A Function Model for the Teichmüller Space of a Closed Hyperbolic Riemann Surface

Yunping Jiang

Queens College and Graduate Center City University of New York

A talk given in

Geometry, Groups and Mathematical Philosophy

An International Conference in Honor of Ravi S. Kulkarni's 80th Birthday

Bhaskaracharya Pratishthana, Pune

May 21-24, 2022

Þ

A closed hyperbolic Riemann surface

Let $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ be the hyperbolic disk. A closed hyperbolic Riemann surface R can be viewed as $R = \Delta/\Gamma$ where Γ is a co-compact Fuchsian group Γ on Δ . The unit circle \mathbb{T} is the Euclidean boundary of Δ . The genus g > 1 is a topological invariant.

Fundamental polygons

A closed Riemann surface of g can be viewed as a (8g - 4) (or 4g) hyperbolic polygons F_g inside the unit disk.

The sides of the (8g - 4) fundamental polygons F_g are labeled as $0 \le i \le 8g - 5$ counter-clockwise. Each side *i* is paired with another side p(i) by $\gamma_i \in \Gamma$, where

$$p(i) = \begin{cases} 4g - 2 - i & (\mod 8g - 4) & \text{if } i \text{ is even;} \\ -i & (\mod 8g - 4) & \text{if } i \text{ is odd.} \end{cases}$$

Each side can be extended to \mathbb{T} with endpoints (arranged counter-clock-wisely),

$$P_0, Q_0, P_1, Q_1, \cdots, P_{8g-5}, Q_{8g-5}.$$

These points give a partition of \mathbb{T} into 16g - 8 intervals

$$\eta = \{I_{2i} = [P_i, Q_i], I_{2i+1} = [Q_i, P_{i+1} \pmod{8g-5}] \mid 0 \le i \le 8g-5\}.$$

<ロ > < 同 > < 三 > < 三 > <

E

500

Markov one-dimensional dynamical system

Let $J_i = [P_i, P_{i+1 \pmod{8g-5}})$ for $0 \le i \le 8g-5$. Define a piece-wise smooth map $f = f_R : \mathbb{T} \to \mathbb{T}$ as $f(x) = \gamma_i(x)$ for any $x \in J_i$. It is a Markov and expanding one-dimensional dynamical system.

- Markov: each $f|I_i$ is 1-1 and $f(I_i)$ is the union of some intervals in η .
- Expanding: there are two constants C > 0 and $\lambda > 1$ such that $|(f^n)'(x)| \ge C\lambda^n$ for all $x \in \mathbb{T}$ such that $f'(f^i(x))$ are defined for all $0 \le i \le n 1$.

Pull-back the partition η , we can get a sequence of nested partitions $\eta_n = f^{-n}\eta$ for all $n \ge 0$.

Any point $\{x\} = \bigcap_{n=1}^{\infty} I_n(x)$ for a sequence of nested intervals $I_n(x) \in \eta_n$.

∃►

P

Symbolic dynamical system

Let $B = \{0, 1, \dots, 16g - 9\}$. We define a $(16g - 8) \times (16g - 8)$ matrix $A = (a_{ij})$ as $a_{ij} = 1$ if $f(I_i) \supset I_j$ and 0 otherwise and a symbolic space

$$\Sigma_{A} = \{ w = i_{0}i_{1}\cdots i_{n-1}i_{n}\cdots \mid i_{n-1}\in B, a_{i_{n-1}i_{n}}=1, n=1, 2, \cdots \}.$$

and the shift $\sigma_{A}(w) = i_{1}\cdots i_{n-1}i_{n}\cdots : \Sigma_{A} \to \Sigma_{A}.$ Let
 $w = w_{n}i_{n}\cdots \in \Sigma_{A}.$ Each interval of η_{n} has a unique labelling w_{n}
denoted as $I_{w_{n}}.$ Then we have that
 $I_{w_{n}} = \bigcup_{i\in B, a_{i_{n-1}i}=1}I_{w_{n}i}$ and $f^{-1}(I_{w_{n}}) = \bigcup_{i\in B, a_{i_{0}}=1}I_{iw_{n}}.$

All points of \mathbb{T} except for those endpoints of I_{w_n} has a unique labelling $\{x_w\} = \bigcap_{n=1}^{\infty} I_{w_n}$ and

< □ > < 同 > < 三 > < 三 >

Dual symbolic dynamical system

Theorem
For every
$$w^* \in \Sigma_A^*$$
, the limit $s(w^*) = \lim_{n \to \infty} s_n(w_n^*)$ exists and defines a Hölder continuous function

$$s=s_R:\Sigma^*_A\to (0,1).$$

We call s_R the scaling function for R.

E

5900

1.1

Take a fixed hyperbolic Riemann surface R_0 of g, say its fundamental polygon is symmetric, i.e. the Ford domain F_g . The Teichmüller space $\mathcal{T}_g = \mathcal{T}(R_0)$ is the space of equivalence classes of all marked Riemann surfaces $h_R : R_0 \to R$. Here two marked Riemann surfaces R_1 and R_2 are Teichmüller equivalent if there is a conformal isomorphism $\alpha : R_1 \to R_2$ such that $h_{R_2}^{-1} \circ \alpha \circ h_{R_1}$ is isotopic to the identity. $\mathcal{R}_1 \xrightarrow{\mathcal{T}} \mathcal{R}_2 \xrightarrow{\mathcal{C}} \mathcal{S}_{R_1} = \mathcal{S}_{R_2}$

Theorem

The scaling functions of two closed hyperbolic Riemann surfaces of the same genus g are the same if and only if these two Riemann surfaces are Teichmüller equivalent.

Thus we have that $s_{\tau} = s_R$ for all $R \in \tau \in \mathcal{T}_g$.

< ロ > < 同 > < 三 > < 三 > 、

Э

Let $S_g = \{s_R\}$ be the space of scaling functions for all hyperbolic Riemann surfaces R of the same genus $g \ge 2$. We have a bijective map

$$\iota: \mathcal{T}_g \to \mathcal{S}_g; \quad \iota(\tau) = s_{\tau}$$

We call S_g a function model for the Teichmüller space \mathcal{T}_g .

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

E

Teichmüller's metric

The classical metric defined on \mathcal{T} is Teichmüller's metric $d_{\mathcal{T}}(\cdot, \cdot)$. Note that Teichmüller's metric coincides with Kobayashi's metric when we think \mathcal{T}_g as a complex Banach manifold. Since $\iota: \mathcal{T}_g \to \mathcal{S}_g$ is bijective, we can define the Teichmüller metric on \mathcal{S}_g as

$$d_{\mathcal{T}}(s,s')=d_{\mathcal{T}}(\iota^{-1}(s),\iota^{-1}(s')).$$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Э

Consider the space $C(\Sigma_A^*)$ of all continuous functions on Σ_A^* . For any *s* in $C(\Sigma_A^*)$, we have the maximum norm

$$||s|| = \sup_{w^* \in \Sigma^*_A} |s(w^*)|.$$

The maximum metric on \mathcal{T}_g is defined as

$$d_{\max}(\tau,\tau') = ||s_{\tau} - s_{\tau'}|| \quad \forall \ \tau,\tau' \in \mathcal{T}_g$$

Is the maximum metric meaningful? For this question, we need first to see if it gives the same topology on T_g as the one given by Teichmüller's metric.

Theorem The identity map

500

$$\mathit{id}_\mathcal{T}: (\mathcal{T}_g, \mathit{d}_\mathcal{T})
ightarrow (\mathcal{T}_g, \mathit{d}_{\mathit{max}})$$

is uniformly continuous map and the identity map

$$\mathit{id}_{\mathcal{T}}: (\mathcal{T}_g, \mathit{d}_{max})
ightarrow (\mathcal{T}_g, \mathit{d}_{\mathcal{T}})$$

is only continuous.

Thus, both Teichmüller's metric and the maximum metric induce the same topology on T_g .

Topological entropy

R. Adler and L. Flatto 1991 ISAMS Abrams, Katch Ugarcovici' For the matrix A, we have that for some positive integer n such that A^n is a positive matrix, i.e., $A^n > 0$. The Perron-Frobenius theorem says that A has a unique maximum positive simple eigenvalue λ_{max} . The number $\log \lambda_{max}$ is the topological entropy $h_{top}(\sigma_A^*)$ of σ_A^* as well as T_g . From the structure of A,

$$\lambda_{max} = 4g - 3 + \sqrt{(4g - 3)^2 - 1}.$$

Thus $h_{top}(\sigma_A^*) = \log(4g - 3 + \sqrt{(4g - 3)^2 - 1}).$

The topological entropy is a topological invariant and measures the complexity. It is a constant on $S_g = T_g$.

500

Thermodynamical formalism

Since $0 < s = s_{\tau} < 1$ is a Hölder continuous function on Σ_A^* , the classical Gibbs theory says that we have a unique probability measure $\mu = \mu_{\tau}$ on Σ_A^* such that

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

E

500

$$C^{-1} \leq \frac{\mu([w_n^*])}{\exp(-\hat{Pn} + \sum_{i=0}^{n-1} \log s((\sigma_A^*)^i(w^*)))} \leq C$$

for all *n*-cylinder $[w_n^*]$ and $w^* \in [w_n^*]$, where *C* is a fixed constant. Here the number $P = P(\log s)$ is called the pressure. In our case $P(\log s) = 0$ for all $s \in S_g$.

Pressure metric

Consider a smooth path $s_t : (-\delta, \delta) \to \mathcal{S}_g$ and let μ_t be the Sa corresponding Gibbs measure. Since the mean

$$\int_{\Sigma_A^*} \log s_0 d\mu_0 = P(\log s_0) = 0.$$

$$\int_{\Sigma_{A}^{*}} \log s_{0} d\mu_{0} = P(\log s_{0}) = 0.$$
We can calculate the pressure metric on the tangent space $T_{s_{0}}S_{g}$
as
$$\|\log s_{0}\|_{P}^{2} = \frac{var(\log s_{0}, \mu_{0})}{-\int_{\Sigma_{A}^{*}} \log s_{0} d\mu_{0}}.$$

where

$$var(\log s_0, \mu_0) = \lim_{n \to \infty} \frac{1}{n} \int_{\Sigma_A^*} \|\sum_{j=0}^{n-1} \log s_0 \circ (\sigma_A^*)^j (w^*)\|^2 d\mu_0$$

is the variance.

< ∃ >

Э

SOA

The Weil-Petersson metric on $T_{\tau_0}T_g$ now can be calculated by using the function model as

$$||\dot{\tau_0}||_{WP}^2 = \frac{3area(\tau_0)}{4} ||\log s_0||_P^2$$

Note that $\dot{\tau_0}$ can be represented uniquely by a harmonic Beltrami differential $\mu = \rho^{-2}\overline{\phi}$ where ρ is the hyperbolic metric and ϕ is a holomorphic quadratic differential. The classical way to calculate the Weil-Petersson metric is

$$||\dot{\tau_0}||_{WP}^2 = ||\mu||_{WP}^2 = \int \rho^2 |\mu|^2 = \int \rho^{-2} |\phi|^2.$$

The global graph of the metric entropy function

The metric entropy of σ_A^* for the Gibbs measure μ^* can be calculated as $h_{\mu^*}(\sigma_A^*) = -\int_{\Sigma_A^*} \log s(w^*) d\mu^*$. It defines a continuous (even smooth function)

$$ent(s) = h_{\mu^*}(\sigma_A^*) = \frac{\pi Area(F)}{I_{hyp}(\partial F)} = \frac{\pi^2(4g-4)}{I_{hyp}(\partial F)} : \mathcal{S}_g \to (0, h_0].$$

where

$$h_0 = rac{\pi^2(4g-4)}{(8g-4)\cosh^{-1}(1+2\cos(rac{\pi}{4g-2}))}.$$

The metric entropy of μ is a Teichmüller equivalence invariant and measures the level of the complexity. The function ent(s) reaches the maximum value h_0 at the base-point $s_0 = \iota(\tau_0)$ and tends to 0 as s goes to the Euclidean boundary ∂S_g .

<ロ > < 同 > < 三 > < 三 > <

Э

500

For the Teichmüler space, we have that

- a) \mathcal{T}_g is homeomorphic to \mathbb{R}^{6g-6} ,
- b) \mathcal{T}_g is a pseudo-convex domain.

 $s \in C(Z_A)$ + conditions $\implies s \in S_q$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Э

SOA

c) and d) imply that S_g admits a complex manifold structure and contractible. a) says that not every Hölder continuous function on Σ_A^* is a point in \mathcal{S}_g .

Problem Character a function s_{τ} in S_{g} .

Thanks!

Yunping Jiang Function Model

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 < の < ()