Global Graphs of the Metric Entropy of SRB **Measures**

Yunping Jiang

Queens College and Graduate Center City University of New York

A talk given in Analysis & Math Physics Seminar Department of Mathematics Virginia Polytechnic Institute and State University October 5 (Wednesday), 2022

 $2Q$

4 5 8 4 5 8

Suppose X is a compact Hausdorff topological space and $f: X \to X$ is a continuous map. Suppose C is a cover of X by open sets. Then there is a smallest number $\#(\mathcal{C})$ of elements of $\mathcal C$ that cover X. Let $H(C) = \log \#(C)$ and

$$
H(f,\mathcal{C})=\lim_{n\to\infty}\frac{1}{n}H(\mathcal{C}\vee f^{-1}\mathcal{C}\vee\cdots\vee f^{-n+1}\mathcal{C}).
$$

The topological entropy of f is by definition

$$
h(f)=\sup_{\mathcal{C}}H(f,\mathcal{C}).
$$

The topological entropy $h(f)$ is a topological conjugacy invariant.

Metric Entropy

Suppose (X, \mathcal{B}, μ) is a probability space and $f : X \to X$ is a measure-preserving map, that is, $\mu(f^{-1}(A)) = \mu(A)$ for any $A \in \mathcal{B}.$ Suppose $\mathcal{P} = \{P_1, \cdots, P_m\}$ is a measurable partition of X. Let

$$
H_{\mu}(\mathcal{P}) = -\sum_{k=1}^{m} \mu(P_k) \log \mu(P_k)
$$

and

$$
h_{\mu}(f, \mathcal{P}) = \lim_{n \to \infty} \frac{1}{n} H(\mathcal{P} \vee f^{-1} \mathcal{P} \vee \cdots \vee f^{-n+1} \mathcal{P}).
$$

The metric entropy or the Kolmogorov-Sinai entropy or the measure-theoretic entropy of μ for f is by definition

$$
h_{\mu}(f)=\sup_{\mathcal{P}}h_{\mu}(f,\mathcal{P}).
$$

It is know that when X is a compact Hausdorff topological space

$$
h(f)=\sup_{\mu}h_{\mu}(f).
$$

Yunping Jiang

Suppose M is a (compact) C^r Riemannian manifold for $2\leq r\leq\infty$, dim $M\geq1$, and $f:M\to M$ is a C^r dynamical system with an (irreducible) hyperbolic attractor Λ, in particular, an Anosov dynamical system. Suppose μ_f is the SRB measure of t (or called the physical measure for f) on Λ . The entropy $h_{\mu_f}(f)$ is called the metric entropy or the Kolmogorov-Sinai entropy of SRB measure.

The metric entropy $h_{\mu_f}(f)$ is a smooth conjugacy invariant.

Suppose $A^r(M)$ is a connected component of the space of all topological conjugacy classes of C^r dynamical systems with hyperbolic attractors. Then

$$
h(f): \mathcal{A}^r(M) \to (0,\infty).
$$

 Ω

is a constant function.

The metric entropy $h_{\mu_f}(f):\mathcal{A}^r(M)\to (0,\infty)$ is not a constant function but it is constant on every smooth conjugacy class. Thus the metric entropy $h_{\mu_f}(f)$ defines a continuous (even smooth) function on the space of all smooth conjugacy classes

$$
\mathcal{SA}^r(M) = \{ \tau = [f] \mid f \in \mathcal{A}^r(M) \}
$$

and then we have a continuous function

$$
f\in \tau\in \mathcal{SA}^r(M)\longrightarrow h_{srb}(\tau)=h_{\mu_f}(f)\in (0,\infty).
$$

- \blacktriangleright The topological entropy $h(f)$ measures complexity.
- The metric entropy $h_{\mu_f}(f)$ measures levels of complexity.

Question

Which value can be taken by $h_{srb}(f)$ on $\mathcal{SA}^r(M)$? Equivalently, what is the infimium of h_{srb} on $\mathcal{SA}^r(M)$?

Furthermore, since the metric entropy $h_{\mu_f}(f)$ is the sum of all positive Lyapunov exponents of f , we have

Question

Which values can be taken by Lyapunov exponents on $\mathcal{SA}^r(M)$?

@ ▶ (글) (글)

Suppose the topological transitivity in the rest of the talk.

Theorem (Hu-Jiang-J 2008 DCDS) For any $f_0 \in \mathcal{A}^r(M)$, we can find a C^r path

$$
P = \{f_t \in \mathcal{A}^r(M) \mid 0 \leq t < \infty\}
$$

such that $h_{\mu_{f_t}}(f_t) \to 0$ as $t \to \infty$. Thus the infimum of $h_{\mathsf{srb}}(\tau)$ on $\mathcal{SA}^r(M)$ is 0 and $h_{srb}(\tau)$ takes any value in $(0, h_{\mu_{f_0}}(f_0)].$

Corollary (Hu-Jiang-J 2008 DCDS)

Any $f_0 \in \mathcal{A}^r(M)$ is C^r homotopic to an almost hyperbolic dynamical system $f_{\infty} = \lim_{t \to \infty} f_t \in \partial \mathcal{A}^r(M)$. And on its almost hyperbolic attractor $\Lambda_{f_{\infty}}$, f_{∞} admits an infinite and σ -finite SRB measure.

Consider $M = \mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$. Let m be the Lebesgue probability measure on $\mathbb T$. Let $E^r(\mathbb T)$ be the space of all C^r , $2 \le r \le \infty$, orientation-preserving circle expanding endomorphisms of degree $d > 2$.

Theorem (J 2008 arXiv, Hu-Jiang-J 2017 DCDS, J 2020 Sci. China Math.)

There is a C^1 -path $P = \{f_t\}_{0 \leq t < \infty}$ in $E^r(\mathbb{T})$ such that each map f_t preserves the Lebesgue measure m and $h_m(f_0) = \log d$ (the toplogical entropy) and $\lim_{t\to\infty} h_m(f_t) = 0$. Therefore, the infimum of $h_{srb}(\tau)$ on $SE^r(\mathbb{T})$ is 0 and $h_{srb}(\tau)$ takes any value in $(0, \log d]$. Moreover, $f_t(z) \to z$ as $t \to 0^+$ for $z \neq 1 \in \mathbb{T}$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯ …

Theorem (Hu-Jiang-J 2017 DCDS)

Suppose $\mathcal{A}_{\text{vol}}^r(M)$, dim $M\geq 2$, is the space of all volume-preserving Anosov C^r diffeomorphisms (or all volume-preserving C^r Anosov endomorphism (i.e., expanding maps)). Let m be the volume form on M. For any $f_0 \in \mathcal{A}^r_{\text{vol}}(M)$, we can find a C^r path

$$
P = \{f_t \in \mathcal{A}_{vol}^r(M) \mid 0 \leq t < \infty\}
$$

such that $h_m(f_t) \to 0$ as $t \to \infty$. Thus the infimum of $h_{srb}(\tau)$ on $\mathcal{SA}_{\text{vol}}^r(M)$ is 0 and $h_{\text{srb}}(\tau)$ takes any value in $(0,h_m(f_0))$.

@ ▶ (글) (글)

In this theorem, $\lim_{t\to\infty}f_t$ is not very clear in general.

Question

How can we understand the boundary $\partial A^r(M)$ (or the boundary $\partial{\cal A}^r_{\rm vol}(M)$) and the boundary $\partial{\cal SA}^r(M)$ (or the boundary $\partial \mathcal{SA}^r_{\mathsf{vol}}(M))$?

Notice that to understand the boundary, we should first have a metric on the space.

Question

Which value in the interval [0, h] can be taken by the limit of $h_{\mu_f}(f)$ as f approaches to the boundary $\partial \mathcal{A}^r(M)$ (or $\partial \mathcal{A}^r_{vol}(M)$)? And which value in the interval $[0, h]$ can be taken by the limit of $h_{srb}(\tau)$ as τ approaches to the boundary $\partial \mathcal{SA}^r(M)$ (or $\partial \mathcal{SA}^r_{\text{vol}}(M))$?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Let $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk. Consider a Blaschke product of degree $d \geq 2$

$$
B(z)=e^{2\pi i\alpha}\prod_{n=1}^d\frac{z-a_n}{1-\overline{a}_nz},\quad 0\leq |a_n|<1,\ \ n=1,\cdots,d,\ 0\leq\alpha<1.
$$

K 御 ▶ K 君 ▶ K 君 ▶ ...

4 0 1

重

 $2QQ$

Assume $B(1) = 1$.

Recall that $\mathbb{T} = \partial \Delta$ is the circle. A Blaschke product B is called expanding if there are constants $C > 0$ and $\lambda > 1$ such that

$$
|(B^n)'(z)| \ge C\lambda^n, \quad \forall z \in \mathbb{T} \quad \text{and} \quad n \ge 0.
$$

4 □ ▶

 $2Q$

Theorem

Suppose $f: \Delta \to \Delta$ is an analytic map and is not an elliptic Möbius transformation. Then either

- (1) f has a fixed point $p \in \Delta$ such that $f^n(z) \to p$ as $n \to \infty$ for any $z \in \Delta$ and f maps the closure of any hyperbolic disk centered at p into this disk; or
- (2) there is a point $p \in \partial \Delta$ such that $f^n(z) \to p$ as $n \to \infty$ for any $z \in \Delta$ and f maps any horodisk tangent at p into itself.

Corollary

A Blaschke product B is expanding if and only if it has a unique fixed point $p_B \in \Delta$.

∢ロ ▶ ∢ 御 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Recall that m is the Lebesgue probability measure on T .

Proposition

An expanding Blaschke product preserves the Lebesgue measure m if and only if it fixes 0.

Corollary

Every expanding Blaschke product B has the SRB-measure $\mu_B = (M_B)_*m$ where

$$
M_B(z)=\frac{\frac{1-p_B}{1-\overline{p}_B}z+p_B}{1+\frac{1-p_B}{1-\overline{p}_B}\overline{p}_Bz} \quad \text{and} \quad M_B^{-1}(z)=\frac{1-\overline{p}_B}{1-p_B}\frac{z-p_B}{1-\overline{p}_Bz}.
$$

つくい

Let $\mathcal{B}(d)$ be the space of all expanding Blaschke products of degree $d > 2$. Then for any two maps in $\mathcal{B}(d)$ we have a a unique orientation-preserving homeomorphism $h=h_{B_1B_2}$ fixing 1 such that

$$
B_1\circ h=h\circ B_2.
$$

We say B_1 and B_2 are smoothly conjugate if h is a diffeomorphism (this assumption implies that h is a Möbius transformation). Let $S\mathcal{B}(d)$ denote the space of all smooth conjugacy classes $\tau = [B]$. We design a basepoint point $\tau_0=[q_d]$ for $q_0(z)=z^d$.

A Metric on $SB(d)$

For any $\tau = [B] \in S\mathcal{B}(d)$, let

$$
B_{\tau} = M_B^{-1} \circ B \circ M_B = a_{\tau} z \prod_{n=1}^{d-1} \frac{z - c_{n,\tau}}{1 - \overline{c}_{n,\tau} z}
$$

be a representation in τ preserving the Lebesgue measure m. Let $\mathcal{G}=\{e^{2\pi\frac{k}{d-1}i}\}_{0\leq k< d-1}$ be the cyclic group of order $d-1$ and let P be the permutation group of $\{1, \ldots, d-1\}$. Every smooth conjugacy class can be represented by

$$
[\mathbf{c}] = [(c_{1,\tau}, \cdots, c_{d-1,\tau})] \in \mathcal{N}^{d-1} = \Delta^{d-1}/(\mathcal{G} \cup \mathcal{P}).
$$

Thus we can consider the space of smooth conjugacy classes as \mathcal{N}^{d-1} equipped with the metric $d(\tau, \tau') = \sum_{n=1}^{d-1} |c_{n, \tau} - c_{n, \tau'}|$. The origin is $\mathbf{0} = [0, \ldots, 0]$. When $d = 2$, it is the unit disk Δ and when $d > 2$, it is an orbifold.

Let
$$
a_t = a_\infty - \frac{1}{t + \sqrt{3}}
$$
 for $0 \le t < \infty$. Then

$$
P_1 = \left\{ B_t(z) = \frac{z - a_t i}{1 + a_t iz} \cdot \frac{z + a_t i}{1 - a_t iz} \mid 0 \le t < \infty \right\}
$$

is a smooth path in $\mathcal{B}(d)$. Each $B_t(z)$ is an expanding Blaschke product with a unique fixed point $0 \leq p_t \leq 1$ and the SRB measure μ_{B_t} . It is clearly that $h_{\mu_{B_0}}(B_0)=\log 2$, the topological entropy. Moreover, we have that

Theorem (J 2021 DCDS)

The metric entropy $h_{\mu_{B_t}}(B_t)$ depends on t real analytically and tends to 0 as $t \to \infty$. Thus the infimum of $h_{srb}(\tau)$ on $SB(d)$ is 0 and $h_{srb}(\tau)$ takes every value in (0, log 2].

@ ▶ (글) (글)

Limiting Map And Limiting Measure

Moreover, $\lim_{t\to\infty} B_t = B_{\infty}$ and $\lim_{t\to\infty} p_t = 1$ and $\lim_{t\to\infty}\frac{4\pi}{1-r}$ $\frac{4\pi}{1-p_t^2}\mu_t=\mu_\infty$ all exist, where

$$
B_{\infty} = \frac{z - \frac{i}{\sqrt{3}}}{1 + \frac{iz}{\sqrt{3}}}\cdot\frac{z + \frac{i}{\sqrt{3}}i}{1 - \frac{iz}{\sqrt{3}}}
$$

and μ_{∞} is an infinite and σ -finite measure on T.

The map B_{∞} has a parabolic fixed at 1, that is, $B_{\infty}(1) = 1$ and $\mathcal{B}_{\infty}'(1)=1$, and $\vert\mathcal{B}_{\infty}'(z)\vert>1$ for all $z\neq 1\in\mathbb{T}$. Thus \mathcal{B}_{∞} is an almost expanding Blaschke product admitting a unique infinite and σ-finite ergodic SRB measure μ_{∞} on \mathbb{T} .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君

 200

Consider $N(x) = \frac{x-i}{x+i}$ from the real line $\mathbb R$ to the circle $\mathbb T$. Then

$$
F(x) = N^{-1} \circ B_{\infty} \circ N(x) = x - \frac{1}{x}
$$

is the Boole function. Since $({\sf N}^{-1})_*\mu_\infty = d{\sf x}$ is the Lebesgue measure on \mathbb{R} , F preserves dx, that is,

$$
\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f\left(x - \frac{1}{x}\right) dx
$$

for any integrable real function f . (It is the Boole formula discovered in 1857 by Boole). Since B_{∞} is ergodic wrt μ_{∞} , F is ergodic wrt dx (a result proved by Adler and Weiss in 1970).

The smooth path P_1 induces another smooth path in $\mathcal{B}(2)$

$$
P_2 = \{\widehat{B}_t(z) = M_{B_t}^{-1} \circ B_t \circ M_{B_t}(z) = z \frac{z - c_t}{1 - c_t z} \mid 0 \leq t < \infty \}.
$$

Each map \widehat{B}_t preserves the Lebesgue measure m on \mathbb{T} .

Theorem (J 2021 DCDS)

The path P_2 is a smooth path of volume-preserving expanding Blaschke products and for every $z \in \mathbb{T} \setminus \{1\}$,

$$
\widehat{B}_t(z)\to z,\ \ t\to\infty
$$

Moreover, the metric entropy $h_m(\widehat{B}_t)$ tends to 0 as $t \to \infty$.

The smooth paths P_1 and P_2 project to the space $SB(2)$ of smooth conjugacy classes as a same smooth path. Furthermore, we can see the global graph of the function $h_{srb}(\tau)$: $\Delta = SB(2) \rightarrow (0, \infty)$.

Theorem (J 2021 DCDS)

The metric entropy h_{srb} is a smooth (actually, real analytic) function on ∆ with the level curves

$$
\mathbb{T}_r = \{c \in \Delta \mid 0 \leq |c| = r < 1\}.
$$

Moreover, it takes the maximum value log 2 at its unique critical point 0, that is, $h'_{srb}(0) = 0$ and $h_{srb}(0) = \log 2$ is the global maximum value of h_{srb} on Δ . Moreover, $h_{srb}(c) \rightarrow 0$ and $h'_{srb}(c) \rightarrow -\infty$ as $c \rightarrow \mathbb{T} = \partial S\mathcal{B}(2).$ The global graph of h_{srb} on ∆ looks like a bell.

A Global Graph of h_{srb}

For $d = 2$, the global graph looks like

Higher Degree Case

For $d>$ 2, the space of smooth conjugacy classes \mathcal{N}^{d-1} is an orbifold. The graph of $h_{\mathsf{srb}}: \mathcal{N}^{d-1} \to \mathbb{R}^+$ looks like

Let C be the complex plane and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere. Consider the family of quadratic polynomials $q_c(z) = z^2 + c$, $z, c \in \mathbb{C}$. It has only one finite critical point 0. The Mandelbrot set is

$$
\mathcal{M} = \{c \in \mathbb{C} \mid q_c^n(0) \not\to \infty \text{ as } n \to \infty\},\
$$

which is a compact and connected subset in C. The main cardioid \mathcal{M}_0 is, by definition,

 $\mathcal{M}_0 = \{c \in \mathcal{M} \mid q_c^n(0) \rightarrow \text{the attractive fixed point of } q_c \text{ as } n \rightarrow \infty\},$

which is a Jordan domain.

The Mandelbrot Set and the Main Cardioid

The Main Cardioid

Yunping Jiang

Let $c \in M_0$. Then q_c has a unique attracting fixed point p_c in \mathbb{C} , that is, $q_c(p_c) = p_c$ and the multiplier $\lambda_c = q_c'(p_c)$ has the modulus less than 1, that is

$$
|\lambda_c|<1.
$$

The Fatou set (or stable set) is

$$
F_c = \{ z \in \widehat{\mathbb{C}} \mid q_c^n(z) \to p_c \text{ or } \infty, \text{ as } n \to \infty \}
$$

The Julia set (chaotic set) is the complement $J_c = \widehat{\mathbb{C}} \setminus F_c$, which is a Jordan circle (actually, a quasi-circle).

つくい

www.youtube.com/watch?v=9lZiZRST8KY

www.youtube.com/watch?v=wbFVAjudzO8

For $c \in M_0$, $q_c | J_c : J_c \rightarrow J_c$ is a Markov expanding dynamical system. It has a unique Gibbs measure μ_c on J_c . Let $h_{\mu_c}(q_c|J_c)$ be the metric entropy of its Gibbs measure μ_c . Then we have a function

$$
\mathcal{E}_q(\mathsf{c}) = h_{\mu_c}(q_c|J_c): \mathcal{M}_0 \to (0, \log 2].
$$

 Ω

Corollary

The function $\mathcal{E}_q(c)$ is a real analytic function with level curves $M_r = \{c \in \mathcal{M}_0 \mid |\lambda(c)| = r\}$ for $0 \le r < 1$. It is a strictly decreasing function (with respect to the level curves) and takes the maximum value log 2 at its unique critical point 0, that is, $\mathcal{E}'_q(0)=0$ and $\mathcal{E}_q(0)=\log 2$ is the global maximum value of \mathcal{E}_q on $M₀$. Moreover,

$$
\mathcal{E}_q(c) \to 0 \quad \text{as} \quad c \to \partial \mathcal{M}_0
$$

and along gradients (curves perpendicular to the level curves),

$$
\mathcal{E}'_q(c) \to -\infty \quad \text{as} \quad c \to \partial \mathcal{M}_0.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

つのへ

The global graph of \mathcal{E}_q looks like a distorted bell.

- 1. H. Hu, M. Jiang, and Y. Jiang, Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure . Discrete and Continuous Dynamical Systems, Vol. 22, No. 1&2 (2008), 215–234.
- 2. Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials. 2008, arXiv:0804.3104v3.
- 3. H. Hu, M. Jiang, and Y. Jiang, Infimum of the metric entropy of volume preserving Anosov systems (with Huyi Hu and Miaohua Jiang). Discrete and Continuous Dynamical Systems, Volume 37 (2017), No. 9, 4767-4783.
- 4. Y. Jiang, Geometric Gibbs theory. Science China Mathematics, September 2020, Vol. 63, no. 9, 1777-1824.
- 5. Y. Jiang, Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, Vol. 41, No. 3 (2021), 1469-1482.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

つくい

- 1. J. Bochi, A. Katok, And F. Rodriguez Hertz, Flexibility of Lyapunov exponents, 2019. arxiv.org/abs/1908.07891v1. (Under the assumption of dominated splittings into one-dimensional bundles.)
- 2. Alena Erchenko, Flexibility of exponents for expanding maps on a circle. 2017, arXiv:1704.00832v1. (Containing some more information on the measure of maximal entropy.)
- 3. Adam Abrams, Svetlana Katok, And Ilie Ugarcovici, Flexibility of measure-theoretic entropy of boundary maps associated to Fuchsian groups. 2021, arXiv:1909.07032v3. (For the Teichmüller space of closed Riemann surfaces.)

 \leftarrow \Box \rightarrow \leftarrow $\overline{\Box}$ \rightarrow \leftarrow $\overline{\Box}$ \rightarrow \leftarrow $\overline{\Box}$ \rightarrow

Thanks!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ めぬひ

Yunping Jiang