follows from seeing that A is the countable
union of singletons, and based on above, we have the fact that m∗(A) = 0.
Corollary 29. The set [0, 1] is not countable. If it were, then m∗[0, 1] would be 0- however, we
know based on the fact that it is a closed interval that m∗[0, 1] = 1.
Proposition 30. Given any set A and any ε > 0, there exists an open set O such that A ⊂ O and
m∗(O) ≤ m∗(A) + ε.

There is a set G which is Gδ such that A ⊂ G and

m∗(A) = m∗(G)

Proof. For homework!
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1.18 Measurable Sets and Lebesgue Measure

Outer measure is countable sub-additive, as we showed, but not countably additive (in general).
We restrict ourselves to a smaller family of subsets of R in order to get a measure.
Definition. A set E is said to be measurable if for each set A we have that

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC)

Remark. It is always true that m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ EC).

This follows directly from the fact that our measure is countably sub-additive. This tells us that
E is measurable if and only if

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ EC)

for all A ⊂ R.
Fact. If E is measurable, then EC is measurable. This follows from the fact that (EC)C = E, and
that addition is commutative.
Fact. The ∅,R are both measurable. This follows simply from plugging in these sets for E, and
recognizing that at least one of the terms in our sum of m∗ is zero.
Lemma 31. If m∗(E) = 0, then E is measurable.

Proof. We take A ⊂ R. In this case,

A ∩ E ⊂ E = A ∩ EC ⊂ A

So,
m∗(A ∩ E) +m∗(A ∩ EC) ≤ m∗(E) +m∗(A) = m∗(A)

Using the fact that m∗(E) = 0. This implies that E is measurable.
Lemma 32. If E1 and E2 are measurable, then E1 ∪ E2 is measurable.

Proof. Take A ⊂ R, some arbitrary set. Since both E2 is measurable, we have that

m∗(A ∩ EC
1 ) = m∗(A ∩ EC

1 ∩ E2) +m∗(A ∩ EC
1 ∩ EC

2 )

Just as a remark: notice that

A ∩ EC
1 ∩ EC

2 = A ∩ (E1 ∪ E2)C

Now looking at A ∩ (E1 ∪ E2), we have that

A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2∩) = (A ∩ E1) ∪ (A ∩ E2 ∩ EC
1 )

So,
m∗(A ∩ [E1 ∪ E2]) ≤ m∗(A ∩ E1) +m∗(A ∩ E2 ∩ EC

1 )

(by the additivity of countable sets). Looking at the whole thing,

m∗(A ∩ [E1 ∪ E2]) +m∗(A ∩ [E1 ∪ E2]C) ≤ m∗(A ∩ E1) +m∗(A ∩ EC
1 ∩ E2) +m∗(A ∩ EC

1 ∩ EC
2 )
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Now, what we really have is
= m∗(A ∩ E1) +m∗(A ∩ EC

1 )

because E2 is measurable. Now using the fact that E1 is measurable,

= m∗(A)

This then implies that E1 ∪ E2 is measurable.
Corollary 33. The family M of all measurable sets is an algebra.
Lemma 34. Let A ⊂ R be any set and let E1, ..., En be a finite sequence of disjoint measurable
sets. Then,

m∗(A ∩ [
n⋃
i=1

Ei]) =
n∑
i=1

m∗(A ∩ Ei)

Proof. The poof follows by induction on n. It is true for n = 1, and we assume that it is correct
for n− 1, we need to show that it is true for n. Well we have

A ∩ [
n⋃
i=1

Ei] ∩ En = A ∩ En

Because Ei’s are all disjoint. Another thing that is true is as follows:

A ∩ [
n⋃
i=1

Ei] ∩ EC
n = A ∩ [

n−1⋃
i=1

Ei]

By assumption En is measurable, which implies that

m∗(A ∩ [
n⋃
i=1

Ei]) = m∗(A ∩ En) +m∗(A ∩ [
n−1⋃
i=1

Ei])

Using our inductive hypothesis,
=

n∑
i=1

m∗(A ∩ E1)

Recall from the last class that we had the following Lemma:
Lemma 35. Given E1, E2 measurable, E1 ∪ E2 is measurable.

As a corollary to this, we have
Corollary 36. The collection M of all such sets is an algebra.

We also had the following:
Lemma 37. If A is any set, E1, ..., En are measurable and disjoint sets, then

m∗(A ∩ [
n⋃
i=1

Ei]) =
n∑
i=1

m∗(A ∩ Ei)

We now have the following:
Theorem 38. The collection M of measurable sets is a σ−algebra.
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Proof. Since M is an algebra, it is enough to show that a countable union of elements of M is
again an element of M. For example suppose that {An}∞n=1 is in M. We want to show that their
union is in M, that is:

∞⋃
n=1

An = E

where E is measurable. We need to show that

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC)

for any set A such that A ⊆ R. Since E is the union of our collection of A’s, and since all such
A ∈M ( and M is an algebra ) then

E =
∞⋃
n=1

En

Such that each Fn is pairwise disjoint, and in M. This can be constructed in the following way:

E1 = A1, E2 = A2 − E1, E3 = A3 − (E1 ∪ E2), ...

Now, let
Fn =

n⋃
i=1

Ei ∈M

We also know that FC
n contains EC . From this we can write the following:

m∗(A) = m∗(Fn ∩ A) +m∗(FC
n ∩ A)

By the definition of a measurable set. notice that this line,

m∗(A) = m∗(Fn ∩ A) +m∗(FC
n ∩ A) ≥ m∗(Fn ∩ A) +m∗(A ∩ EC)

But notice that

m∗(Fn ∩ A) +m∗(A ∩ EC) = m∗([
n⋃
i=1

En] ∩ A) +m∗(A ∩ EC)

Using our lemma above, we have that

=
n∑
i=1

m∗(A ∩ Ei) +m∗(A ∩ EC)

which is true for all n ∈ N, that

m∗(A) ≥
n∑
i=1

m∗(A ∩ Ei) +m∗(A ∩ EC)

What we do is let n→∞, from which we get

m∗(A) ≥
∞∑
i=1

m∗(A ∩ Ei) +m∗(A ∩ EC)

Now, by countable sub-additivity, we have that

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ EC)

This implies that E is measurable.
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Lemma 39. The interval (a,∞) is measurable.

Proof. Let A ⊆ R. Let A1 = A ∩ (a,∞) and let A2 = A ∩ (a,∞)C = A ∩ (−∞, a]. We need to
show that

m∗(A) ≥ m∗(A1) +m∗(A2)

Of m∗(A) = ∞, then we are done. If m∗(A) ≤ ∞, then given ε > 0 there exists some {In} cover
of A by open intervals such that

m∗(A) ≥
( ∞∑
n=1

`(In)−
)
ε

Let I ′n = In ∩ (a,∞) and let I ′′n = In ∩ (−∞, a]. If we have that

A1 ⊂
∞⋃
n=1

I ′n

then
m∗(A1) ≤ m∗(

∞⋃
n=1

I ′n) ≤
∞∑
n=1

m∗(In)

Similarly,

A2 ⊂
∞⋃
n=1

I ′′n

tells us that
m∗(A2) ≤

∞∑
n=1

m∗(I ′′n)

Thus,

m∗(A1) +m∗(A2) ≤
∞∑
n=1

[m∗(I ′n) +m∗(I ′′n)]

Notice that
m∗(I ′n) = `(I ′n), m∗(I ′′n) = `(I ′′n)

Since both I ′n and I ′′n are intervals. Thus,

∞∑
n=1

[m∗(I ′n) +m∗(I ′′n)] ≤
∞∑
n=1

m∗(In) =
∞∑
n=1

`(In) ≤ m∗(A) + ε

since our choice of ε was arbitrary, we let ε→ 0, in which case

m ∗ (A1) +m∗(A2) ≤ m∗(A)

The theorem that follows from this lemma is as follows:
Theorem 40. Every Borel set is measurable. In particular, each open and each closed set is
measurable.

32



1.18. MEASURABLE SETS AND LEBESGUE MEASURE

Proof. Recall that M is a σ-algebra. Since (a,∞) are measurable, then (−∞, a] are measurable.
From this, it follows that sets of the form (−∞, b) are measurable as well. This follows from seeing
that

(−∞, b] = (−∞, b) ∪ {b}

and since both (−∞, b] and {b} are measurable, thus {b}C is measurable, and since

(−∞, b) = (−∞, b] ∩ {b}c

our set is measurable.

More directly, notice that

(−∞, b) =
∞⋃
n=1

(−∞, b− 1
n

)

and each of these sets is measurable. From this it would follows that (−∞, b) is measurable.

We see that as long as a < b, that

(−∞, b) ∩ (a,∞) = (a, b)

It then follows that (a, b) ∈M, and that M, a σ-algebra, contains all open intervals, and implies
that M contains all Borel sets.

Definition. If E is a measurable set, then the Lebesgue measure m(E) is the outer measure
m∗(E).
Proposition 41. Let {Ei} be a sequence of measurable sets. Then,

m(
∞⋃
i=1

Ei) ≤
∞∑
i=1

m(Ei)

If the Ei’s are pairwise disjoint, then

m(
∞⋃
i=1

Ei) ≤
∞∑
i=1

m(Ei)

This is the property of countable additivity.

Proof. The first part of our proposition follows from countable sub-additivity of the outer measure.

Suppose we have the sequence {Ei}∞i=1. Then

m∗(A ∩ [
n⋃
i=1

Ei]) =
n∑
i=1

m∗(A ∩ Ei)

A = R tells us that
m∗(

∞⋃
i=1

) =
n∑
i=1

m∗(Ei)

So
∞⋃
i=1

Ei ⊃
n⋃
i=1

Ei
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Thus
m∗(

∞⋃
i=1

Ei) ≥ m∗(
n⋃
i=1

Ei) =
n∑
i=1

m∗(Ei)

From this we conclude that
m(

∞⋃
i=1

Ei) ≥
n∑
i=1

m(Ei)

Letting n→∞, we have that

m(
∞⋃
i=1

Ei) ≥
∞∑
i=1

m(Ei)

Which follows from seeing that “this is an infinite sequence (increasing) that is bounded above, so
it must have a limit”.

Proposition 42. Let {En}∞n=1 be a infinite decreasing sequence of measurable sets. Let m(Ei) <
∞. Then,

m(
∞⋂
i=1

Ei) = lim
n→∞

m(En)

We have that {En} is decreasing if En ⊇ En+1 for all n.

Proof. We call

E =
∞⋂
i=1

Ei

Let
Fi = Ei − Ei+1

We have the following:

E1 − E =
∞⋃
i=1

Fi

which are pairwise disjoint. Thus, according to countable additivity,

m(E1 − E) =
∞∑
i=1

m(Fi) =
∞∑
i=1

m(Ei − Ei+1)

Notice that
Ei = Ei+1 ∪ (Ei − Ei+1), Ei+1 ⊂ E1

And that these two are disjoint. We get

m(Ei) = m(Ei+1) +m(Ei − Ei+1)

Since we are under the assumption that m(Ei) is finite for all i, we have that

m(Ei − Ei+1) = m(Ei)−m(Ei+1)

So,
∞∑
i=1

m(Ei − Ei+1 =
∞∑
n=1

(m(Ei)−m(Ei+1)) = lim
n→∞

n∑
i=1

[m(Ei)−m(Ei+1)] = lim
n→∞

[m(E1)−m(En+1)]
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= m(E1)− lim
n→∞

m(En+1)

So,
m(E1 − E) = m(E1)− lim

n→∞
m(En)

Thus
m(E1)−m(E1 − E) = m(E) = lim

n→∞
m(En)

1.19 Exam

The exam will be on Thursday, the 29th.

1.20 Measurable Sets (continued)

A set E is measurable if for all A ⊂ R

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC)

We said that if E is measurable, then the Lebesgue measure of E is given as

m(e) = m∗(E)

We said that if we have {En} where En ⊇ En+1 where each En is measurable, then

lim
n→∞

m(En) = m(
∞⋂
n=1

En)

This was all shown in our last class. We have the following now:
Proposition 43. Let E be any set. The following are equivalent:

1. E is measurable

2. Given ε > 0, there exists an open set O ⊇ E such that

m∗(O − E) < ε

3. Given ε > 0 there exists a closed set F ⊂ E such that

m∗(E − F ) < ε

4. There exists G in Gδ with E ⊂ G and

m∗(G− E) = 0
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5. There exists F in Fσ with F ⊂ E and

m∗(E − F ) = 0

If m∗(E) <∞, the above are equivalent to number (6):

6. Given ε > 0 , there exists a finite union U of open intervals such that

m∗(U∆E) < ε ∗

Proof. Assume first that m∗(E) < ε. We first want to show that (1)⇒ (2).

We know that m∗(E) is finite, given ε > 0 we can conclude that there exists a cover {In} such that

∞∑
n=1

`(In) > m∗(E) + ε

Since by definition,
m∗(E) = inf

E⊂
⋃∞
n=1 In

∑
`(In)

Let
O =

∞⋃
n=1

In,

which is an open set. O is measurable because each In is measurable (open sets are measurable).
We also know that E ⊂ O. Then,

m(O) ≤ m∗(E) + ε

Which is true because {In} is a cover of O, so

m(O) = m∗(O) ≤
∑

`(In) ≤ m∗(E) + ε

Since E is measurable, we have that

m(O) = m∗(O) = m∗(O ∩ E) +m∗(O ∩ EC)

But this is the same as saying
= m(E) +m(O − E)

Since E ⊂ O. From above, we have that

m(E) +m(O − E) ≤ m(E) + ε

Canceling out since m(E) is finite, we have that

m∗(O − E) < ε

Now we want to show that (2)⇒ (4).
∗This is the symmetric difference of sets
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We have that there exists Oi open, such that E ⊂ Oi and

m∗(Oi − E) < 1
i
, ∀i = 1, 2, 3....

We now take ⋂∞i=1Oi = G, and we notice that G is Gδ. We know that G ⊃ E, because Oi ⊃ E for
all i. So we need to look at

m∗(G− E)
and need to show that this outer measure is 0. We know that G ⊂ Oi, which implies that

G− E ⊂ Oi − E, ∀i

Which tells us that
m∗(G− E) ≤ m∗(Oi − E) < 1

i
→ 0, i→∞

So by letting i→∞,
m∗(G− E) = 0

We now want to show that (4) ⇒ (1). We have that G ⊃ E, and that m∗(G − E) = 0. This in
itself implies that G − E is measurable, and we know that G is measurable because it is a Borel
set. We can write the set E as follows:

E = G− (G− E)

Since both G and G− E are measurable, their difference is measurable: E is measurable.

Now we want to show that (1)⇒ (2). We now assume that m∗(E) =∞. For all covers {In} of E
by open intervals,

∞∑
n=1

`(In) =∞

We have a set En = [−n, n]. En has finite outer measure m∗(En) < ∞, since En is a subset of
[−n, n] which has finite order (m∗([−n, n]) = 2n).

We know that given ε > 0, there exists On, open, such that On ⊃ En, and m∗(On − En) < ε. Let
O = ⋃∞

n=1On. Then O ⊃ On ⊃ En for all n. This implies that O ⊃ E = ⋃∞
n=1En. We now have

to look at O − E. We claim that

O − E ⊆
∞⋃
n=1

[On − En]

By countable sub-additivity,
m∗(O − E) ≤

∞∑
n=1

m∗(On − En)

We change our trick above to saying that instead, m∗(On − En) < ε
2n : so we have

m∗(O − E) ≤
∞∑
n=1

m∗(On − En) <
∞∑
n=1

ε

2n = ε
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We now want to prove that (2)⇒ (4). For all i > 0, there exists Oi ⊇ E, Oi open such that

m∗(Oi − E) < 1
i

Then, we define G = ⋂∞
i=1Oi, which is a Gδ set. It is true that G ⊃ E, and we have that

m∗(G− E) ≤ m∗(Oi − E) < 1
i
, ∀i

So let i→∞, in which case 1
i
→ 0, and we have that m∗(G− E) = 0.

As before, the proof that (4)⇒ (1) follows in the same manner. Thus we have

(1) ⇐⇒ (2) ⇐⇒ (4)

For an arbitrary E. Now let us see that (1) ⇒ (3): We have that E is measurable, this implies
that EC is measurable. We use that (1) ⇒ (2) for EC (in other words, EC satisfies (2)). Given
ε > 0, there exists O ⊇ E, where O is open such that

m∗(O − EC) < ε

So, O ⊇ EC . Thus, OC ⊃ E. We define F = OC . Thus, O−EC ⊇ E −OC = E −F . What we’re
really saying is that O ∩ E = E ∩O. Thus, (1)⇒ (3).

We now claim that (3)⇒ (5). For all i, let Fi ⊆ E, Fi closed such that

m∗(E − Fi) ≤
1
i

Then, we define
F =

∞⋃
i=1

Fi

Which is a Fσ set (it is a countable union of closed sets). We have that

E − F ⊂ E − Fi ≤
1
i
∀i

Thus, we let i→∞, so
m∗(E − F ) = 0

We want to show now that (5)⇒ (1).

We have that E − F is measurable, because m∗(E − F ) = 0. F is a Borel set because it is a
countable union of closed sets (i.e., fσ-sets), and is thus measurable. We then notice that

E = (E − F ) ∪ F

And therefore, E is measurable. In total at this point, we have that

(1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5)

For (6) recall first that

U∆E = (U − E) ∪ (E − U) = (U ∪ E)− (U ∩ E)

We will discuss (6) next class.
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1.21 Measurable Functions

As a nice reminder, see if you can figure out why

[0, 1]−Q

Is measurable, and of measure 0.

We would like to prove property (iii) for [0, 1] − Q without referring to our proposition from last
section.
Proposition 44. Let f be an extended real-valued function whose domain is a measurable set,
which we can think of it as

f : D → R ∪ {+∞,−∞}

(An extended real valued function is a function that can handle ±∞. ) Then the following are
equivalent:

1. For each α ∈ R, the set
{x ∈ D : f(x) > α}

Is measurable.

2. For each α ∈ R the set
{x : f(x) ≥ α}

Is measurable.

3. For each α ∈ R the set
{x : f(x) < α} = f−1([−∞, α))

Is measurable

4. For each α ∈ R the set
{x : f(x) ≤ α} = f−1([−∞, α])

Is measurable. In addition, these statements imply statement (5).

5. For all extended real numbers α,
{x : f(x) = α}

Is measurable.

Proof.
(1⇒ 4) Let α ∈ R, we see that

{x : f(x) ≤ α} = D − {x : f(x) > α}

Since our sets {x : f(x) > α} and D are measurable by assumption, {x : f(x) ≤ α} is measurable.

(4⇒ 1) This is the reverse of our previous argument

(2⇒ 3), (3⇒ 2) These proofs follows exactly as the proof for (1⇒ 4).
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(1⇒ 2) Notice that

{x : f(x) ≥ α} =
∞⋂
n=1
{x : f(x) > α− 1

n
}

and equality follows since x ∈ (⋂∞n=1{x : f(x) > α − 1
n
}) if f(x) > α − 1

n
for all n. So we let

n→∞, and we have the set {x : f(x) ≥ α}. Since we have the countable intersection of (assumed)
measurable sets, we conclude our proof.

(2)⇒ (1)

Notice that
{x : f(x) > α}

∞⋃
n=1
{x : f(x) ≥ α + 1

n
}

This proof follows as the one above.

(1 ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4 ⇐⇒ 5)

In case one, suppose that α ∈ R.

{x : f(x) = α} = {x : f(x) ≥ α} ∩ {x : f(x) ≤ α}

In case two, we have that α = ±∞. Then,

{x : f(x) =∞} =
∞⋂
n=1
{x : f(x) > n}

and
{x : f(x) = −∞} =

∞⋂
n=1
{x : f(x) < −n}

which is measurable by (3).
Definition. An extended real valued function f is (Lebesgue) measurable if its domain is a mea-
surable set and one of the four conditions hold (from the proposition above). In other words, for
all α ∈ R

{x : f(X) > α}
Is measurable.
Remark. A continuous function with a measurable domain is a measurable function.

Proof. For the sake of example, suppose f : R→ R. Then

{x : f(x) > α} = f−1((α,∞))

Is open, because f is continuous. Therefore, this set is measurable, and thus f is measurable.

If f : D → R, where D is a measurable set Recall that IU ⊆ D is open in D if there exists V open
in R such that U = D ∩ V .

This means that f−1((α∞)) is open in D, so there exists Vα open in R such that

f−1((α,∞)) = D ∩ Vα
Since D is open by assumption and Vα is open (and thus measurable), their intersection is open.

40



1.21. MEASURABLE FUNCTIONS

Definition. The function ϕ : [a, b]→ R is a step function if there exists a subdivision

x0 = a < x1 < x2 < ... < xn < b

and ci ∈ R for i = 1, ..., n such that
ϕ(x) = ci

For all xi−1 < x < xi, for i = 1, 2, ..., n.
Claim. Step functions are measurable; if ϕ : [a, b]→ R is a step function, then it is measurable.

Proof. We want to look at
ϕ−1((α,∞))

Take α ∈ R. We want to show that this set is measurable. Notice that this set is a finite union of
intervals and singletons- so it is a Borel set.

Remark. It f is a measurable function, and E a measurable subset of the domain of f , then f |E
is measurable †.

Proof. Taking α ∈ R, We want to show that

(f |E)−1((α,∞))

Is measurable. Notice that we can write this set as :

{x ∈ E : f(x) > α} = {x ∈ D : f(x) > α} ∩ E

These two are measurable, since f is a measurable function, and E is measurable by assumption.
Therefore, their intersection is measurable.

Proposition 45. Let c be a constant, and let f and G be two measurable real-valued functions.
Then,

f + c, f + g, cf, f − g, f · g

Are measurable

Proof. Suppose we had f(x) + c. We want to examine the set

{x : f(x) + c > α}

Let α ∈ R, we want to show that this set is measurable. Well, we have that

{x : f(x) + c > α} = {x : f(x) > α− c}

Which is measurable, since f is measurable. Thus, f(x) + c is measurable.

Now suppose we had f(x) + g(x). Fixing some α ∈ R, we look at

{x : f(x) + g(x) > α}
†this is ‘f restricted to E’
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Notice that we can write f(x) + g(x) > α as f(x) > α − g(x). Using the fact that between any
two real numbers there is a rational number, we know that there exists r ∈ Q such that

f(x) > r > α− g(x)

Since the rational numbers are countable, we can write our set as:

{x : f(x) + g(x) > α} =
⋃
r∈Q

({x : f(x) > r} ∩ {g(x) > α− r})

The two sets are measurable since f and g are measurable functions, and since a countable union
of measurable sets is measurable, we are done.

Supposing now that we have cf(x). Our first case is that c > 0, then

{x : f(X) > α

c
}

If c < 0, then we have that
{x : f(x) < α

c
}

And if c = 0 we have
{x : 0 > α}

Notice that this set is either empty, or the entire domain- either way, it is measurable.

1.22 Homework

Page 70 question 18

1.23 Continued

Proposition 46. If f, g are measurable and c ∈ R, then

f + c, f + g, cf, g − f

are all measurable.

Proof. We have that
g − f = g + (−1)g

How can we show that fg is measurable? Well, we want to show that f 2 is measurable, so for
α ∈ R we have that

{x : [f(x)]2 > α}

If α > 0, thne we have the inequality f(x) >
√
α, which is equivalent to saying

f(x) < −
√
α

42



1.23. CONTINUED

So we have
{x : [f(x)]2 > α} = {x : f(x) >

√
α}
⋃
{i : f(x) < −

√
alpha}

And since f is measurable, this union is measurable. Alternatively if α = 0, we have

{x : [f(x)]2 = 0} = {x : f(x) = 0}

which is measurable, and if α < 0 then we have

{x : [f(x)]2 < α} = Domain

Similarly,
1
2(f + g)2 − f 2 − g2 = fg which is measurable

This shows that all these algebraic combinations are really measurable.

Theorem 47. Let {fn} be a sequence of measurable functions with the same domains. Then the
functions

inf
n
{f1, ..., fn}, sup

n
{f1, ..., fn}

are measurable. From this we also have that

lim
n→∞

fn, lim
n→∞

fn

are also measurable.

Proof. Suppose that
h(x) = inf{f1(x), f2(x), .., fn(x)}

If we then look at the set
{x : h(x) > α}

for α ∈ R, we need to show that this set is measurable. Notice that we can do the following:

{x : h(x) > α} =
n⋂
i=1
{x : fi(x) > α}

Each of these sets is measurable, and thus their intersection is measurable. Similarly, suppose

g(x) = inf
n
fn(x) =

∞⋃
n=1

(∩∞i=1 {x : fi(x) < α + 1
n
}︸ ︷︷ ︸

An

)

From this, we have that if x ∈ An, then

inf
i
fi(x) ≥ α + 1

n

Now, we examine why the following set is measurable:

{x : lim
n→∞

fn(x) > α}
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This follows from seeing that
lim
n→∞

fn(x) = inf
n

sup
k≥n

fk(x)

If we call supk≥n fk(x) = gn(x), we have that each gn(x) is measurable by what we showed above.
Taking the infimum over these measurable functions, we have something measurable.

Definition. A property holds almost everywhere (a.e) if the set of points were it fails to hold is
a set of measure 0.

For example, f = g a.e. if f and g have the same domain and the measure of {x : f(x) 6= g(x)} is
0.

We say that fn converges to g almost everywhere if there exists a set E with m(E) = 0 such that

fn(x)→ g(x) as n→∞

For x /∈ E.
Proposition 48. If f is a measurable function and f = g almost everywhere, then g is a measurable
function.

(for example: the characteristic function χ (look up the definition) has the following property:

χR = χR−Qalmost everywhere

because m(Q) = 0. )

Proof. Let E = {x : f(x) 6= g(x)}. Then m(E) = 0, by definition. Then for α ∈ R,

{x : g(x) > α} = [{{x : f(x) > α} ∪ {x ∈ E : g(x) > α}]− {x ∈ E : g(x) ≤ α}

Each one of these sets is measurable.

Proposition 49. Let f : [a, b] → R be measurable, and assume that m{x : f(x) = ±∞} = 0.
Then given ε > 0, a step function g and a continuous function h such that

|f − g| < ε and |f − h| < ε

except on a set of measure < ε. If, in addition, m ≤ f(x) ≤< M , then we can choose g and h
such that

m ≤ g ≤M, m ≤ h ≤M

Proof. We have a function f : [a, b] → R and a set E = {x : f(x) = ±∞}, where m(E) = 0. So,
let’s just worry about

f : [a, b]− E → R

From this, we can assume that f is finite. Since E is measure 0, it doesn’t affect anything.

Claim. There exists M > 0 such that |f(x)| ≤M except on a set F of measure < ε
3 .
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Proof Of Claim. We let Cn = {x : n− 1 ≤ |f(x)| < n}. Then Cn’s are disjoint, and ⋃∞n=1Cn is the
domain of f . We then have

m(
∞⋃
n=1

Cn) =
∞∑
n=1

m(Cn)

Then, there exists N : ∑∞n=N+1m(Cn) < ε
3 . So, we take

f =
N⋃
n=1

Cn, M = N ; for x ∈ F, |f(x)| < N

So
D − F =

∞⋃
n=N+1

Cn

Definition.
ϕ : [a, b]→ R

Is a simple function if it is measurable, and assumes only a finite number of values.

Example. χQ is simple, but not a step function. If {c1, ..., cn} are the values of a simple function
ϕ, then

ϕ(X) =
n∑
i=1

ciχAi(x)

Where Ai = {x : Pϕ(x) = ci} = f−1({ci}).

Claim. (assume f is bounded ) There is a simple function ϕ such that |f − ϕ| < ε outside of a
set of measure < ε

3 .

Proof of Second Claim. We know that

|f(x)| ≤M∀x

We know that there exists an ∈ N such that

M + 1|
n

< ε

We then look at the set

Ai = {x : f(x) ∈ (i · M + 1
n

, (i+ 1)M + 1
n

)}

We can then write
ϕ(x) =

n∑
i=−n

i
M + 1
n

χAi(x)

Which is a simple function, and we can say that

|f(x)− ϕ(x)| < (i+ 1)M + 1
n
− (i)M + 1

n
= M + 1

n
< ε
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Going from a simple to a step function, we then say that there exist finitely many intervals
Ij, j = 1, 2, 3, ...ki suc that

m(Ai∆
⋃
Ij) >

ε

6n
Then we have

ψ(x) =
n∑

i=−n
i
M + 1
n

ki∑
j=1

χIj

which is a step function. We have that

ψ(x) = ϕ(x) outside of
n⋃

i=−n
(Ai∆

ki⋃
j=1

Ij)

And we have that

m(
n⋃

i=−n
(Ai∆

ki⋃
j

Ij)) ≤
n∑

i=−n
m((Ai∆

ki⋃
j

Ij) ≤ 2n · ε6n = ε

3

1.24 Littlewood’s Three Principles

1. Every measurable set is “nearly” the union of finitely many intervals.

2. Every measurable function is “nearly” continuous

3. Every convergent sequence of measurable functions is “nearly” uniformly convergent.
Proposition 50. Let E be a measurable set with m(E) < ∞ and {fn} a sequence is measurable
function defined on E. Let f : E → R such that for all x ∈ E, fn(x) → f(x) as n → ∞. Then,
given ε > 0 and δ > 0, there exists A ⊂ E (measurable) with m(A) < δ , and there exists N ∈ N
such that for all x /∈ A and ∀n ≥ N ,

|fn(x)− f(x)| < ε

Remark. Notice that fn ⇒ f on E − A.

Proof. Define a set Gn = {x ∈ E : |fn(x) − f(x)| ≥ ε}. We then let EN = ⋃∞
n=N Gn = {x ∈ E :

|fn(x) − f(x)| ≥ ε} for some n ≥ N . Notice that En+1 ⊂ En. Notice that m(En) < ∞ for all n,
since m(E) < ε. Then,

∞⋃
N=1

EN = ∅

because limn→∞ fn(x) = f(x) for all ε > 0, there exists N(x, ε) such that |fn(x) − f(x)| < ε, for
all n ≥ N(x, ε).

Recall: For {An} measurable, m(A1) <∞, An+1 ⊂ An for all n, then

m(
∞⋂
n=1

An) = lim
n→∞

m(An)
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Applying this fact to what we have here,

0 = m(
∞⋂
N=1

En) = lim
N→∞

m(En)

This implies that there exists N0 such that m(EN0) < δ, and A := EN0 .

1.25 Homework

Page 71 question 24, page 73, question 30.

1.26 Continued

Definition. If there exists B ⊂ E with m(B) = 0 such that fn → f point-wise on E − B, then
fn → f almost everywhere.
Proposition 51. Let E be measurable with m(E) < ∞ and {fn} a sequence of measurable func-
tions that converge to f almost everywhere on E. Then given ε > 0 and δ > 0, there exists A ⊂ E
with m(A) < δ and there exists N ∈ N such that for all x ∈ A and for all n ≥ N ,

|fn(x)− f(x)| < ε
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Chapter 2
The Lebesgue Integral

2.1 The Riemann Integral

We assume f : [a, b] → R, a bounded function. There exists some M > 0, |f(x)| < M for all
x ∈ [a, b].

Subdivision: a = C0 < C1 < C2 < ... < Cn = b, and

S =
n∑
i=1

(Ci − Ci−1)Mi

And
s =

n∑
i=1

(Ci − Ci−1)mi

Where
Mi = sup

Ci−1<x≤Ci
f(x), mi = inf

Ci−1<x≤Ci
f(x

The upper Riemann integral

R
∫ b

a
f(x)dx = inf S

and the lower Riemann integral:
R
∫ b

a
f(x)dx = sup s

Definition. When the upper and the loewr Riemann integral of f are equal, then f is Riemann
Integrable.

2.2 Step Functions

A step function has the property that φ(x) = ci , Ci=1 < x < Ci. Then∫ b

a
ψ(x)dx =

n∑
i=1

ci(Ci − Ci−1)
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We can set

R
∫ b

a
f(x)dx = inf

ψ(x)≥f(x), is a step function

∫ b

a
ψ(x)dx

We say that

S =
∫ b

a
ψ(x)dx

Similarly

R
∫ b

a
f(x)dx = infϕ(x)≤f(x) is a step function

∫ b

a
ϕ(x)dx

2.3 Lebesgue Integration

The Lebesgue Integral of a bounded function over a set of finite measure

Given ϕ(x), a simple function that assumes finitely many values is measurable. We can write it as
follows:

ϕ(x) =
n∑
i=1

ciχEi(x)

Which is a representation that is not unique. If ϕ(x) assumes non-zero values {c1, ..., ck}, let
Ai = ϕ−1({ci}) = {x : ϕ(x) = ci}. Then we have

ϕ(x) =
k∑
i=1

ciχAi(x)

This is a unique representation.

If ϕ vanishes outside a set of finite measure,

∫
ϕ(x)dx =

k∑
i=1

cim(Ai)

If E is any measurable set, then ∫
E
ϕ(x)dx =

∫
ϕ(x)χE(x)dx

Lemma 52. Let
ϕ =

n∑
i=1

aiχEi

With Ei ∩ Ej = ∅ for i 6= j. Suppose each Ei is measurable with finite measure. Then

∫
ϕ(x)dx =

n∑
i=1

aim(Ei)
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MEASURE

Proof. The set Aa = {x : ϕ(x) = a} = ⋃
ai=aEi. Then,

a ·m(Aa) =
∑
ai=a

aim(Ei)

Therefore ∫
ϕ(x)dx =

∑
a ·m(Aa) =

n∑
i=1

aim(Ei)

2.3.1 Additional homework

Show that χA(x), A = [0, 1]−Q is not Riemann Integrable.

Whenever E is measurable,
χE(x) = 1(x ∈ E), 0(x /∈ E)

should be measurable.

2.4 The Lebesgue Integral of a Bounded Function over a
set of Finite Measure

We had that if φ(x) is a simple function, then

ϕ(x) =
n∑
i=1

aiχAi(x)

Where Ai = ϕ−1{ai}, and ai 6= 0, and take all {a1, a2, .., an} non-zero values of ϕ, we have that
Ai ⊂ R, and we have that ϕ−1{ai} is measurable, since ϕ is measurable. This is called our
‘canonical representation’.

We could have written the following:

ϕ(x) =
k∑
i=1

ciχEi(x)

but unless you know something especially helpful about E, this isn’t a great idea. We had the
following last time:
Lemma 53. We said let ϕ = ∑

ciχEi with Ei 6= E)j when i � j, then∫
ϕ =

∑
cim(Ei)

We had the following definition:
Definition. ∫ b

a
ϕ(x)dx =

n∑
i=1

aim(Ai)

51



CHAPTER 2. THE LEBESGUE INTEGRAL

Proposition 54. Let ϕ and ψ be simple functions which vanish outside a set of finite measure.
Then, ∫

(aϕ+ bψ) = a
∫
ϕ+ b

∫
ψ

and if ϕ ≥ ψ almost everywhere, then ∫
ϕ ≥

∫
ψ

Proof. Take {Ai}, {Bj} sets occurring in canonical decompositions for ϕ and ψ. Let A0 and B0
be sets where ϕ and ψ are 0. Let Ek be the pairwise intersections of families {An} ∪ {A0} and
{Bj} ∪ {B0}. There are finitely many Ek’s, and each is measurable. Suppose now that we want
to write ϕ as follows:

ϕ =
∑

ckχEk

And we do the same with ψ:
ψ =

∑
dkXEk

In this case,
aϕ+ bψ =

∑
k

(ack + bdk)χEk

so, ∫
(aϕ+ bψ) =

∑
k

(ack + bdk)m(Ek) = a
∑

Ckm(Ek) + b
∑

dkm(Ek) = a
∫
ϕ+ b

∫
ψ

We also have that ϕ ≥ ψ ⇒ ck ≥ dk∀k, then∫
ϕ =

∑
ekm(Ek) ≥

∑
dkm(Ek) =

∫
ψ

Remark. It follows that if ϕ−∑ aiχAi , then∫
ϕ =

∑
aim(Ai)

without the assumption that Ai ∩ Aj = ∅.
Definition. Suppose we have f : E → R where f is bounded and measurable, we would like to
say that if

inf
ψ≥f

∫
E
ψ

?= sup
ϕ≤f

∫
e
ϕ

then f is Lebesgue integrable, where ϕ and ψ are integrable functions.
Proposition 55. Let f be a bounded function on a measurable set E with m(E) <∞. Then,

inf
f≤ψ

∫
e
ψ(x)dx = sup

ϕ≤f

∫
E
ϕ(x)dx

for all simple functions ϕ, ψ if and only if f is measurable on E.
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Proof. Suppose that |f | ≤ M , and f is measurable. Let Ek = {x ∈ E : kM
n
≥ f(x) >

k−1
n
M}, −n ≤ k ≤ n. These sets are measurable, disjoint, and their union is E. We then

have
n∑

k=−n
m(Ek) = m(E)

and we define ψn(x) = M
n

∑n
k=−n kχEk(x) which is the upper bound, and we have

ϕn(X) = M

n

n∑
k=−n

(k − 1)χEk(x)

as a lower bound, where these functions are both simple. Then we look at

inf
f≤ψ

∫
e
ψ(x)dx ≤

∫
e
ψn(x)dx = M

n

n∑
k=−n

k ·m(Ek)

and
sup
ϕ≤f

∫
E
ϕ(x)dx ≥

∫
E
ϕn(x)dx = M

n

n∑
k=−n

(k − 1)m(Ek)

Looking then at

0 ≤ inf
f≤ψ

∫
E
ϕ(x)dx− sup

ϕ≤f

∫
E
ϕ(x)dx

≤
∫
E
ψn(x)dx−

∫
E
ϕ(x)dx = M

n

n∑
k=−n

m(Ek)

= M

n
m(E)→ 0 as n→∞

Now going in the other direction, we assume that inff≤ψ
∫
E ψ(x)dx = supϕ≤f

∫
E ϕ(x)dx. Then for

all n ∈ N, there exist simple functions πn, ϕn such that

ϕn(x) ≤ f(x) ≤ ψn(x) ∀x ∈ E

and ∫
ψ(x)dx−

∫
ϕn(x) < 1

n

We then define
ψ∗(x) := inf

n
ψn(x), ϕ∗(x) = sup

n
ϕn(x)

which are both measurable functions. We have that

ϕ∗(x) ≤ f(x) ≤ ψ∗(x)

And we want to look at the set
∆ = {x : ϕ∗(x) < ψ∗(x)}

We represent it as
∆ =

⋃
µ∈N
{x : ϕ∗(x) < ψ∗(x)− 1

µ
}︸ ︷︷ ︸

∆µ
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Now, we have that ∫
E
ψn −

∫
E
ϕn <

1
n

This is really the same as ∫
E

(ψn − ϕn)

Which is a simple, non-negative function–whose integration is therefore non-negative.
Remark. We have ϕ ≥ 0, which is a simple function. Then,

ϕ(x) =
∑

ciχEi , ci > 0

Then, ∫
E
ϕ(x)dx =

∑
cim(Ei) ≥ 0

So, we can do the following:∫
∆µ∩E

ϕ(x)dx =
∑

cim(Ei ∩∆µ) ≤
∑

cim(Ei) =
∫
E
ϕ(x)dx

By this remark, we have that∫
∆µ

(ψn − ϕn) ≤
∫
E

(ψn − ϕn) ≤
∫

∆µ

(ψn − ϕn) < 1
n

So we have that
1
µ
m(∆µ) ≤

∫
∆µ

(ψn − ϕn) < 1
n

Which tells us that
m(∆µ) < 1

n
Letting n → ∞, we get that m(∆µ) ≤ 0, which implies that m(∆µ) = 0. From this, countable
sub-additivity, we have that m(∆) = 0. Therefore f = ψ∗ on E − ∆, and since ∆ has measure
zero, we have that f is measurable.
Definition. If f is a bounded and measurable function defined on a measurable set E with
m(E) <∞, then f is Lebesgue integrable and∫

E
f(x)dx = inf

f≤ψ

∫
E
ψ(x)dx

Where the infimum is over all simple functions ψ ≥ f .
Proposition 56. Let f be a bounded function on [a, b]. If f is Riemann integrable on [a, b], then
it is measurable and

R
∫ b

A
f(x)dx = L

∫ b

a
f(x)dx

(R and L here represent ‘Riemann’ and ‘Lebesgue’ ).

Proof. Since every step function is a simple function, we have that

R
∫ b

a
f(x)dx ≤ sup

ϕ≤f

∫ b

a
ϕ(x)dx ≤ inf

f≤ψ

∫ b

a
ψ(x)dx ≤ R

∫ b

a
f(x)dx

Where ϕ, ψ are simple. Equalities hold everywhere, because f is Riemann integrable. This implies
that f is Lebesgue integrable.
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Proposition 57. If f and g are bounded, measurable functions defined on E with m(E) < ∞,
then

1.
∫

(af + bg) = a
∫
f + b

∫
g

2. If f = g almost everywhere, then
∫
f =

∫
g

3. If f ≤ g almost everywhere, then
∫
f ≤

∫
g. In particular, this implies that |

∫
E f | ≤

∫
E |f |.

4. If A ≤ f(x) ≤ B, for all x ∈ E, then

A ·m(E) ≤
∫
E
f ≤ B ·m(E)

5. If A and B are disjoint, measurable subsets of E, then∫
A∪B

f =
∫
A
f +

∫
B
f

Proof. 1. We will first try to show that
∫
af = a

∫
f . We know that if a > 0, then∫

af = inf
f≤ψ

∫
E
aψ = a · inf

f

∫
E
ψ = a

∫
E
f

Alternatively, if a < 0, then∫
E
af = inf

ϕ≤f≡aϕ≤af

∫
aϕ = a sup

ϕ≤f

∫
E
ϕ = a

∫
E
f

Where ψ, ϕ are simple. Now looking at f + g, we choose simple functions ψ1, ψ2 such that
f ≤ ψ1, g ≤ ψ2, from which it follows that f + g ≤ ψ1 + ψ2. In this case,∫

E
(f + g) ≤

∫
E

(ψ1 + ψ2) =
∫
E
ψ1 +

∫
E
ψ2

This implies that ∫
E

(f + g) ≤
∫
E
f +

∫
E
g

By taking the infimums for all ψ1 ≥ f, ψ2 ≥ g in the previous equation. Now going from
below, we have that ϕ1 ≤ f, ϕ2 ≤ g, which are simple functions. In this case, ϕ1 +ϕ2 ≤ f+g,
and so ∫

E
ϕ1 +

∫
E
ϕ2 =

∫
E

(ϕ1 + ϕ2) ≤
∫
E

(f + g)

Taking the supremums over all ϕ1, ϕ2, we have that∫
E
f +

∫
E
g ≤

∫
E

(f + g)

Which proves (1).

2. We need to show that if f = 0 almost everywhere, then
∫
E f = 0. Recall that f = g almost

everywhere is equivalent to saying that f − g = 0 almost everywhere. We showed in (1) that
integration can be taken over sums, so we have that ψ ≥ f , ψ simple, implies that

ψ ≥ 0 almost everywhere.
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In this case, ∫
ψ ≥ 0⇒

∫
E
f ≥ 0

We have that ϕ ≤ f , and ϕ is simple. Since ϕ ≤ 0 almost everywhere,∫
E
ϕ ≤ 0,

∫
ϕ =

∑
cim(Ei) ≤ 0

Taking the supremum over all φ, we end up showing that∫
E
f ≤ 0

Implying that f = 0, and we are done with (2).

3. f ≤ g almost everywhere means that f − g ≤ 0 almost everywhere. Let ϕ be a simple
function such that ϕ ≤ f − g. This implies that ϕ ≤ 0 almost everywhere. We then know
that ∫

E
ϕ ≤ 0

This follows from the fact that ϕ is a simple function, i.e.,

ϕ(x) =
n∑
i=1

ciχEi(x)

which we call our ‘canonical representation/decomposition’. Recall that {c1, c2, ..., cn} are a
set of values of ϕ, except 0. In this case,

Ei = ϕ−1({ci})

Notice that Ei ∩ Ej = ∅ for i 6= j, as a result of this definition. In this case,∫
E
ϕ =

n∑
i=1

cim(Ei)

If any ci’s are positive, since ϕ ≤ 0 almost everywhere, this would imply that m(Ei) = 0.
Therefore, ∫

E
ϕ =

n∑
i=1

cim(Ei) ≤ 0

we have that
0 ≥ sup

ϕ≤f−g
=
∫

(f − g)

where ϕ is simple. By (1),
∫
f −

∫
g ≤ 0,⇒

∫
f ≤

∫
g.

4. By (3), ∫
E
f ≤

∫
E
B = B ·m(E)

The other inequality follows in the same way.

5. The characteristic function χA∪B = χA + χB, because A and B are disjoint. We have that∫
A∪B

f =
∫
R
χA∪Bf =

∫
(χA + χB)f =

∫
(χAf + χBf) =

∫
χAf +

∫
χBf =

∫
A
f +

∫
B
f
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Proposition 58. The Bounded Convergence Theorem: Let {fn} be a sequence of measurable
functions defined on E, with m(E) < ∞. Assume that there is M > 0 such that |fn(x)| < M for
all x ∈ E and n. If fn(x)→ f(x) as n→∞ for all x ∈ E, then∫

E
f = lim

n→∞

∫
E
fn

Proof. Take ε > 0. Then
|
∫
E
fn −

∫
E
f |

(f(x) = limn→∞ fn(x) = limn→∞fn(x), so f(x) is measurable- this is something we proved a while
ago). For a fixed x, we have that −M < fn(x) < M , so −M < limn→∞ fn(x) < M , so |f(x)| ≤M -
which is true for every x.
Proposition 59. Recall: (this is a piece of an old proposition) Given δ > 0, ε > 0, then there
exists N ∈ N, and A ⊆ E such that m(A) < δ and

|fn(x)− f(x)| < ε

For x /∈ A.

Using this proposition in our proof,

|
∫
E
fn −

∫
E
f | = |

∫
E

(fn − f)| = |
∫
E−A

(fn − f) +
∫
A

(fn − f)|

≤ ∗|
∫
EA

(fn − f)|+ |
∫
A

(fn − f)| ≤
∫
E−A
|fn − f |+

∫
A
|fn − f |

Which also follows from the fact that

|
∫
f | ≤

∫
|f |

From this it follows that
|fn(x)− f(x)| ≤ |fn(x)|+ |f(x)| ≤ 2M

So, we have that∫
E−A
|fn − f |+

∫
A
|fn − f | ≤ ε ·m(EA) + 2Mm(A) ≤ εm(E) + 2Mm(A)

To make some progress, we take our proposition and adapt it so that

δ = ε

4M , |fn(x)− f(X)| < ε

2m(E)
Let N = N( ε

2m(E) ·
ε

4M be from the proposition. Then n ≥ N , for all A ⊂ E, and we have in our
chain of equations that

ε ·m(EA) + 2Mm(A) ≤ ε

2m(E)m(E) + 2Mm(A) ≤ ε

2 + 2 < ε

4M = ε

Proposition 60. A bounded function f on m[a, b] is Riemann Integrable if and only if the set
of points at which f is discontinuous is of Lebesgue measure 0.

This proposition tells us immediately that χ[0,1]−Q is not Riemann integrable. This follows from
the fact that this function is never continuous, and the measure of [0, 1]−Q is 1.
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2.5 The Integral of a Non-negative Function

We assume that f ≥ 0, and is a measurable function defined on a measurable set E.
Definition. ∫

E
f = sup

h≤f

∫
E
h

Where h is a bounded, measurable function such that m({x : h(x) 6= 0}) < ∞. This set is called
‘the support’ of h.
Proposition 61. If f and g are non-negative measurable functions, then

1. ∫
E
cf = c

∫
E
f

2. ∫
E

(f + g) =
∫
E
f +

∫
E
g

3. If f ≤ g almost everywhere, then ∫
E
f ≤

∫
E
g

Proof. 1. If you have h ≤ f , c > 0, ch ≤ cf . Then∫
E
cf := sup

h≤f

∫
E
ch = sup

h≤f
c
∫
E
h = c sup

h≤f

∫
E
h = c

∫
E
f

2. If h ≤ f and k ≤ g, then h+ k ≤ f + g. So, we have that∫
E
h+

∫
E
k =

∫
E

(h+ k) ≤
∫
E

(f + g) (2.5.1)

sup
h≤f

∫
E
h+

∫
E
K ≤

∫
E

(f + g) (2.5.2)

sup
h≤k

∫
E
h+ sup

k≤g

∫
E
k ≤

∫
E

(f + g) (2.5.3)∫
E
f +

∫
E
g
∫
E

(f + g) (2.5.4)

3. If f ≤ g almost everywhere, then 0 ≤ f−g almost everywhere. We again use our definitions:
if we have h ≤ f , then h ≤ g. In this case,∫

E
f = sup

h≤f

∫
E
h ≤ sup

h′≤g

∫
E
h′ =

∫
E
g

Let l ≤ f + g, m({x : l(x) 6= 0}) < ∞, and l is bounded. We form h(x) = min(f(x), l(x)),
and k(x) = l(x) − h(x). The minimum is non-negative. We have that h(x) ≤ f(x), k(x) ≤ g(x),
and ∫

E
l =

∫
E
h+

∫
E
k ≤

∫
E
f +

∫
E
g

58



2.6. REVIEW FOR MIDTERM

Taking the supremum over all l, we have∫
E

(f + g) = sup
l≤f+g

∫
E
l ≤

∫
E
f +

∫
E
g

The test material is up to this section (page 85 in the book).

2.6 Review for Midterm

2.6.1 Solution to (1)

We have that f : E → R, such that m(E) <∞, and f is non-negative and bounded. We need to
prove that infE f(x)dx = 0 implies that f = 0 almost everywhere.

Proof by contradiction: we assume that there exists some set A ⊂ E with m(A) > 0 such that
f(x) > 0 for all x ∈ A. We have that∫

E
f(x)dx =≥

∫
A
f(x)dx

which follows from the fact that f(x) ≥ 0, so∫
E
f(x)dx =

∫
EA
f(x)dx+

∫
A
f(x)dx

where
∫
E−A f(x)dx ≥ 0, implying that∫

E−A
f(x)dx ≥ 0 +

∫
A
f(x)dx ≥

∫
A
f(x)dx

This follows from the definition: ∫
E−A

f(x)dx = inf
ψ≥f

∫
EA
ψ ≥ 0

(f is a simple, bounded function). This follows by recalling that

ψ =
∑

ciχEi

and since ψ ≥ 0, we have that each ci ≥ 0 so the integral of ψ is∫
ψ =

∑
cim(Ei) ≥ 0

We have that f is bounded, by definition this means that there exists M > 0 such that |f | ≤ M .
We have the set An ⊂ A as follows:

An = {x ∈ A : M

n+ 1 < f(x) ≤ M

n
}

We have that An ∩ Am if n 6= m. We also know that ∪An = A. We have that

m(A) =
n∑
n=1

m(An)
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but before we do this, we have to show that each An is measurable- which follows from the fact
that

An = f−1(( M

n+ 1 ,
M

n
]) = f−1(( M

n+ 1 ,∞]) ∩ f−1([−∞, M
n

])

These two sets are measurable, therefore their intersection is measurable. We have that

0 ≤ m(A) =
∞∑
n=1

m(An)

Of course for all n, m(An) ≥ 0. This implies that there exists n0 such that m(Am0) > 0. Which
would mean that ∫

E
f(x)dx ≥

∫
An0

f(x)dx

Notice that x ∈ A0 ⇒ M
n0+1 < f(x). So,

∫
E
f(x)dx ≥

∫
An0

f(x)dx ≥ M

n0 + 1m(An0) > 0

Which is a contradiction, and we are done.

2.6.2 Solution to (2)

We have that f ≥ 0, and we have an increasing sequence ϕn such that ϕn ≥ 0 and are simple. We
want to show that

f(x) = lim
n→∞

ϕn(x) ∀x

We can assume that f : R→ R. Given n, we look at [ 1
n
, n], more specifically [ k

n
, k+1

n
], k = 1, ...., n2.

We define Ak = f−1([ k
n
, k+1

n
))∩ [−n, n] (the intersection is to keep the set of finite measure). Then

w define

ϕn(x) =
n2∑
k=1

k

n
χAk(x)

Notice that ϕn(x) ≤ f(x), since we choose the lower value. We have that

|f(x) = ϕn(x)| ≤ 1
n

on
n2⋃
k=1

Ak

since ϕn(x) is increasing, we are essentially finished. This doesn’t work with step functions: for
example, we can’t do this over χQ, for if we wanted to approximate it over an interval, the step
function can only take on value on every interval, and χQ takes on two values at every interval.

2.6.3 Solution to (3)

We have that
lim
n→∞

∫ 1

0

log(x+ n)
n

e−xcos(x)dx
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Recall that we had something called the bounded-convergence theorem, which tells us that if we
have fn measurable and bounded on a closed interval [a, b],

lim
n→∞

fn(x) = f(x) a.e.

Then f is measurable, and bounded, and∫
[a,b]

f(x)dx = lim
n→∞

∫
[a,b]

f(x)dx

Notice that ∣∣∣∣∣ log(x+ n)
n

e−xcos(x)
∣∣∣∣∣ ≤ 1 ∀x, ∀n

since
sup
x
| log(x+ n)

n
| = log(1 + n)

n
→ 0 as n→∞

This implies that there exists some M > 0 such that

log(x+ n)
n

≤ log(1 + n)
n

≤M

We also have that fn is continuous, so we have that this set is measurable. Since

lim
n→∞

log(x+ n)
n

e−xcos(x) = 0

So, the integral is 0.

2.6.4 Solution to (1)

We have f : [0, 1]→ R, and the definition:

f(x) = 0, x 6= 1
2n , 0 if x = 1

2n (2.6.1)

We want to show that f is Riemann integral. One way to do this is to show that the lower integral
is equal to the upper integral, i.e.,

inf
k∑
i=1

Mi(ξi − ξi−1)

Where Mi = supξi−1≤x<ξi f(x).

We take the division ξi = [ i2k ,
i+1
2k ).

We can eventually show that

inf
k∑
i=1

Mi(ξi − ξi−1) = 0

This function is also Lebesgue integrable, simply because it is Riemann Integrable.
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2.6.5 Solution to the other (2)

We have fn : [a, b] → R, a sequence of bounded functions that converges uniformly to f on [a, b].
We want to show if each f)n is Riemann integrable over [a, b], then

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx

We have that fn converges to f uniformly, and that supx∈[a,b] fn(x) <∞. Given ε > 0, there exists
n ∈ N such that |fn(x)−f(x)| < ε for every x ∈ [a, b] and for every n ≥ N. From here, we conclude
that

|f(x)| < |fn(x)|+ ε

Taking the supremum,
sup
x∈[a,b]

|f(x)| ≤ sup
x∈[a,b]

|fn(x)|+ ε

So f is a bounded function, and it is even uniformly bounded, for

|fn(x)| < |f(x)|+ ε

For all n ≥ N , for all x. (notice that Lebesgue measurable + bounded implies Riemann integrable).
We apply the bounded convergence theorem, which will tell us that our integrals at the beginning
of the question are equal.

We sort of screwed up and forgot to show that f is Riemann integrable. We have the following:
we take ϕ ≤ fn, where ϕ is a step function. We have that∫ b

a
fn(x)dx = sup

ϕ≤fn

∫ b

a
ϕ(x)dx

Since we have that
|fn(x)− f(x)| < ε

for some n ≥ N(ε) and for all x ∈ [a, b], then this is equivalent to saying that

fn(x)− ε < f(x) < fn(x) + ε

Then
ϕ(x)− ε ≤ fn(x)− ε < f(x)

In this case, ∫ b

a
[ϕ(x)− ε]dx ≤

∫ b

a
[fn(x)− ε]dx =

∫ b

a
fn(x)dx− ε(b− a)

Given another step function, we have that∫ b

a
fn(x)dx = sup

ϕ≤fn

∫ b

a
ϕ(x)dx = inf

ψ≥fn

∫ b

a
ψ(x)dx

So ∫ b

a
[ϕ(x)− ε]dx ≤

∫ b

a
[fn(x)− ε]dx =

∫ b

a
fn(x)dx− ε(b− a)
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<
∫ b

A
fn(x)dx+ ε(b− a) =

∫ b

a
(fn(x) + εdx leq

∫ b

a
(ψ(x) + ε)dx =

∫ b

a
ψ(x)dx+ ε(b− a)

What this tells us is that
sup
ϕ1≤f

∫ b

a
ϕ1(x)dx ≤ inf

ψ1≥f

∫ b

a
ψ1(x)dx

which is always the case. Since we have that

ϕ(x)− ε

is one of those ‘ϕ1’s’, we know that∫ b

a
(ϕ(x)− ε) ≤ sup

ϕ1≤f

∫ b

a
ϕ1(x)dx ≤ inf

ψ1≥f

∫ b

a
ψ1(x)dx ≤

∫ b

a
(ψ(x) + ε)dx

Screw above. He redid the proof. See below:

Since fn is Riemann integrable, there exist ϕn, ψn step functions such that

ϕn ≤ fn, fn ≤ ψn

and ∫ b

a
ψn(x)dx−

∫ b

a
ϕn(x)dx ≤ 1

n

Let εn = supx∈[a,b] |f(x)− fn(x). Then we have that

ϕn(x)− εn ≤ fn(x)− εn ≤ f(x) ≤ fn(x) + εn ≤ ψn(x) + εn

So, ∫
(ϕn(x)− εn)dx ≤ sup

ϕ∗≤f

∫ b

a
ϕ∗(x)dx ≤ inf

f≤ψ∗

∫ b

a
ψ∗(x)dx ≤

∫ b

a
(ψn(x) + εn)dx

Looking at∫ b

a
[(ψn(x) + εn)− (ϕn(x)− εn)]dx =

∫ b

a
ψn(x)dx =

∫ b

a
ϕn(x)dx+ 2εn <

1
n

+ εn(b− a)→ 0, n→∞

Since |f(x)− fn(x)| → 0 as n→∞.

2.7 Post Exam, Integral of a Nonnegative Function

We have that f ≥ 0, and is measurable on a set E- this will be a long standing assumption for
this section. As a remark, we allow m(E) to possibly be infinite. We have that∫

E
f = sup

h≥f

∫
E
h

Where h is bounded and measurable, and m(supp(h)) <∞. Recall that

supp(h) = {x ∈ E : h(x) 6= 0}
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Proposition 62. We have that if f, g are nonnegative and bounded, then

1. ∫
E
cf = c

∫
E
f, c > 0

2. ∫
E

(f + g) =
∫
E
f +

∫
E
g

3. If f ≤ g almost everywhere, then ∫
E
f ≤

∫
E
g

This proposition was demonstrated last time.
Theorem 63. Fatou’s Lemma: If {fn} is a sequence of nonnegative measurable functions and
fn(x)→ f(x) almost everywhere on E, as n→∞, then∫

E
f ≤ lim

n→∞

∫
E
fn

Proof. We can assume that fn(x)→ f(x) on the whole set E. Since h is bounded and measurable
on E, h(x) ≤ f(x)∀x ∈ E. In this case supp(h) = E ′, and m(E ′) < ∞. We then define the new
function

hn(x) = min{h(x), fn(x)}
So supp(hn) ⊂ E ′. We then have the hn(x) is bounded by the bound for h (another way to say
this is that ‘hn is uniformly bounded), measurable (since it’s the minimum of two measurable
functions). We now apply the Bounded convergence Theorem, which we would like to apply to
show that hn(x) → h(x) for all x ∈ E. This last statement follows from taking x ∈ E, knowing
that h(x) ≤ f(x), we have the following:

1. If h(x) < f(x), then there exists some n(x) : h(x) < fn(x)(x), for all n ≥ n(x).

2. hn(x) = f(x).

So, by the bounded convergence theorem,∫
E
h = lim

n→∞

∫
E
hn ≤

∫
E

Since the following are true

hn(x) ≤ h(x) ≤ f(x)
hn(x) ≤ fn(x)∫
E
hn ≤

∫
E
fn∫

E
hn ≤

∫
E
fn

Taking the supremum over all h ≤ f , we have that∫
e
f ≤ lim

n→∞

∫
E
fn
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Theorem 64. The Monotone Convergence Theorem Let {fn} be an increasing sequence of
nonnegative measurable functions, and let limn→∞ fn(x) = f(x) almost everywhere. Then,∫

f = lim
n→∞

∫
fn

Proof. By Fatou’s lemma, we have that ∫
f ≤ lim

n→∞

∫
fn

So, we just need to show the opposite inequality. We have that fn(x) ≤ f(x), almost everywhere,
since our sequence is increasing. This means that∫

fn ≤
∫
f

Taking the limit superior on both sides,

lim
n→∞

∫
fn ≤

∫
f ≤ lim

n→∞

∫
fn ≤ lim

n→∞

∫
fn

Thus, our proof is complete.

Corollary 65. Let un be nonnegative measurable functions, and let f = ∑∞
n=1 un. Then,

∫
f =

∞∑
n=1

∫
un

Proposition 66. Let f ≥ 0 be a measurable function defined on E, and let {Ei} be a sequence of
disjoint and measurable sets such that E − ⋃iEi. Then,∫

E
f =

∑
i

∫
Ei
f

Proof. We define ∫
E
f =

∫
R
fχE

And since we know that χE = ∑
i χEi , we just apply our last corollary to get that

fχE =
∑
i

fχEi

Then we have that ∑
i

∫
f · χEi =

∑
i

∫
Ei
f

Proposition 67. Let f and g be two nonnegative measurable functions. If f is integrable over E
(which means that

∫
E f <∞), and f(x) ≥ g(x) almost everywhere on E¡ then g is integrable and∫

E
(f − g) =

∫
E
f −

∫
E
g
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Proof. We know that ∫
E

(f + g) =
∫
E
f +

∫
E
g

We write f = (f − g) + g. Notice that f − g ≥ 0, and g ≥ 0 by assumption. In this case,∫
E
f =

∫
E

(f − g) +
∫
E
g

Both of these integrals on the right hand side are less than infinity, which implies that g is inte-
grable. This line above is equivalent to∫

E
f −

∫
E
g =

∫
E

(f + g)

Proposition 68. Let f ≥ 0 be measurable, and integrable over a set E. Then given ε > 0 there
exists δ > 0 such that ∀A† ⊂ E if m(A) < δ, then∫

A
f < ε

Proof. If f is bounded by some M , then∫
A
f ≤

∫
A
M = Mm(A)

(prove that
∫
A 1 =

∫
Am(A)

Alternatively, let f not be bounded. Then

fn(x) = f(x) if f(x) ≤ n n if f(x) > n

fn bounded, and increasing, since fn(x) → f(x) as n → ∞, we use the monotone convergence
theorem to show that ∫

E
fn →

∫
E
f, n→∞

Given ε > 0, let N ∈ N such that ∫
E
fn >

∫
E
f − ε

2
We know that

|fn| ≤ N

Applying what we know about bounded functions, if we chose δ = ε
2N , then if m(A) < δ, then we

have that ∫
A
fN <

ε

2 < Nδ = N · ε

2N = ε

2
Taking this, we have that ∫

A
f <

∫
A
fn + ε

2 <
ε

2 + ε

2 = ε

For all m(A) < δ.
†measurable
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Homework

On page 89, do questions 3,7, and 8.

2.8 The General Lebesgue Integral

Now, we will mean that f is a measurable function.
Definition. f+(x) = max{f(x), 0}, and f−(x) = max{−f(x), 0}.
Fact.

f = f+ − f−, |f | = f+ + f−

Definition. A measurable function f is integrable over a measurable set E if f+ and f− are
both integrable over E, and in this case,∫

E
f =

∫
E
f+ −

∫
E
f−

Proposition 69. Let f and g be integrable over E, and c ∈ R. Then,

1. cf is integrable over E, and ∫
E
cf = c

∫
E
f

2. The function f + g is integrable over E, and∫
E

(f + g) =
∫
E
f +

∫
E
g

3. If f ≤ g almost everywhere, then ∫
E
f ≤

∫
E
g

4. If A and B are disjoint measurable subsets in E, then∫
A∪B

=
∫
A
f +

∫
B
f

Proof. We have that
∫
E f

+,
∫
E f
− < ∞. We now want to look at cf , where c ∈ R. Like

before, we have that
cf = (cf)+ − (cf)−

If c ≥ 0, then
(cf)+ = cf+, (cf)− = cf−

In this case, ∫
(
cf)+ =

∫
cf+ = c

∫
f+ <∞

Similarly, we can do the same for f−. Thus,∫
E
cf =

∫
E

(cf)+ −
∫
E

(cf)− = c(
∫
E
f+ −

∫
E
f 0) = c

∫
E
f
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Alternatively, if c < 0, then (cf)+ = cf−, and (cf)− = −cf+. Thus,∫
−cf− = −c

∫
E
f− <∞

So both pieces are integrable. Then,∫
E
cf =

∫
e
(cf)+ −

∫
E

(cf)− =
∫
E
−cf− −

∫
E
cf+ = c

∫
E
f+ − c

∫
E
f− = c

∫
E
f

We would like both (f + g)+, (f + g)− to be integrable. It follows that

f + g = (f+ + g+)− (f− + g−)

We have to prove that if f1 ≥ 0, f2 ≥ −, and f = f1 − f2, we would need to show that∫
f =

∫
f1 −

∫
f2

Which are integrals of non-negative functions. We have by assumption, that

f = f+ − f− = f1 − f2

This implies that
f+ + f2 = f1 + f−

We have that∫
(f+ + f2) =

∫
(f1 + f−)⇒

∫
f+

∫
f2 =

∫
f1 +

∫
f− ⇒

∫
f= −

∫
f− =

∫
f1 −

∫
f2

Where the last line follows from integrability. By the claim, if we know that f+g is integrable,
it follows that ∫

(f + g) =
∫

(f+ + g+)−
∫

(f− + g−) (2.8.1)

=
∫
f+ +

∫
g+ − (

∫
f− +

∫
g−) =

∫
f+ −

∫
f− +

∫
g+ −

∫
g− (2.8.2)

=
∫
f +

∫
g (2.8.3)

1.2. We have f ≤ g; Then
∫
E(g − f) ≥ 0. Using property 2 and 1 with c = −1, we have that∫
E

(g − f) ≥ 0 =
∫
E
g +

∫
E

(−f) =
∫
E
g =

∫
E
f

3. We have ∫
A∪B

f =
∫
fχA∪B =

∫
f(χA + χB) =

∫
fχA +

∫
fχB =

∫
A
f +

∫
B
f
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2.9 The Lebesgue Convergence Theorem

Theorem 70. The Lebesgue Convergence Theorem: Let g be an integrable (non-negative)
function over a measurable set E, and let {fn} be a sequence of measurable functions over E such
that |fn| ≤ g almost everywhere on E, and

lim
n→∞

fn(x) = f(x)

For almost all x ∈ E, then ∫
E
f = lim

n→∞

∫
E
f

Proof. We know that |fn| ≤ g almost everywhere. Then fn ≤ |fn| ≤ g. We can then write

g − fn ≥ 0

This is a non-negative function, on which we can apply Fatou’s lemma. This gives us that

lim
n→∞

∫
E

(g − fn) ≥
∫
E

(g − f)

Thus
lim
n→∞

(
∫
E
g −

∫
E
fn) ≥

∫
E
g −

∫
E
f

moving the limit inferior inside, we have that∫
E
g − lim

n→∞

∫
E
fn ≥

∫
E
g −

∫
E
f ⇒ lim

n→∞

∫
E
fn ≤

∫
E
f

We have that |fn| ≤ g, then −fn ≤ |fn| ≤ g. Thus, g + fn ≥ 0. By Fatou’s lemma,

lim
n→∞

∫
E

(g + fn) ≥
∫
E

(g + f)

Going with the integral inside, we have that

lim
n→∞

(
∫
E
g +

∫
E
fn) ≥

∫
E
g +

∫
E
g

∫
E
g + lim

n→∞

∫
fn ≥

∫
E
g +

∫
E
f ⇒ lim

n→∞

∫
E
fn ≥

∫
E
f

Putting these two things together, we have that

lim
n→∞

∫
E
fn ≤

∫
f ≤ lim

n→∞

∫
E
fn ≤ lim

n→∞

∫
E
fn

Thus, the whole chain has to be equal. This implies that there exists limn→∞
∫
fn, and∫

E
f = lim

n→∞

∫
E
fn
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2.10 Back from the break, Quick Review

2.10.1 The General Lebesgue Integral

We had the following definition: given a function f : E → R which is measurable, it’s Lebesgue
integral is as follows: we define

f+(x) = max{f(x), 0} f−(x) = max{−f(x), 0}

In this case, f = f+− f−, and |f | = f+ + f−. Noting that both f+, f− are nonnegative functions,
we can define their Lebesgue integrals. We then say that f is Lebesgue integrable if∫

f+,
∫
f− <∞

and in this case ∫
E
f =

∫
E
f+ −

∫
E
f−

Example. Notice that |f | ≥ 0, but if f is integrable this means that
∫
f+,

∫
f− <∞ so∫

|f | =
∫
f+ +

∫
f− <∞

So, |f | is integrable. It is interesting to notice that

∞∑
n=1

1
n

=∞, but
∞∑
n=1

(−1)n
n

<∞

2.10.2 The Lebesgue Convergence Theorem

Given g : E → R integrable, we take fn : E → R is integrable and assume that |fn| ≤ g almost
everywhere, and we have that fn(x)→ f(x) almost everywhere on E as n→∞. Then∫

E
f(x) = lim

n→∞

∫
E
fn

2.11 Differentiation of Monotone functions

We denote by I a collection of intervals.
Definition. We have that I covers a set E ⊂ R in the sense of Vitali if for all ε > 0, and for each
x ∈ E there exists I ∈ I such that x ∈ I and `(I) < ε. Here, I can be an open, half open, or
closed interval.
Theorem 71. Let m∗(E) <∞, and I a collection of intervals that cover E in the sense of Vitali.
Then for every ε > 0, there exists a finite disjoint collection {I1, I2, ..., In} of intervals in I such
that

m∗(E − ∪Nn=1In) < ε
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2.11. DIFFERENTIATION OF MONOTONE FUNCTIONS

Proof. We can assume that intervals in I are closed. Let O be an open set such that O ⊃ E and
m(O) < ∞. We then drop the elements of I which are not contained in O. This new collection,
called I again, is also a covering of E in the sense of of Vitali.

Our goal is to chose a disjoint sequence {In} in I as follows:

1. I1 is any interval in I. Suppose that I1, ..., In are already chosen. Let km = sup of the lengths
of the intervals of I that to not meet any of I1, ..., In. Notice that 0 < kn ≤ m(O), because
each interval in I is contained in O.

Unless I ⊂ ⋃n
i=1 Ii, then there exists In+1 ∈ I with `(In+1) > 1

2kn, and In+1 is disjoint from all
I1, .., In. Notice that ⋃∞n=1 In ⊂ O. SInce {In} is a disjoint sequence, we have that

∞∑
n=1

`(In) = m(
∞⋃
n=1

In) ≤ m(O) <∞

Hence there exists N such that
∞∑

n=N+1
`(In) < ε

5

Let R = E−⋃Nn=1 In. Let x ∈ R. Since ⋃Nn=1 In is a closed set not containing x, there exists I ∈ I
with x ∈ I and I does not intersect I1, .., In. If I ∩ Ii = ∅, for all i ≤ n, then we can conclude that
`(I) ≤ kn < 2`(In+1).

We also have that limn→∞ `(In) = 0, which follows from the fact that the sums of the lengths are
finite.

This implies that I has to meet at least one In. Let n be the smallest such that I ∩ In 6= ∅. Then
n > N and

`(I) ≤ kn−1 < 2`(In)

We have that
dist(midpoint(In), x) ≤ `(I) + 1

2`(In) < 5
2`(In)

We make Jn the interval whose midpoint is the midpoint of In, and `(Jn) = 5`(In). Then,
R ⊂ ⋃∞n+1 Jn. Based on how we chose our sequence of In, we have that

∞∑
n=N+1

`(Jn) = 5
∞∑

n=N+1
`(In) < 5 · ε5 = ε

Definition. I is a cover of a set E in the sense of Vitali if for every ε and x ∈ E¡ there exists
I ∈ I such that

`(I) < ε, x ∈ I

Lemma 72. Due to Vitali, we have that if m∗(E) < ∞ and I (a cover in the sense of Vitali for
E), then there exist I1, ..., In in I such that

m∗(E −
n⋃
i=1

Ii) < ε
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Definition.
D+f(x) = lim

h→0+

f(x+ h)− f(x)
h

D−f(x) = lim
h→0+

f(x)− f(x+ h)
h

D+f(x) = lim
h→0+

f(x+ h)− f(x)
h

D−f(x) = lim
h→0+

f(x)− f(x+ h)
h

Fact.
D+f(x) ≥ D+f(x), D−f(x) ≥ D−f(x)

Definition. If D+f(x) = Df(x) = D−f(x) = D−f(x) 6= ±∞, then f is differentiable and

f ′(x) = D+f(x)

Similarly, if D+f(x) = D+f(x) then f is differentiable from the right, denoted f ′(x+) = D+f(x)-
often called the right-hand derivative.

If D−f(x) = D−f(x), then f is differentiable from the left, and f ′(x−) = D−f(x), and is called
the left-hand derivative.
Proposition 73. If f is continuous on [a, b] and one of its derivatives is everywhere non-negative
on (a, b) then f is non decreasing on [a, b].
Theorem 74. Let f : [a, b] → R be an increasing function. Then, f is differentiable almost
everywhere on (a, b). The derivative f ′ is measurable and∫ b

a
f ′(x)dx ≤ f(b)− f(a)

Proof. Let E = {x : D+f(X) > D−f(x)}. We want to show that the measure of this set is zero.
We let E = ⋃

u,v∈QEu,v where Eu,v = {x : D+f(x) > u > v > D−f(x)}. It is enough to show that
m∗(Eu,v) = 0 for all u, v ∈ Q. Let s = m∗(Eu,v) < ∞ because Eu,v ⊂ [a, b]. Take ε > 0. Then
there exists an open set O such that O ⊃ Eu,v and m(O) < s + ε. Then for all x ∈ Eu,v there
exists an interval [x− h, x] ⊂ O such that

f(x)− f(x− h) < v · h

The family of all such [x − h, x] is a Vitali cover of Eu,v. By the previous lemma, there exists
finitely many intervals {I1, ..., In} whose interiors cover a subset A of Eu,v with

m∗(A) > S − ε

A ⊂
N⋃
n=1

interiors (In)

So, we look at the following:

In = [xn − hn, xn],
N∑
n=1

[f(xn)− f(xn − hn)] < v ·
N∑
n=1

hn < vm(O) < v(s+ ε)
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Let y ∈ A. Then ∃k > 0 such that

(y, y + k) ⊆ In for some n = 1, ..., N

We have that D+fx) = limh→0+
f(x+h)−f(x)

h
> u, and

f(y + k)− f(y) > u · k

Consider [y, y + k] for y ∈ A with the above choice of k; this is a Vitali cover of A.

Proof. By Vitali’s lemma, there exists a finite collection {J1, .., JM} such that their union contains
a subset of A of outer measure greater than S − 2ε. So, Ji = (yi, yi + ku). So,

M∑
i=1

[f(yi + ki)− f(yi)] > u ·
n∑
i=1

ki > u(s− 2ε)

Note that Ji ⊂ In (for every i, there is an n such that this is true). We take the sum over all i
with Ji ⊂ In and we get (fix n):∑

i:Ji⊂In
[f(yi + ki)− f(yi)] ≤ f(xn)− f(xn + kn)

Because f is increasing. This implies

u(s− 2ε) <
M∑
i=1

[f(yiki)− f(yi)] ≤
N∑
n=1

[f(xn)− f(xn + kn)]

Which implies that
u(s− 2ε) < v(s+ ε)

Since this is true for all ε, let ε → 0. In this case, we show that u < v, which is a contradiction.
This means that s = 0, so the measure of our set is indeed zero. In other words, m∗(E) = 0, which
implies that f is differentiable almost everywhere.

2.12 Homework

On page 101, Question number 3.

2.13 Continued

We have that
g(x) = lim

h→0

f(x+ h)− f(x)
h

defined almost everywhere, and f is differentiable when g(x) 6= ±∞. Let

gn(x) = 1
1
n

[f(x+ 1
n

)− f(x)]
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where f(x) := f(b) for x ≥ b. Then g)n(x) → g(x) almost everywhere, and this implies that g is
measurable.

We know that f is increasing, this implies that g)n(x) ≥ 0. To this we can apply Fatou’s lemma,
which tells us that ∫ b

a
f ≤ lim

∫ b

a
gn = limn

∫ b

a
[ 1

1
n

f(x+ 1
n

)− f(x)]dx

= limn[
∫ b+ 1

n

b
f(x)dx−

∫ a+ 1
n

a
f(x)dx]

= lim[f(b)− n
∫ a+ 1

n

a
f(x)dx] ≤ f(b)− f(a)

From this, our proof is finished.

2.14 Functions of Bounded Variations

Suppose we take f : [a, b]→ R, and we take a subdivision a = x0 < x1 < x2 < ... < xk−1 < xk = b
of [a, b].
Definition. If r ∈ R is a real number, we define

r+ =
{
r if r ≥ 0
0 if r < 0

similarly

r− =
{
−r if r ≤ 0
0 if r > 0

In this case, r = r+ − r−, and |r| = r+ + r−. Letting

p =
k∑
i=1

[f(xi)− f(xi−1)]+

and
n =

k∑
i=1

[f(xi)− f(xi−1)]−

And we define
t := p+ n =

k∑
i=1
|f(xi)− f(xi−1)|

Fact.

f(b)− f(a) = p− n =
k∑
i=1
{[f(xi)− f(xi−1)]+ − [f(xi)− f(xi−1)]−} =

k∑
i=1

[f(xi)− f(xi−1)]

= f(xk)− f(x0) = f(a)− f(b)
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Definition. P = sup(p), N = sup(n), T = sup(t), and all of these supremums are taken over all
subdivisions of [a, b].

Notice that P,N ≤ T . This is because p, n ≤ t, since both p and n are positive and t is their sum.
It turns out to also be true that

P,N ≤ T ≤ P +N

which is true because sup(A+B) ≤ sup(A) + sup(B). P,N, and T are positive negative and total
variations of f , respectively.
Definition. If T <∞, then f is of bounded variation on [a, b], sometimes denoted f ∈ BV .
Lemma 75. If f is of bounded variation on [a, b], then

T ba = P b
a +N b

a

and
f(b)− f(a) = P b

a −N b
a

Proof. We always have that T ba ≤ P b
a +N b

a. Recall that for any subdivision of [a, b], p = n+ f(b)−
f(a). Taking the supremum over all subdivisions of [a, b), we get

P = N + f(b)− f(a)

Notice that

P = sup(p) = sup[n+ f(b)− f(a)] = sup(n) + [f(b)− f(a)] = N + f(b)− f(a)

Doing some algebra, t = p+ n so using our fact that f(b)− f(A) = p− n we say that

t = p+ n = 2p− [f(b)− f(a)]

Taking the supremum,

T = 2P − [f(b)− f(a)] = 2P − (P −N) = P +N

Which gives us that indeed,
T ba = P b

a +N b
a

The second part of the lemma follows directly from the second line above.
Theorem 76. A function f on [a, b] is of bounded variation if and only if f is the difference of
two monotone real valued functions on [a, b].

Proof. Assume first that f of bounded variation. Define g(x) = P x
a (the positive variation of the

function f on the interval [a, x]). Also define h(x) = Nx
a (the negative variation of the function f

on the interval [a, x]. We have that

f(x)− f(a) = P x
a −Nx

a = g(x)− h(x)

From here, we can say that
f(x) = g(x)− [h(x)− f(a)]

It is true that g(x) is an increasing function, since g(x) = P x
a . This is increasing simply because as

x increases, we have a larger interval, and P x
a is the supremum over all the interval’s subdivisions.
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Similarly, if x2 > x1, then Nx1
a ≤ Nx2

a . It also follows that h(x)−f(a) is increasing, for a monotonic
function minus a constant is still monotonic.

Now proving the other direction, assume that f(x) = g(x)− h(x) where g(x) and h(x) are mono-
tonic. Looking at

k∑
i=1

[f(xi)− f(xi−1)] =
k∑
i=1

[g(xi)− g(xi−1)]−
k∑
i=1

[h(xi)− h(xi−1)]

This means that
k∑
i=1
|g(xi)− g(xi−1)| = |g(b)− g(a)|

and the same is true of h(x). Noticing that

|f(xi)− f(xi−1)| = |[g(xi)− g(xi−1)]− [h(xi)− h(xi−1)]| ≤ |g(xi)− g(xi−1)|+ |h(xi)− h(xi−1)|

which tells us that

t ≤
k∑
i=1
|g(xi)− g(xi−1)|

k∑
i=1
|h(xi)− h(xi−1)| ≤ |g(xi)− g(xi−1)|+ |h(xi)− h(xi−1)|

which holds for any subdivision, and thus f ∈ BV .
Corollary 77. If f is of bounded variation on [a, b] then f ′(x) exists for almost all x ∈ (a, b).

2.15 Differentiation of an Integral

We assume that f is integrable on [a, b] and define

F (x) =
∫ x

a
f(t)dt

Lemma 78. If f is integrable on [a, b], then the function

F (x) =
∫ x

A
f(t)dt

is a continuous function of bounded variation on [a, b].

Proof. F (x) is continuous- Assume that f ≥ 0. Taking x, y ∈ [a, b], we want

|F (x)− F (y)|

If x < y, then

|F (x)− F (y)| = F (y)− F (x) =
∫ y

a
f(t)dt−

∫ x

A
f(t)dt =

∫ x

a
f(t)dt+

∫ y

a
f(t)dt−

∫ x

a
f(t)dt

=
∫ y

a
f(t)dt < ε

for |x− y| < δ.
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Since f is integrable over [a, b], then by the proposition from before, we have that ∀ε > 0,∃δ > 0
such that ∫ d

c
f < εwhenever|d− c| < δ

We take a subdivision a = x0 < x1 < ... < xk = b of [a, b], and look at
k∑
i=1
|F (xi)− F (xi−1)| =

k∑
i=1
|
∫ xi

xi−1
f(t)dt| ≤

k∑
i=1

∫ xi

xi−1
|f(t)|dt =

∫ b

a
|f(t)|dt <∞

because f is integrable, therefore f ∈ BV .
Lemma 79. If f is integrable over [a, b] and∫ x

a
f(t)dt = 0

for all x ∈ [a, b], then f(x) = 0 almost everywhere on [a, b].

2.16 Homework

Question 8 on page 104

2.17 The Differentiation of an Integral

Take f to be integrabl on [a, b]. We have that F (x) =
∫

)axf(t)dt, and we’re trying to show that
F (x) is a differentiable function. We had the following lemma:
Lemma 80. If f is integrable on the closed interval [a, b], then the function

F (x) =
∫ x

a
f(t)dt

is a continuous function of bounded variation on [a, b].

Proof. In showing continuity, let x < y, then

|F (x)− F (y)| =
∫ y

a
f(t)dt−

∫ x

a
f(t)dt = |

∫ y

x
f(t)dt| ≤

∫ y

x
|f(t)|dt < ε

For |x− y| > δ.

For bounded variation, we look at the subdivision a = x0 < x1 < .. < xk = b, and examine
∫ k

i=1
|F (xi)− F (xi−1)| =

k∑
i=1
|
∫ xi

xi−1
f(t)dt| ≤

k∑
i=1

∫ xi

xi−1
|f(t)|dt =

∫
a

6b|f(t)|dt <∞

Recall that
T = sup(t) ≤

∫ b

a
|f(t)|dt

which implies that f is of bounded variation.
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Lemma 81. If f is integrable on [a, b] and∫ x

a
f(t)dt = 0

for all x ∈ [a, b] then f(t) = 0 almost everywhere in [a, b].

Proof. Suppose that f(x) > 0 on E with m(E) > 0. Then there exists a closed set F ⊂ E with
m(F ) > 0. We define an open set O = [a, b]− F . We have that

0 =
∫ b

a
f(t)dt =

∫
O
f(t)dt+

∫
F
f(t)dt

From the homework, we know that∫
O
f(t)dt = −

∫
F
f(t)dt =6= 0

O being open implies that it is a countable union of open disjoint intervals {(an, bn)}. So,
∫
O
f(t)dt =

∞∑
n=1

∫ bn

an
f(t)dt⇒

∫ bn

an
f(t)dt 6= 0

This means that ∫ bn

an
f(t)dt =

∫ bn

a
f(t)dt−

∫ an

a
f(t)dt

Which implies that either ∫ bn

a
6= 0 or

∫ an

a
f(t)dt = 0

which is a contradiction, and thus f is 0 almost everywhere.
Lemma 82. If f is bounded and measurable on [a, b] and

F (x) =
∫ x

a
f(t)dt+ F (a)

then F ′(x) = f(x) for almost all x ∈ [a, b].

Proof. Since F is of bounded variation on [a, b], we know that F (x) has a derivative almost
everywhere. Let K > 0 be such that |f(x)| ≤ K for all x ∈ [a, b]. We then let

fn(x) =
F (x+ 1

n
)− F (x)
1
n

So, we get that

fn(x) = n
∫ x+ 1

n

x
f(t)dt ≤ nK · (x+ 1

n
− x) = K

And we know that fn are each uniformly bounded by K. Notice that fn(x) → F ′(x) almost
everywhere. We use the bounded converge theorem on fn Let c ∈ [a, b]. Then∫ c

a
F ′(x) = lim

n→∞

∫ c

a
fn(t)dt
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= lim
n→∞

n
∫ c

a
[F (t+ 1

n
)− F (t)]dt

Notice that ∫ c

a
F (t+ 1

n
)dt =

∫ c+ 1
n

a+ 1
n

F (t)dt

Thus
lim
n→∞

n[
∫ c+ 1

n

c
F (t)dt−

∫ a+ 1
n

a
F (t)dt] = lim

n→∞
[n
∫ c+ 1

n

c
F (t)dt− n

∫ a+ 1
n

a
F (t)dt]

F (x) is continuous by our previous lemma, and the above line is equal to

F (c)− F (a) =
∫ c

a
f(t)dt

This tells us that ∫ c

a
[F ′(t)− f(t)]dt0∀c ∈ [a, b]

Which implies that F ′(t)− f(t) almost everywhere on [a, b].
Theorem 83. Let f be an integrable function and suppose that F (x) = F (a) +

∫ x
a f(t)dt. Then,

F ′(x) = f(x) for almost all x ∈ [a, b].

Proof. Assume that f > 0.

fn(x) =
{
f(x) if f(x) ≤ n
n if f(x) > n

Note that f(x)− fn(x) ≥ 0 and

Gn(x) =
∫ x

a
[f(t)− fn(t)]dt

is increasing in x ( you have a positive function, the more you integrate it, the larger it gets). This
implies that Gn(x) has a derivative almost everywhere and G′n(x) ≥ 0, We have that |fn(x)| ≥ n
for all x ∈ [a, b], so by the previous lemma

d

dx

∫ x

a
fn(t)dt = fn(x)

almost everywhere.
F (x) = F (a) +

∫ x

a
[f(t)− fn(t)]dt+

∫ x

a
fn(t)

which means that F ′(x) exists, and

F ′(x) = G′n(x) + fn(x) ≥ fn(x)

almost everywhere, for all n. Let n→∞, in which case F ′(x) ≥ f(x) almost everywhere. We take∫
)abF ′(x)dx ≥

∫ b

a
f(x)dx = F (b)− F (a)

Since f ≥ 0 by assumption, F (x) is monotonically increasing. By the theorem for increasing
functions, we have that ∫ b

a
F ′(t)dt ≤ F (b)− F (a)
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This gives us that ∫ b

a
F ′(x)dx = F (b)− F (a) =

∫ b

a
f(x)dx

This implies that ∫ b

a
[F ′(x)− f(x)]dx = 0⇒ F ′(x) = f(x)

almost everywhere.
Remark. An increasing function can have at most countably many points of discontinuity.

2.18 Absolute Continuity

Definition. f : [a, b]→ R is absolutely continuous if ∀ε > 0∃δ > 0 such that

k∑
i=1
|f(x′i)− f(xi)| < ε

for every collection {(xi, x′i)} of non-overlapping intervals with sum

k∑
i−1
|x′i − xi| < δ

Lemma 84. If f is absolutely continuous, on [a, b], then it is of bounded variation on [a, b].

Proof. Since f is absolutely continuous, we set ε = 1 and choose δ = δ(1) > 0 from the definition
of absolute continuity. Start with a subdivision of [a, b], a = x0 < x2 < ... < xn = b and look at

n∑
i=1
|f(xi)− f(xi−1)|

Let K = 1 + b−a
δ

. Then,
n∑
i=1
|f(xi)− f(xi−1)| ≤ K · 1

And this implies that f is of bounded variation.
Corollary 85. If f is absolutely continuous, then f has a derivative almost everywhere.
Lemma 86. If f is absolutely continuous on [a, b] and f ′(x) = 0 almost everywhere, then f(x) is
constant.

Proof. Take c ∈ [a, b]; we need to show that f(a) = f(c)∀c. Let E := {x :∈ [a, c]|f ′(x) = 0} ⊂ [a, c]
thus, m(E) = c− a. Since the derivative is 0 at each such pint, this means that

lim
h→∞

f(x+ h)− f(x)
h

= 0 (*)

We fix η, ε > 0. For all x ∈ E, there exists an arbitrary small interval [x, x+ h] ⊂ [a, c] such that

|f(x+ h)− f(x) < η · h
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There exists some finite collection {[xk, yk]} of non-overlapping intervals which satisfy property
(*), and which cover E, except for a set of measure δ(ε) > 0, where δ is the constant corresponding
to ε and f in the definition of the absolute continuity of f . We assume that xi < xi+1 for the
convenience of notation. Then,

xi < yi < xi+1 < yi+1

Then
k∑
i=1
|f(yi)− f(xi)| ≤

k∑
i=1

η · |yi − xi| < η(c− a)

Alternatively,
k∑
i=0
|f(yi)− f(xi+1)| < ε

which follows from absolute continuity, and that
k∑
i=0
|yi − xi+1| < δ

From the triangle inequality, we have that

|f(c)− f(a)| ≤
∑
i=1

6k|f(xi)− f(yi)|+
k∑
i=0
|f(yi)− f(xi+1)| < η(c− a) + ε

And since both η and ε were chosen arbitrarily, we let them go to 0.This then implies that f(c) =
f(a). Also, c is arbitrary from [a, b], thus f is constant.

Theorem 87. A function f is absolutely continuous if and only if it is an indefinite integral.

Proof. If F is an indefinite integral, then use ε− δ for the integral of an integrable function.

In the other direction, we suppose that F is absolutely continuous on [a, b]. Then F is of bounded
variation, which means that F = F1 − F2 where both F1, F2 are increasing. In this case, F ′(x)
exists almost everywhere, and

|F ′(x)| ≤ F ′1(X) + F ′2(x)
So ∫ b

a
|F ′(x)|dx ≤

∫ b

a
[F ′1(x)F ′2(x)]dx ≤ F1(b)− F1(a) + F2(b)− F2(a)

Which gives us that |F ′(x)| is integrable, which tells us that F ′(x) is integrable. We let

G(x) =
∫ x

a
F ′(x)dx

and that then G(x) is absolutely continuous, which implies that F (x) − G(x) is also absolutely
continuous, which we will call f . We take the derivative of f :

f ′(x) = F ′(x)− F ′(x) = 0 almost everywhere

By the previous lemma, we have that f(x) is constant, which gives us that F (x) = G(x) =∫ x
a F

′(t)dt + F (a). Therefore F is an indefinite integral (in fact, it is the indefinite integral of its
derivative), and we are done.
Corollary 88. Every absolutely continuous function is the indefinite integral of its derivative.
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2.19 Convex Functions

Definition. ϕ”(a, b)→ R is convex if for every x, y ∈ (a, b) and for every λ, 0 ≤ λ ≤ 1, we have
that

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

Lemma 89. If ϕ : (a, b)→ R is convex, and if x, y, x′, y′ ∈ (a, b) with x ≤ x′ < y and x < y ≤ y′

then
ϕ(y)− ϕ(x)

y − x
≤ ϕ(y′)− ϕ(x′)

y′ − x′

Proof. This proof is mainly computation. Let there be two points on the real line x1, x2, and
x ∈ (x1, x2). Then

x = λx1 + (1− λ)x2

where 0 ≤ λ ≤ 1. So x = λ(x1 − x2) + x2 and λ = x2−x1
x2−x1

. So,

1− λ = x− x1

x2 − x1

So we look at ϕ(xx1+)(1− λ)x2) ≤ λϕ(x1)+)1− λϕ(x2). Then,

ϕ(λx1 + (1− λx2) ≤ x2 − x
x2 − x1

ϕ(x1) + x− x1

x2 − x1
ϕ(x2)

Dividing by x2 − x1, we have

(x2 − x1)ϕ(x) ≤ (x2 − x)ϕ(x1) + (x− x1)ϕ(x2)

Subtracting (x2 − x1)ϕ(x2), we get

(x2 − x1)(ϕ(x)− ϕ(x1)) ≤ (x1 − x)(ϕ(x1)) + (x− x1)ϕ(x1)

so
(x2 − x1)[ϕ(x)− ϕ(x1)] ≤ (x− x1)[ϕ(x2)− ϕ(x1)]

ϕ(x)− ϕ(x1)
x− x1

≤ ϕ(x2)− ϕ(x1)
x2 − x1

and we are done for the first case. The second follows similarly.

Proposition 90. If ϕ is convex on (a, b) then ϕ is absolutely continuous on each closed sub-interval
of (a, b). The right and the left-hand derivatives of ϕ exist at each point of (a, b) and are equal
to each other except on a countable set. The left and the right-hand derivatives are monotonically
increasing functions, and at each point the left-hand derivative is smaller or equal to the right-hand
derivative.

Proof. Take [c, d] ⊂ (a, b). We know that

ϕ(c)− ϕ(a)
c− a

≤ ϕ(y)− ϕ(x)
y − x

≤ ϕ(b)− ϕ(d)
b− d

∀x, y ∈ [c, d]
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Thus
ϕ(c)− ϕ(a)

c− a
≤ ϕ(y)− ϕ(x) ≤ ϕ(b)− ϕ(d)

b− d
(y − x)

Which tells us there exists some M such that

M := max{|ϕ(c)− ϕ(a)
c− a

|, |ϕ(b)− ϕ(d)
b− d

|} > 0

Which tells us that

|ϕ(y)− ϕ(x)| ≤M |y − x| ⇒ ϕ is absolutely continuous

because ∑
|ϕ(xi)− ϕ(x′i)| ≤

∑
M |xi − x′i| = M

∑
|xi − x′i| < Mδ = ε

which fits in the with the definition of absolute continuity. We then have that for x0 ∈ (a, b), that

ϕ(x)− ϕ(x0)
x− x0

is increasing by the previous lemma. The limits as x approaches x0 from the right and from the
left exist and are finite. Thus ϕ has left and right-hand derivatives at each point of (a, b). From
this it is then clear that the left-hand derivative is less than or equal to the right hand derivative
at each point.

Take x0 < y0, x < y0, x0 < y. The following inequality still persists:

ϕ(x)− ϕ(x0)
x− x0

≤ ϕ(y)− ϕ(y0)
y − y0

Either the derivative at x0 is less than or equal to either derivative at y0. Each derivative function
is a monotone increasing function. Monotone functions are continuous except almost everywhere
on a countable set. We then let ϕ′+ be the right-hand derivative function, and let c ∈ (a, b) be a
point of continuity of ϕ′+. We have that

ϕ′+(c− h) ≤ ϕ′−(c) ≤ ϕ′+(c)

for h > 0. Then
lim
h→0

ϕ′+(c · h) = ϕ′+(c)

because ϕ′− = ϕ′+(c)⇒ ϕ′(c) exist for each point of continuity of ϕ′+. We are then done with our
proof.

Proposition 91. If ϕ is a continuous function on (a, b) and if one of the derivatives (say, D+ϕ)
of ϕ is nondecreasing then ϕ is convex.

Proof. We take a < y < x < b and form functions of the form

ψ(t) := ϕ(ty + (1− t)x)− tϕ(y)− (1− t)ϕ(x)

We want to show that ψ(t) ≤ 0. So we take ψ(0) = ψ(1) = 0. We use the chain rule to get:

D+ψ = (D+ϕ)(̇x− y)− ϕ(x) + ϕ(y)
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which gives us that
D+ϕ ↑⇒ D+ψ ↑

so,
ψ : [0, 1]→ R⇒ for a fixed x,y, ψ is continuous on [0, 1]

Thus there exists a maximum of ψ on [0, 1]. Let γ ∈ [0, 1] be the point where the maximum is
achieved. At the maximum, we know that

D+ψ(γ) < 0, D+ψ ↑

⇒ D+ψ(t) ≤ 0∀t ∈ [0, γ]⇒ ψ ↓ on [0, γ]

Then, ψ(0) = 0⇒ ψ(γ) ≤=, and since ψ(γ) is the maximum, this implies that ψ(t) ≤ 0∀t ∈ [0, 1].
Hence, we are finished.
Corollary 92. Assume that ϕ has the second derivative at every point in (a, b). Then, ϕ is convex
if and only if ϕ′′ ≥ 0 ∀x ∈ (a, b).
Proposition 93. (Jensen’s Inequality) Let ϕ : R→ R be a convex function and let f : [0, 1]→ R
be integrable. Then ∫ 1

0
ϕ(f(t))dt ≥ ϕ

(∫ 1

0
f(t)dt

)
Definition. ϕ : (a, b)→ R is convex, x0 ∈ (a, b) the supporting line of ϕ at x0 is

y = m(x− x0)ϕ(x0)

Such that the graph of ϕ(x) lies above this line. In other words,

ϕ(x) ≥ m(x− x0) + ϕ(x0) ∀x ∈ (a, b)

where
ϕ′−(x0) ≤ m ≤ ϕ′+(x0)

There is at least one support line (I think he meant to write, “There is at least one support line
for a convex function”.)

Proof. We define
α =

∫ 1

0
f(t)dt

We take the supporting line at α, which is the line

ϕ(x) ≥ y = m(x− α) + ϕ(α)

Then we know that
ϕ(f(t)) ≥ m(f(t)− α) + ϕ(α)

Integrating, ∫ 1

0
ϕ(f(t))dt ≥ ϕ(

∫ 1

0
f(t)dt)
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Chapter 3
End of Class, LP -Spaces

Take p > 0, ∈ R, and fixed. Then Lp = Lp([0, 1]) = {f : [0, 1]→ R|
∫ 1

0 |f |pdm <∞}. As a result,
L1 consists of all Lebesgue’s integrable functions.
Example. Notice that f(x) = 1

x
for 0 < x ≤ 1 and f(x) = 0 when x = 0 is not in L1, but is in

L2.
Remark. Taking |f + g|p ≤ 2p(|f |p + |g|p) because

|f + g|p ≤ (|f |+ |g|)p ≤ [2 ·max{|f |, |g|}]p = 2pmax{|f |p, |g|p} ≤ 2p[|f |p + |g|p]

Remark. Given α ∈ R, then |αf |p = |α|p · |f |p.
Fact. From these two remarks, if f, g ∈ Lp, α, β ∈ R, then

αf + βg ∈ Lp

Lp is a linear space (or infinite dimensional vector space). Then, the :p norm is as follows:

||f ||p =
(∫ 1

0
|f |pdm

) 1
p

Fact. ||f ||p = 0 if and only if f = 0 almost everywhere. Also, if α ∈ R, then

||αf ||p = |α| · ||f ||p

Definition. A linear space X is a normal linear space if for every f ∈ X there exists an
assignment ||f || ≥ 0 such that the following three properties hold:

1. ||αf || = |α| · ||f ||

2. ||f + g|| ≤ ||f ||+ ||g||

3. ||f || = 0 ⇐⇒ f = 0.
Definition. Two measurable functions are equivalent if and only if they are equal almost every-
where.
Example. O(x) ≡ 0 for all x,

f(x) =
{

n, x = 1
n

0, elsewhere
interestingly, O(x) and f(x) are equal almost everywhere so they are equivalent.
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Let p =∞. Then, L∞ is all measurable functions on [0, 1] which are bounded except on a subset
of measure 0. We identify equivalent functions as we did before, but introduce the L∞ norm:

||f ||∞ = essential sup |f |

Definition.
ess sup f := inf{ sup

t∈[0,1]
g(t) : g(t) = f(t), a.e.}

Alternatively,
ess sup f :=

∫
{M ∈ R : m({t ∈ [0, 1] : f(t) > M}) = 0}

3.1 Minkowski’s Inequality

If f, g ∈ Lp, with 1 ≤ p ≤ ∞, then f + g ∈ Lp, and

||f + g||p ≤ ||f ||p + ||g||p

If 1 < p <∞, then the inequality can be an equality if and only if there exists α, β ≥ 0 such that
βf = αg.

Proof. If p = 1, then ∫ 1

0
|f + g|dm ≤

∫ 1

0
|f |dm+

∫ 1

0
|g|dm

We’ll worry about the case in which 1 < p <∞. If ||g||p = 0 or ||g||p = 0, then we are really done.
We will assume that ||g||p = α 6= 0, ||g||p = β 6= 0. We define functions f0, g0 : [0, 1] → R by the
equations

|f | = αf0, |g| = βg0

from which we claim that ||f0||p = 1 = ||g0||p. Define λ = α
α+β . So, 1 − λ = β

α+β . We know that
0 < λ < 1, based on the way we defined α and β.

(1) |f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p = (αf0(x) + βg0(x))p

= (α + β)p
[

α

α + β
f0(x) + β

β + α
g0(x)

]
= (x+ β)p[λf0(x) + (1− λ)g0(x)]p

We have that F (x) = xp is a convex function for p ≥ 1, so we have that the line above is less than
or equal to:

≤ (α + β)p[λf0(x)p + (1− λ)g0(x)p]

As a result, ∫ 1

0
|f(x) + g(x)|Pdm ≤ (α + β)p[λ

∫ 1

0
fp0dm+ (1− λ)

∫ 1

0
gp0du]

so
||f + g||p ≤ ||f ||p + ||g||p

The inequality at (1) equality if sign(f) = sign(g) almost everywhere, so you have that f0(x) =
g0(x), so β|f | = alpha|g| almost everywhere, which gives you that βf = αg.
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3.2 Minkowski’s Inequality for 0 < p < 1

Let f, g ≥ 0, f, g ∈ Lp, 0 < p < 1. Then,

||f + g||p ≥ ||f ||p + ||g||p

Lemma 94. Let 1 ≤ p <∞. Then for a, b, t ≥ 0 we have that

(a+ tb)p ≥ ap + ptbap−1

Proof.
ϕ(t) = (a+ tb)p − ap − ptbap−1

So ϕ(0) = 0, if we show that ϕ is a decreasing function, then we’re done.

ϕ′(t) = pb(a+ tb)p−1 − pbap−1 = pb[(a+ b)p−1 − ap−1] ≥ 0, t ≥ 0

3.3 Hölder Inequality

If 0 ≤ p ≤ q ≤ ∞ such that
1
p

+ 1
q

= 1

and if f ∈ Lp, g ∈ Lq, then f · g ∈ L1 and

||fg||1 =
∫ 1

0
|fg|dm ≤

(∫ 1

0
|f |pdm

) 1
p

·
(∫ 1

0
|g|qdm

) 1
q

which says that ∫
|fg| ≤ ||f ||p||g||q

The equality holds if and only if for some constants α and β not both equal to 0

Proof. If p = 1 and q =∞, then ∫
|fg| ≤

(∫
|f |
)
· ||g||∞

because
|f(x)g(x)| ≤ |f(x)| · ess sup |g| a.e.

If 1 < p < ∞, then this implies that 1 < q < ∞. Assume f ≥ 0, g ≥ 0. Define h(x) = g(x)q−1.
This can be written as g(x)

q
p , because 1

p
+ 1
q

= 1. Also note that from here, g(x) = h(x)p−1 = h(x)
p
q .

Applying our lemma, we have that

ptf(x)g(x) = ptf(x)h(x)p−1 ≤ [h(x) + tf(x)]p − h(x)p
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From here we take the integration of this inequality,

pt
∫
fg ≤

∫
|f + tg|p −

∫
hp

which gives us that
pt
∫
fg ≤ ||h+ tf ||pp − ||h||pp

from our last inequality,
≤ (||h||p + ||t||f ||p)p − |h||pp

taking the derivative at t = 0, we get that

p
∫
fg ≤ p||f ||p · ||h||p−1

p

finally, we get that ||h||p−1
p = (

∫
|h|p)1/p)p−1 , so we get that∫

fg ≤ ||f ||p · ||g||q

3.4 Convergence and Completeness

Definition. {fn} in a normal space X converges to f ∈ X if ∀ε > 0 there exists N : ∀n ≥ N ,

||f − fn|| < ε

and
lim
n→∞

fn = f, fn → f

Let X = Lp, 1 < p <∞, fn converges to f if ||f − fn||p → 0 as n→∞ is the convergence in the
mean of order p.

If X = L∞, then fn converges to f if

||fn − f ||∞ → 0, n→∞

nearly uniformly convergence.

A sequence of functions converging at each point of the domain (pointwise convergence).
Definition. If {fn} is a sequence in a normed space X, then it is Cauchy if ∀ε > 0 there exists
N : ∀n,m > N,

||fn − fm|| < ε

Definition. A normed space is complete if every Cauchy sequence converges. (Complete normed
space are called Banach space).
Definition. {fn} is summable to a sum s if

||s−
n∑
i=1

fi|| → 0, n→∞
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Definition. {fn} is absolutely summable if ∑∞i=1 ||fn|| <∞.
Proposition 95. A normal space X is complete if and only if every absolutely summable series
is summable.

Proof. X complete, {fn} is also summable, so
∞∑
n=1
||fn|| = M <∞

⇒ ε > 0,∃N :
∞∑
n=N
||fn|| < ε

Let sn = ∑n
i=1 fi. Let m,n ≥M ,

||sn − sm|| = ||
n∑

i=m
fi|| ≤

n∑
i=1
||fi|| ≤

∞∑
i=N
||fn||Mε

which means that {sn} is Cauchy. X is complete implies that sn → s. Then, s = ∑∞
i=1 fi.

In the other direction, take {fn} to be a Cauchy sequence in X. For all k ∈ N, ∃nk such that
||fn − fm|| < 2−k for every n,m ≥ nk. Assume nk+1 > nk. So, {fnk}∞k=1 is a subsequence of
{fn}∞n=1. Let g1 = fn1 . So gk = fnk − fnk − 1, for k > 1. This tells us that

k∑
i=1

gi = fnk

So ||gk|| − ||fnk − fnk−1 || < 2−k+1 for k ≥ 1, so
∞∑
k=1
||gk|| ≤ ||g1||+

∞∑
k=2

2−k+1 = ||gk||+ 1

which implies that {gk} is absolutely summable. This implies that there exists an element f ∈ X
such that

k∑
i=1

gi → f

so fnk → f as k →∞.

Proof. We show f = limn→∞ fn, ε > 0, there exists N : ∀n,m > M

||fn − fm|| <
ε

2
fnk → f , k →∞. There exists K such that for all k ≥ K, ,

||fnk − f || <
ε

2
so {fn} is a Cauchy sequence in X.

Choose k large enough such that k > K, and nk > N . Then for each n ≥ N ,

||fn − f || ≤ ||fn − fnk ||+ ||fnk − f || <
ε

2 + ε

2 = ε
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Theorem 96. The Riesz-Fischer Theorem: The Lp-spaces are complete, 1 ≤ p ≤ ∞.

Proof. If p =∞, this is clear. Else, {fn} is a sequence in Lp such that ∑∞n=1 ||fn|| = M <∞. We
define

g(x) =
n∑
k=1
|fk(x)|

Notice,

||gn||p =
(∫ 1

0
(|fk(x)|)p dx

) 1
p

≤
n∑
k=1
||fk||p

(the last part follows from Minkowski’s inequality). We have that∫
(gn)p ≤< Mp

For all x ∈ [0, 1], {gn(x)}∞n=1 ↑. Let g(x) = limn→∞ gn(x) (the limit in the sense of extended real
numbers). g(x) is measurable. By Fatou’s lemma, we have that∫

(g)p =
∫

lim(gn)p ≤ lim
∫
gpn ≤Mp

This gives us that g ∈ Lp. This means that g is finite almost everywhere. For every x where g(x)
is finite,

∞∑
n=1

fn(x)

is an absolutely convergent series of real numbers. Then,
∞∑
n=1

fn(x)

converges for each x where g(x) is finite- which is almost everywhere- and let

s(x) =
∞∑
k=1

fk(x)

when it exists and s(x) = 0 where g(x) =∞.

sn =
∞∑
k=1

fk → s a.e.

implies that s is measurable.
|sn(x)| ≤ gn(x) ≤ g(x)∀x

By the Lebesgue Dominated Convergence theorem applied to,

|sj|p ≤ gp

we have that ∫
gp = lim

n→∞

∫
|sn|p =

∫
lim
n→∞

|sn|p =
∫
|s|p
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this implies that s ∈ Lp. So

|s− sn|p ≤ (|s|+ |sn|)p ≤ (2g)p = 2pgp

by the Lebesgueq dominated convergence theorem, we have

lim
n→∞

|s− sn|p =
∫

lim
n→∞

|s− sn|p =
∫

0 = 0

3.5 Approximations in Lp

Proposition 97. Given f ∈ Lp, where 1 ≤ p < ∞ and ε > 0, there is a step function ϕ and a
continuous function ψ such that

||f − ϕ||p <∞, ||f − ψ||p < ε

3.6 Bounded Linear Functionals on the Lp Spaces

If X is some normed space, and F : X → R, such that F (αf + βg) = αF (t) + βF (g) for all
f, g ∈ X and every α, β ∈ R, then F is said to be linear-functional.

F is bounded if there exists M such that |F (f)| ≤ M · ||f ||. If this is true for every f ∈ X, then
F is a bounded linear functional, and

||F || =
∑

f∈X−{o}

|F (f)|
||f ||
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