Ergodic Theory Motivated by Sarnak's Conjecture in Number Theory

Yunping Jiang

Queens College and Graduate Center City University of New York

A talk given in New York Number Theory Seminar Department of Mathematics The CUNY Graduate Center Thursday, December 9, 2021

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Þ

SQ Q

The Möbius Function

The Möbius function is an arithmetic function on the set $\mathbb N$ of natural numbers:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^r & \text{if } n = p_1 \cdots p_r, \text{ a product of distinct prime numbers,} \\ 0 & \text{if } p^2 | n \text{ for some prime number.} \end{cases}$$

▲ □ ▶ ▲ 三 ▶

< □ ▶

E.

∢ ≣ ≯

SQ (2)

$\mu(nm) = \mu(n)\mu(m), \quad (n,m) = 1.$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q ()

The Primitive n^{th} Roots of Unity

$$\mu(n) = \sum_{1 \le k \le n, (k,n)=1} e^{2\pi i \frac{k}{n}}$$

and

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1 \end{cases}$$

▲□▶ < □▶ < □▶ < □▶ < □▶

5900

Inversion

Suppose $\alpha(n)$ and $\beta(n)$ are two arithmetic functions such that

Then

$$\alpha(n) = \sum_{d|n} \beta(d).$$

$$f : X \to X$$

$$\beta(n) = \sum_{d|n} \mu(\frac{n}{d}) \alpha(d) = \sum_{d|n} \mu(d) \alpha(\frac{n}{d}).$$

For example, for a flow $\{f^{\circ n}:X o X\}_{n\in\mathbb{N}}$, let

and

$$\beta(n) = \#(\{x \in X \mid f^{\circ n}(x) = x\})$$

$$\beta(n) = \#(\{x \in X \mid f^{\circ n}(x) = x, f^{\circ k}(x) \neq x, 1 \le k \le n - 1\})$$

Yunping Jiang

Riemann Zeta Function

Let

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \text{Res7}$$

▲ Ξ ▶ < Ξ ▶</p>

Э

SQ Q

be the Riemann zeta function. We have

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \underbrace{\mu(n)}_{n^s} \cdot \not/$$

The statement (conjecture) that for any $\epsilon > 0$

$$\sum_{n=1}^{N} \mu(n) = O_{\epsilon}(N^{\frac{1}{2}+\epsilon})$$

is equivalent to the Riemann hypothesis.

The Möbius function has the zero mean, that is,

$$\lim_{n\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(n)=0,$$

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

Э

SOA

which is equivalent to the prime number theorem,

$$\pi(x) \sim \frac{x}{\log x} \quad + \circ(\cdot)$$

where $\pi(x)$ is the number of prime numbers $\leq x$.

Consider a compact metric space with the shift on it,

$$\Sigma_{3} = \prod_{n=1}^{\infty} \{-1, 0, 1\} = \{v = j_{1}j_{2}\cdots j_{n}\cdots\}; \sigma_{3}: v \to \sigma(v) = j_{2}\cdots j_{n}\cdots$$
Then $\mu = \mu(1)\mu(2)\cdots\mu(n)\cdots$ is a point in Σ_{3} and
$$\sigma_{3}: \Lambda = \overline{\{\sigma_{3}^{\circ n}(\mu) \mid n \in \mathbb{N}\}} \to \Lambda$$
is the Möbius flow.
Compute Subset

臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< <p>I

Question

Is the Möbius flow simple or complicate?

The complexity of the Möbius flow

The complexity of a dynamical system can be measured by a number called the entropy $h. \leq -$

Consider another compact metric space and the shift on it,

$$\Sigma_{2} = \prod_{n=1}^{\infty} \{0, 1\} = \{ \underbrace{w = i_{1}i_{2}\cdots i_{n}\cdots}_{\mathcal{C}(\mathcal{N})} \}; \sigma_{2} : w \to \sigma(w) = i_{2}i_{2}\cdots i_{n}\cdots}_{\mathcal{C}(\mathcal{N})} \}$$

Let $w = \iota(v) = i_1 i_2 \cdots i_n \cdots = j_1^2 j_2^2 \cdots j_n^2 \cdots$. The point $\iota(\mu) \in \sum_2$ records all square free natural numbers, which has the density $\frac{6}{\pi^2}$ in N. This implies that the entropy $h(\sigma_2|\iota(\Lambda))$ is $\frac{6}{\pi^2} \log 2$. Thus the entropy $h(\sigma_3|\Lambda)$ is positive since $\sigma_2 : \iota(\Lambda) \to \iota(\Lambda)$ is a factor of $\sigma_3 : \Lambda \to \Lambda$. This says that the Möbius flow is complicate and random.

The Möbius function not only has the zero mean but also is oscillating (Davenport, 1937), $\pi(\mu e^{2\pi i \phi}) = c$

 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mu(n) e^{2\pi i \theta n} = 0, \quad \forall \ 0 \le \theta < 1.$ Here $R_{\theta}(z) = e^{2\pi i \theta} z$ from the unit circle T into itself is the rigid rotation of angle θ . This says that μ and the flow $\{R_{\theta}^{\circ n}\}_{n\in\mathbb{N}}$ are linearly disjoint, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(n)R_{\theta}^{\circ n}(1)=0,\quad\forall\ 0\leq\theta<1.$$

∢ 伺 ▶ ∢ ⋽ ▶ ∢ ⋽ ▶

Dynamics of Rigid Rotations

continuous

SOA

Suppose the flow $\{f^{\circ n}: X \to X\}_{n \in \mathbb{N}}$ on a compact metric space X has zero entropy. Then for any complex-valued continuous function $\phi: X \to \mathbb{C}$ and any $x \in X$, the Möbius function $\mu(n)$ is linearly disjoint with the observation $\{\phi(f^n(x))\}_{n \in \mathbb{N}}$, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(n)\phi(f^n(x))=0.$$

Sarnak's conjecture and Equicontinuous Flows

A flow $\{f^{\circ n}: X \to X\}_{n \in \mathbb{N}}$ is equicontinuous if $\forall \epsilon > 0, \exists \delta > 0$ such that for any $x, y \in X$ with $d(x, y) < \delta, d(f^{\circ n}(x), f^{\circ n}(y)) < \epsilon$ for all $n \ge 0$.

Sarnak's conjecture holds for all equicontinuous flows.

The flow $\{f^{\circ n}: T \to T\}_{n \in \mathbb{N}}$ for an orientation-preserving circle homeomorphism f with an irrational rotation number θ is equicontinuous if and only if f is topologically conjugate to the rigid rotation R_{θ} , that is, there is a circle homeomorphism $h: T \to T$ such that

 $h \circ f = R_{\theta} \circ h.$

Non-Equicontinuous Circle Homeomorphisms

Suppose R_{θ} is an irrational rigid rotation. Consider the orbit $\{R_{\theta}^{\circ n}(1)\}_{n\in\mathbb{N}}$ and a sequence of pairwise disjoint intervals $\{I_n\}_{n\in\mathbb{N}}$ on T with $\sum_{n=1}^{\infty} |I_n| \leq 1$. Enlarge each point $R_{\theta}^{\circ n}(1)$ to the interval I_n , we reconstruct the unit circle T and define a circle homeomorphism f such that $f : I_n \to I_{n+1}$ as an increasing linear map mapping endpoints to endpoints and $f = R_{\theta}$ on $T \setminus (\bigcup_{n=1}^{\infty} I_n)$. We call these circle homeomorphisms Denjoy counter-examples. Every Denjoy counter-example is non-equicontinuous and has zero entropy.

h(f)=0

◆ □ ▶ ◆ 伊 ▶ ◆ 三 ▶ ◆ 三 ▶ ─

We would like to understand the oscillating properties presented in the Möbius function $\mu(n)$ as well as other arithmetic functions and classify all zero entropy flows such that the linear disjointness happens in ergodic theory which can be applied back to number theory.

æ

SOA

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers. We say that \mathbf{c} is a *log-uniform oscillating sequence* if there are two constants A > 1 and B > 0 such that

$$\sup_{0\leq\theta<1}\Big|\sum_{n=1}^{N}c_{n}e^{2\pi i n\theta}\Big|\leq B\frac{N}{\log^{A}N}, \quad \forall N\geq 2,$$

with the control condition

$$\sum_{n=1}^{N} |c_n|^{\lambda} = O(N), \quad \text{for some } \lambda > 1.$$
 (1)

Э

500

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

The Möbius function $\mu(n)$ is an example of log-uniform oscillating sequences due to Davenport.

Theorem

Suppose (X, \mathcal{B}, ν) is a Borel probability measurable space and $f: X \to X$ is an automorphism. Suppose $\mathbf{c} = (c_n)$ is a log-uniform oscillating sequence. Then for any $\phi \in L^1(X, \mathcal{B}, \nu)$, we have that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_n \phi(f^n(x)) = 0, \ \nu \text{-a.e. } x \in X.$$

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

Þ

500

See Sarnak, Lecture Notes; J, Nonlinearity

Definition

Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers. We say that \mathbf{c} is an *oscillating sequence* if for any $0 \le \theta < 1$,

$$\lim_{N\to 0}\frac{1}{N}\sum_{n=1}^{N}c_{n}e^{2\pi i n\theta}=0$$

$$F(\overline{c}e^{2\pi i\theta})=0$$

/□ ▶ 《 ∃ ▶ 《 ∃ ▶

with the control condition (1).

See Fan-J, ETDS, 2018.

The Möbius function $\mu(n)$ is an example of oscillating sequences due to Davenport.

More Examples and Counterexamples of Oscillating Sequences

- ► The sequence $(e^{2\pi i n\alpha})_{n \in \mathbb{N}}$ for some $0 \le \alpha < 1$ is not an oscillating sequence.
- The sequence (e^{2πiαn log n})_{n∈ℕ} for any α > 0 is an oscillating sequence.

ezni(1-2)

- The sequence (e^{2πin²α})_{n∈ℕ} for any rational number α is not an oscillating sequence.
- The sequence $(e^{2\pi i n^2 \alpha})_{n \in \mathbb{N}}$ for any irrational number α is an oscillating sequence.

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ■ 目

500

Definition

Let $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers. We say that \mathbf{c} is an *oscillating sequence* in arithmetic if for any $0 \le \theta < 1$, for any $q \ge 1$ and $1 \le r < q$,

$$\lim_{N\to 0} \frac{1}{N} \sum_{1\leq n\leq N, n=r \pmod{q}} c_n e^{2\pi i n \theta} = 0$$

with the control condition (1).

An oscillating sequence is an oscillating sequence in arithmetic (see H. Daboussi and H. Delange, J. Lond. Math. Soc., 1982 and Fan-J, ETDS, 2018, Proposition 4).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Suppose $f : X \to X$ is a (piece-wise) continuous map from a compact metric space X into itself. For any complex-valued continuous function $\phi : X \to \mathbb{C}$ and any $x \in X$, we call $(\phi(f^{\circ n}x))_{n \in \mathbb{N}}$ an observation.

. -> fx -> -- > fx

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ─

3

X

Definition

We say a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of complex numbers is linearly disjoint from f if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N c_n\phi(f^{\circ n}x)=0$$

for all observations $(\phi(f^{\circ n}x))_{n\in\mathbb{N}}$.

Definition

We say that f is mean-L-stable (briefly, MLS) if for every $\epsilon > 0$, there is a $\delta > 0$ such that $d(x, y) < \delta$ implies $d(f^{\circ n}x, f^{\circ n}y) < \epsilon$ for all $n = 0, 1, 2, \cdots$ except for a subset $E = E_{x,y}$ of natural numbers with $\overline{D}(E) < \epsilon$ Here

$$\overline{D}(E) = \limsup_{n \to \infty} \frac{\sharp (E \cap [1, n])}{n}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

S Q C

S. V. Fomin, Dokl. Akad. Nauk SSSR, 1951.

A subset
$$K \subseteq X$$
 is said to be minimal if $\overline{\{f^{\circ n}x\}_{n=0}^{\infty}} = K$ for any $x \in K$.

Definition

We say that f is minimal MLS (briefly, MMLS) if for every minimal subset $K \subseteq X$, f | K is MLS.

Э

SQ Q

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

See Fan-J, ETDS, 2018

Minimal Mean Attractability

Definition We say $x \in X$ is mean attracted to K if $\forall \epsilon > 0, \exists z = z_{e,x} \in K$ such that $\lim_{N \to \infty} \sup \frac{1}{N} \sum_{n=1}^{N} d(f^{\circ n}x, f^{\circ n}z) < \epsilon.$ Mean attractor

The basin B(K) is the set of all points $x \in X$ which are meanly attracted to K. We say that f is minimal mean attractable (briefly, MMA) if $X = \bigcup_{K} B(K)$ where K varies among all minimal subsets of X.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

~ Q Q

See Fan-J, ETDS, 2018

Theorem (Fan-J, ETDS, 2018)

Any oscillating sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ is linearly disjoint from any MMA and MMLS f. More precisely,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N c_n\phi(f^{\circ n}x)=0, \ \forall \phi\in C(X,\mathbb{C}), \ \forall x\in X.$$

Þ

500

The limit is uniform on each minimal subset.

MMLS and MMA and Sarnak's Conjecture

Corollary

systems.

Since an MMA and MMLS dynamical system has zero entropy, our result confirms Sarnak's conjecture for a large class of dynamical systems with zero entropy.

flows

∢ 伺 ▶ ∢ ⋽ ▶ ∢ ⋽ ▶

Sarnak's conjecture holds for all MMLS and MMA dynamical

This corollary generalizes many works from other people on Sarnak's conjecture, for examples, P. Sarnak, Lecture Notes; 2010 ; D. Karagulyan, Ark. Mat.,; 2015, J. Li, P. Oprocha, G. Y. Yang, and T. Zeng, Nonlinearity 2017.

All Denjoy counter-examples $f : T \rightarrow T$ are MMLS and MMA. And they are not equicontinuous on its minimal subsets. See Fan-J, ETDS, 2018.

æ

SQ P

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

All continuous infinitely renormalizable interval maps with zero $\dot{c}_{o=1}$ topological entropy such that they are only semi-conjugate to the \dot{c}_{o+1} adding machine on their strange attractors are MMLS and MMA. = 0/They are not equicontinuous on its minimal subsets.

 $v = 0, v_2 \tilde{v}_3 - - + (- v_3 - v_3 - - v_3 -$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

SOA

See J, Nonlinearity, 2018.

 \sum_{n}

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

500

See Fan-J, ETDS, 2018.

Definition

We call a sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of complex numbers an oscillating sequence of order $d \ge 2$ if

for every real coefficient polynomial P of degree $\leq d$ with the control condition (1).

See J, PAMS, 2019.

The Möbius function $\mu(n)$ is an example of an oscillating sequence of order d for all $d \ge 2$ due to Hua. (9605)

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶ ■

500

Definition

We call $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of complex numbers an oscillating sequence of order $d \ge 2$ in arithmetic if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{1\leq n\leq N,n=r\pmod{q}}c_ne^{2\pi iP(n)}=0,$$

for all real coefficient polynomials P of degree $\leq d$ and every pair of integers $0 \leq r < q$ with the control condition (1).

See J, PAMS, 2019

The Möbius function $\mu(n)$ is also an example oscillating sequence of order d for all $d \ge 2$ in arithmetic due to Hua.

「戸 ト (三 ト (三 ト

Higher Order Oscillating Sequences Other Than the **Möbius Function**

Theorem (Akiyama-J, UDT, 2019)

Suppose g is a positive C^2 function on $(1,\infty)$ with non-negative first and second derivatives. For a fixed real number $\alpha \neq 0$ and almost all real numbers $\beta > 1$ (alternatively, for a fixed real number $\beta > 1$ and almost all real number α), sequences S B'(modi)

are oscillating sequence of order d as well as in arithmetic for all d > 2.

 $\mathbf{c} = \left(e^{2\pi i\alpha\beta^n g(\beta)}\right)_{n\in\mathbb{N}}$

Note that the sequence $\{\alpha\beta^n g(\beta) \pmod{1}\}_{n\in\mathbb{N}}$ has positive a. e yes, find a concrebe Bis interesting entropy.

Let $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ be the *d*-torus. Let $A \in GL(d, \mathbb{Z})$, the space of all $d \times d$ -matrices of integer entries with determinants ± 1 . The map $T_{A,\mathbf{a}}\mathbf{x} = A\mathbf{x} + \mathbf{a} : \mathbb{T}^d \to \mathbb{T}^d$ is an affine map, where \mathbf{x} is a variable and \mathbf{a} is a constant point in \mathbb{T}^d . The map $T_{A,\mathbf{0}} = A\mathbf{x} : \mathbb{T}^d \to \mathbb{T}^d$ is an automorphism of \mathbb{T}^d .

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶ ■

SOA

An affine map

$$T_{A,\mathbf{a}}(\mathbf{x}) = A\mathbf{x} + \mathbf{a} : \mathbb{T}^d \to \mathbb{T}^d$$

<日></l>

< □ ▶

E

SQ (2)

is called distal if all eigenvalues of A are 1.

Theorem (J, PAMS, 2019)

Any oscillating sequence of order $d \ge 2$ is linearly disjoint from any affine distal map $T_{A,a}$ of the d-torus \mathbb{T}^d .

I = ► < = ►</p>

SOA

Zero Entropy Affine Maps on the *d*-Torus

In order for $T_{A,\mathbf{a}}$ to have zero entropy, the absolute values $|\lambda_i|$ of all eigenvalues λ_i , $1 \le i \le d$, of A must be ≤ 1 due to Sinai. Moreover, every λ_i must be a root of unity due to Kronecker. This says that $T_{A,\mathbf{a}}^k$ is an affine distal map for some $k \ge 1$.

 $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x + \alpha \\ y + \beta \end{pmatrix} continuous h(x)?$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

500

Corollary (J, PAMS, 2019)

Any oscillating sequence of order $d \ge 2$ in arithmetic is linearly disjoint from any zero entropy affine map $T_{A,a}$ of the d-torus \mathbb{T}^d .

We have also study some non-linear skew products on the d-torus.

Corollary (J, PAMS)

Sarnak's conjecture holds for all zero entropy affine maps of the d-torus for any d > 2

There are some other works on Sarnak's conjecture for zero entropy affine and nonlinear maps of the *d*-torus, in particular, the 2-torus and the 3-torus. And there are some work on Sarnak's conjecture for flows *f* with quasi-discrete spectrum. For examples, Liu-Sarnak, Duke J. Math; Z. Wang, Invent.; Huang-Liu-Wang, arXiv:1907.01735; e. H. el Abdalaoui, arXiv1704.07243.

The Thue Morse Sequence

m = 0110100110010110...

has zero entropy. Let $\mathbf{m} = e^{\pi i m} = (m_n)_{n \in \mathbb{N}}$. Konieczny, 2016, arXiv, shows that \mathbf{m} has a small sequence of Gowers norms, that is, for any $d \ge 1$, there exists c = c(d) > 0 such that

$$\|\mathbf{m}\|_{U^d[N]} = O(N^{-c}).$$

10/00/ 01 =10

I = ► < = ►</p>

Using this result, Abdalaoui, 2017, arXiv, shows that **m** is an oscillating sequence of order *d* for all $d \ge 1$. If we take the Thur-Morse sequence as a zero entropy flow and **m** as a higher order oscillating sequence and $\phi = e^{\pi i x_1}$ as a function. Then they are not linearly disjoint, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N m_n m_n = 1.$$

Yunping Jiang

Bourgain, Sarnak, and Ziegler, 2013, shows the following criterion for the linear disjointness by using the decay of correlation: Suppose $F, \nu : \mathbb{N} \to \mathbb{C}$ are two arithmetic functions with $|F|, |\nu| \leq 1$ and ν is multiplicative. If for any pair of distinct primers numbers $p_1, p_2, \qquad \uparrow$

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}F(p_1n)\overline{F(p_2n)}=0,$$

then F and ν are linearly disjoint, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\nu(n)F(n)=0,$$

/□ ▶ 《 三 ▶ 《 三 ▶

The following is an old conjecture (1965) in number theory, which relates to the Riemann hypothesis.

Conjecture

For each choice of $0 = k_0 < k_1 < \cdots < k_r$, r > 0, and each choice of $i_0, i_1, \cdots i_r \in \{1, 2\}$, not all $\mu^{i_j}(n + k_j) = 1$, we have the decay of the multi-correlation, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu^{i_1}(n+k_1)\cdot\ldots\cdot\mu^{i_r}(n+k_r)=0.$$

I ∃ ► I ∃ ►

Definition

A sequence $\mathbf{c} = (c_n)_{n \in \mathbb{N}}$ of complex numbers is said to be a Chowla sequence if the control condition (1) and if for each choice of $0 \le k_1 < \cdots < k_r$, r > 0, and each choice of $i_1, \cdots i_r \in \mathbb{N}$ such that not all $c_{n+k_j}^{i_j} = |c_{n+k_j}|$, the decay of the multi-correlation holds, that is,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N-1}\prod_{j=1}^r c_{n+k_j}^{i_j}=0.$$

By using a similar method as Akiyama-J, UDT, we can construct a Chowla sequence in the form $\mathbf{c} = (e^{2\pi i \alpha \beta^n g(\beta)})$.

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

Chowla's conjecture implies Sarnak's conjecture. See Sarnak, 2010 and H. El Abdalaoui, J. Kulaga-Przymus, M. Lemznczyk, T. de la Rue, arXiv:1410.1673.

Veech (AJM and London Notes) shows that that there is a unique admissible measure on the Möbius flow (Chowla measure). A recent paper, el H. el Abdalaoui, arXiv:1711.06326, says that, from Veech's work with the help of Tao's logarithmic Theorem on logarithmic Sarnak's conjecture, we have that

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Sanark's conjecture implies Chowla's conjecture.

Thanks!