A Function Model for the Teichmüller Space of a Closed Hyperbolic Riemann Surface

Yunping Jiang

Queens College and Graduate Center City University of New York

A talk given in

Geometry, Groups and Mathematical Philosophy

An International Conference in Honor of Ravi S. Kulkarni's 80th Birthday

Bhaskaracharya Pratishthana, Pune

May 21–24, 2022

к⊣ ⊀ ₹ ⊁ ∢ ± ⊁

∍

A closed hyperbolic Riemann surface

Let $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ be the hyperbolic disk. A closed hyperbolic Riemann surface *R* can be viewed as $R = \Delta/\Gamma$ where Γ is a co-compact Fuchsian group Γ on Δ . The unit circle $\mathbb T$ is the Euclidean boundary of Δ . The genus $g > 1$ is a topological invariant.

Fundamental polygons

A closed Riemann surface of g can be viewed as a $(8g - 4)$ (or $4g$) hyperbolic polygons F_g inside the unit disk.

The sides of the $(8g - 4)$ fundamental polygons F_g are labeled as $0 < i \leq 8g - 5$ counter-clockwise. Each side *i* is paired with another side $p(i)$ by $\gamma_i \in \Gamma$, where

$$
p(i) = \begin{cases} 4g - 2 - i & \pmod{8g - 4} \text{ if } i \text{ is even;} \\ -i & \pmod{8g - 4} \text{ if } i \text{ is odd.} \end{cases}
$$

Each side can be extended to $\mathbb T$ with endpoints (arranged counter-clock-wisely),

$$
\textit{P}_0, \textit{Q}_0, \textit{P}_1, \textit{Q}_1, \cdots, \textit{P}_{8g-5}, \textit{Q}_{8g-5}.
$$

These points give a partition of $\mathbb T$ into $16g - 8$ intervals

$$
\eta = \{I_{2i} = [P_i, Q_i], I_{2i+1} = [Q_i, P_{i+1} \pmod{8g-5}\} \mid 0 \leq i \leq 8g-5\}.
$$

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Ε

 PQQ

Markov one-dimensional dynamical system

Let $J_i = [P_i, P_{i+1 \pmod{8g-5}}]$ for $0 \le i \le 8g-5$. Define a piece-wise smooth map $\overline{f} = f_R : \mathbb{T} \to \mathbb{T}$ as $f(x) = \gamma_i(x)$ for any $x \in J_i$. It is a Markov and expanding one-dimensional dynamical system.

- **I** Markov: each $f | I_i$ is 1-1 and $f(I_i)$ is the union of some intervals in η .
- Expanding: there are two constants $C > 0$ and $\lambda > 1$ such that $|(f^n)'(x)| \ge C\lambda^n$ for all $x \in \mathbb{T}$ such that $f'(f^i(x))$ are defined for all $0 \le i \le n-1$.

Pull-back the partition η , we can get a sequence of nested partitions $\eta_n = f^{-n}\eta$ for all $n \geq 0$.

Any point $\{x\} = \bigcap_{n=1}^{\infty} I_n(x)$ for a sequence of nested intervals $I_n(x) \in \eta_n$.

ヨト

Symbolic dynamical system

Let $B = \{0, 1, \dots, 16g - 9\}$. We define a $(16g - 8) \times (16g - 8)$ matrix $A = (a_{ij})$ as $a_{ij} = 1$ if $f(I_i) \supset I_j$ and 0 otherwise and symbolic space

\n A symmetric system is given by:\n
$$
\sum_{A} \sum_{i=1}^{n} \{w = j_0 i_1 \cdots i_{n-1} i_n \cdots \mid i_{n-1} \in B, a_{i_{n-1}i_n} = 1, n = 1, 2, \cdots\}
$$
\n

\n\n and the shift $\sigma_A(w) = i_1 \cdots i_{n-1} i_n \cdots \sum_{A} \rightarrow \sum_{A} \cdot \text{Let } w = w_n i_n \cdots \in \sum_{A} \cdot \text{Each interval of } \eta_n \text{ has a unique labelling } w_n \text{ denoted as } l_{w_n}. \text{ Then we have that\n $\sigma_{w_n} = \bigcup_{i \in B, a_{i_{n-1}} = 1} l_{w_n i}$ \n and\n $f^{-1}(l_{w_n}) = \bigcup_{i \in B, a_{i_0} = 1} l_{w_n}.$ \n$

All points of $\mathbb T$ except for those endpoints of I_{w_n} has a unique $\textsf{labelling } \{x_{w}\} = \cap_{n=1}^{\infty} I_{w_{n}}$ and

кох к⊕х к∃х к∃х

Dual symbolic dynamical system

Theorem

\n
$$
\begin{array}{ccc}\n & \downarrow & \downarrow & \downarrow \\
\text{For every } w^* \in \sum_{A}^*, \text{ the limit } s(w^*) = \lim_{n \to \infty} s_n(w_n^*) \text{ exists and } \\ \text{defines a Hölder continuous function} & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow\n\end{array}
$$

$$
s=s_R:\Sigma_A^*\to (0,1).
$$

We call *s^R* the scaling function for *R*.

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ ...

活

 PQQ

Take a fixed hyperbolic Riemann surface R_0 of g , say its fundamental polygon is symmetric, i.e. the Ford domain F_g . The Teichmüller space $\mathcal{T}_{g} = \mathcal{T}(R_0)$ is the space of equivalence classes of all marked Riemann surfaces $h_R: R_0 \to R$. Here two marked Riemann surfaces R_1 and R_2 are Teichmüller equivalent if there is a conformal isomorphism $\alpha: R_1 \rightarrow R_2$ such that $h^{-1}_{R_2} \circ \alpha \circ h_{R_1}$ is isotopic to the identity. $R_1 \sim R_2 \Leftrightarrow S_{R_1} = S_{R_2}$

Theorem

The scaling functions of two closed hyperbolic Riemann surfaces of the same genus g are the same if and only if these two Riemann surfaces are Teichm¨uller equivalent.

Thus we have that $s_{\tau} = s_R$ for all $R \in \tau \in \mathcal{T}_{g}$.

◆ロト ◆伊ト ◆ミト →ミト

目

Let $\mathcal{S}_{g} = \{s_R\}$ be the space of scaling functions for all hyperbolic Riemann surfaces R of the same genus $g\geq 2$. We have a bijective map

$$
\iota: \mathcal{T}_{g} \to \mathcal{S}_{g}; \quad \iota(\tau) = s_{\tau}
$$

We call S_g a function model for the Teichmüller space \mathcal{T}_g .

- ← (日) ← (日) ← (日)

E

Teichmüller's metric

The classical metric defined on $\mathcal T$ is Teichmüller's metric $d_{\mathcal T}(\cdot,\cdot)$. Note that Teichmüller's metric coincides with Kobayashi's metric when we think \mathcal{T}_{g} as a complex Banach manifold. Since ι : $\mathcal{T}_{g} \to \mathcal{S}_{g}$ is bijective, we can define the Teichmüller metric on S_g as $\frac{d}{d}$ defined on τ is Teichmüld

 $\frac{1}{3}$

$$
d_{\mathcal{T}}(s,s')=d_{\mathcal{T}}(\iota^{-1}(s),\iota^{-1}(s')).
$$

 $\blacktriangleleft \overline{f} \rightarrow \blacktriangleleft \exists \rightarrow \blacktriangleleft \exists \rightarrow \perp$

∍

Consider the space $C(\Sigma_{A}^*)$ of all continuous functions on Σ_{A}^* . For any s in $C(\Sigma_{A}^*)$, we have the maximum norm

$$
||s|| = \sup_{w^* \in \Sigma_A^*} |s(w^*)|.
$$

The maximum metric on \mathcal{T}_{g} is defined as

$$
d_{\max}(\tau,\tau') = ||s_{\tau} - s_{\tau'}|| \quad \forall \; \tau,\tau' \in \mathcal{T}_{g}
$$

≮ロ ▶ ⊀ 何 ▶ ⊀ ヨ ▶ ∢ ヨ ▶ │ ヨ

 OQ

Is the maximum metric meaningful? For this question, we need first to see if it gives the same topology on \mathcal{T}_{g} as the one given by Teichmüller's metric.

Theorem *The identity map*

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright

∢ ∃ ⊳

 Ω

$$
\mathit{id}_{\mathcal{T}}:(\mathcal{T}_g,\mathit{d}_{\mathcal{T}})\rightarrow (\mathcal{T}_g,\mathit{d}_{\mathit{max}})
$$

is uniformly continuous map and the identity map

$$
\mathit{id}_{\mathcal{T}}: (\mathcal{T}_g, d_{\mathit{max}}) \to (\mathcal{T}_g, d_{\mathcal{T}})
$$

is only continuous.

Thus, both Teichmüller's metric and the maximum metric induce the same topology on \mathcal{T}_{g} .

Topological entropy

For the matrix *A*, we have that for some positive integer *n* such that *Aⁿ* is a positive matrix, i.e., *Aⁿ >* 0. The Perron-Frobenius theorem says that *A* has a unique maximum positive simple eigenvalue λ_{max} . The number log λ_{max} is the topological entropy $h_{top}(\sigma^*_{\mathcal{A}})$ of $\overline{\sigma}^*_{\mathcal{A}}$ as well as \mathcal{T}_{g} . From the structure of $A,$ R. Adler and L. Flatto 1991 BAMS Abrams, Katok Ugarcovici

$$
\lambda_{\text{max}} = 4g - 3 + \sqrt{(4g - 3)^2 - 1}.\quad \text{---}
$$

 $\text{Thus } h_{top}(\sigma^*_A) = \log(4g - 3 + \sqrt{(4g - 3)^2 - 1}).$

The topological entropy is a topological invariant and measures the complexity. It is a constant on $S_g = T_g$.

◆ロ ▶ ◆ 伊 ▶ ◆ 草 ▶ → 草 ▶ │ 草

Thermodynamical formalism

Since $0 < s = s_{\tau} < 1$ is a Hölder continuous function on Σ_A^* , the classical Gibbs theory says that we have a unique probability measure $\mu = \mu_{\tau}$ on Σ_{A}^{*} such that

 $\begin{array}{ccc}\n\bigcup_{n=1}^{d^{*}} & \mathbb{R}^{d} \\
\text{where}& \mathbb$

∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶ - -

∍

$$
C^{-1} \leq \frac{\mu([\mathsf{w}_n^*])}{\exp(\sqrt{\widehat{P}\eta} + \sum_{i=0}^{n-1} \log s((\sigma_A^*)^i(\mathsf{w}^*))} \leq C
$$

for all *n*-cylinder $[w_n^*]$ and $\overline{w}^* \in [w_n^*]$, where C is a fixed constant. Here the number $P = P(\log s)$ is called the pressure. In our case $P(\log s) = 0$ for all $s \nmid \geq S_g$.

Pressure metric

Consider a smooth path $s_t : (-\delta, \delta) \to S_g$ and let μ_t be the $\mathcal{S}_{\mathbf{q}}$ corresponding Gibbs measure. Since the mean

$$
\int_{\Sigma_{A}^{*}} \log s_{0} d\mu_{0} = P(\log s_{0}) = 0.
$$

We can calculate the pressure metric on the tangent space $\,_{\mathsf{s_0}}\mathcal{S}_{\mathsf{g}}\,$ $\frac{d\log z}{d\epsilon}$ $\frac{1}{\epsilon}$ to Pley $\frac{1}{\epsilon}$ or the tangent space $T_s S_a$

$$
\|\log s_0\|_P^2 = \frac{\text{var}(\log s_0, \mu_0)}{-\int_{\Sigma_A^*} \log s_0 d\mu_0}
$$

where

as

$$
var(\log s_0, \mu_0) = \lim_{n \to \infty} \frac{1}{n} \int_{\Sigma_A^*} || \sum_{j=0}^{n-1} \log s_0 \circ (\sigma_A^*)^j (w^*) ||^2 d\mu_0
$$

к⊣ ⊀ ₹ ⊁ ∢ ± ⊁

∍

 Ω

is the variance.

The Weil-Petersson metric on T_{τ_0} T_g now can be calculated by using the function model as

$$
\sqrt{||\dot{\tau_0}||_{WP}^2} = \frac{3 \text{area}(\tau_0)}{4} ||\text{log } s_0||_P^2
$$

Note that τ_0 can be represented uniquely by a harmonic Beltrami differential $\mu = \rho^{-2} \overline{\phi}$ where ρ is the hyperbolic metric and ϕ is a holomorphic quadratic differential. The classical way to calculate the Weil-Petersson metric is

$$
||\dot{\tau_0}||_{WP}^2 = ||\mu||_{WP}^2 = \int \rho^2 |\mu|^2 = \int \rho^{-2} |\phi|^2.
$$

The global graph of the metric entropy function

The metric entropy of σ_A^* for the Gibbs measure μ^* can be α calculated as $h_{\mu^*}(\sigma^*_A) = -\int_{\Sigma_A^*}$ $\overline{\log s(w^*)} d\mu^*$. It defines a *A* continuous (even smooth function)

$$
ent(s) = h_{\mu^*}(\sigma^*_{\mathcal{A}}) = \frac{\pi Area(F)}{I_{hyp}(\partial F)} = \frac{\pi^2 (4g - 4)}{I_{hyp}(\partial F)} : \mathcal{S}_g \to (0, h_0].
$$

where

$$
h_0=\frac{\pi^2(4g-4)}{(8g-4)\cosh^{-1}(1+2cos(\frac{\pi}{4g-2}))}.
$$

The metric entropy of μ is a Teichmüller equivalence invariant and measures the level of the complexity. The function *ent*(*s*) reaches the maximum value h_0 at the base-point $s_0 = \iota(\tau_0)$ and tends to 0 as *s* goes to the Euclidean boundary $\partial \mathcal{S}_{g}$.

◆ロト ◆伊ト ◆ミト → ミト

 $s \in C(Z_A)$

 s

For the Teichmüler space, we have that

- a) \mathcal{T}_{g} is homeomorphic to \mathbb{R}^{6g-6} ,
- b) \mathcal{T}_{g} is a pseudo-convex domain.

Conditions

к⊣ ⊀ ₹ ⊁ ∢ ± ⊁

∍

 Ω

- c) $\mathcal{T}_{\mathbf{g}}$ admits a complex manifold structure of 3 $\mathbf{g}-3$,
- d) T_g can be embedded into \mathbb{C}^{3g-3} as a contractible set.

c) and d) imply that *S^g* admits a complex manifold structure and contractible. a) says that not every Hölder continuous function on Σ_A^* is a point in \mathcal{S}_g .

Problem *Character a function* s_{τ} *in* S_{g} *.*

Thanks!

Yunping Jiang Function Model

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ め Q Q ◇