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Abstract. Let f and g be two circle endomorphisms of degree
d ≥ 2 such that each has bounded geometry, preserves the Lebesgue
measure, and fixes 1. Let h fixing 1 be the topological conjugacy
from f to g. That is, h◦f = g ◦h. We prove that h is a symmetric
circle homeomorphism if and only if h = Id. Many other rigidity
results in circle dynamics follow from this very general symmetric
rigidity result.

1. Introduction

A remarkable result in geometry is the so-called Mostow rigidity
theorem. This result assures that two closed hyperbolic 3-manifolds are
isometrically equivalent if they are homeomorphically equivalent [18].
A closed hyperbolic 3-manifold can be viewed as the quotient space
of a Kleinian group acting on the open unit ball in the 3-Euclidean
space. So a homeomorphic equivalence between two closed hyperbolic
3-manifolds can be lifted to a homeomorphism of the open unit ball
preserving group actions. The homeomorphism can be extended to the
boundary of the open unit ball as a boundary map. The boundary
is the Riemann sphere and the boundary map is a quasi-conformal
homeomorphism. A quasi-conformal homeomorphism of the Riemann
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sphere is absolutely continuous. It follows that the boundary map has
no invariant line field, and thus it is a Möbius transformation.

For closed hyperbolic Riemann surfaces, the situation is quite com-
plicated. A closed hyperbolic Riemann surface can be viewed as a
Fuchsian group acting on the open unit disk in the complex plane.
A homeomorphic equivalence between two closed hyperbolic Riemann
surfaces can be lifted to a homeomorphism of the open unit disk pre-
serving group actions. This homeomorphism can be extended to the
boundary of the open unit disk as a boundary map. In this case, the
boundary is the unit circle and the boundary map is a quasisymmetric
homeomorphism. The complication is due to the fact that a quasisym-
metric homeomorphism may not be absolutely continuous. Compli-
cated maps like this are a rich source for Teichmüller theory. However,
if we assume that the boundary map is absolutely continuous, then by
following the main idea in the proof of Mostow’s rigidity theorem, it is
a Möbius transformation.

Shub and Sullivan further developed the study of conjugacies be-
tween smooth expanding circle endomorphisms in [19]. The conju-
gacy in this case is always quasisymmetric (refer to [8, Chapter 3],
and see also [9, 11]). They proved that if the conjugacy is absolutely
continuous then it is smooth. One of the authors (Jiang) studied the
smoothness of conjugacies between one-dimensional maps with singu-
larities. In [12], he first proved that the conjugacy between two gen-
eralized Ulam–von Neumann transformations is smooth if their power-
law singularities have the same exponents, their asymmetries are the
same, and their eigenvalues at all corresponding periodic points are
the same. Later, the hypothesis that their asymmetries are the same
was removed in [13,14]. Moreover, in [9,13,14], he studied the smooth-
ness of the conjugacy between two geometrically finite one-dimensional
maps and proved that the conjugacy between two geometrically fi-
nite one-dimensional maps is always quasisymmetric. He also defined
a smooth invariant called the scaling function for a geometrically fi-
nite one-dimensional map and proved that the scaling function and
the exponents of power-law singularities are complete smooth invari-
ants. That is, the conjugacy between two geometrically finite one-
dimensional maps is smooth if and only if the maps have the same
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scaling function and the exponents of the corresponding power-law sin-
gularities are the same. More results on differential properties and
the symmetric properties of a conjugacy between two one-dimensional
maps are given in [6, 17]. Finally, the symmetric regularity of the
conjugacy between two one-dimensional maps (with possible singular-
ities) becomes an important issue in the study of one-dimensional dy-
namical systems, in particular in the study of geometric Gibbs theory
(see [11, 15, 16]). We would like to note that a symmetric homeomor-
phism is, in general, not absolutely continuous. The following conjec-
ture is stated in [16, Conjecture 2.4] and [11, Conjecture10.12].

Conjecture 1. Suppose f and g are two uniformly symmetric circle
endomorphisms of the same degree d ≥ 2 such that f(1) = g(1) = 1.
Suppose both f and g preserve the Lebesgue measure on the circle.
Suppose h is the conjugacy from f to g with h(1) = 1. That is, h ◦ f =
g ◦ h. Then h is a symmetric circle homeomorphism if and only if h is
the identity.

The paper [16, Theorem 2.5] (see also [11, Corollary 10.9]) gives a
partial proof of Conjecture 1, and many discussions about symmetric
rigidity in the smooth case are also given. In our study of this con-
jecture, we extended our research into uniformly quasisymmetric circle
endomorphisms in [10] and posed a more general conjecture (see [10]
and [7, Conjecture 2]) as follows.

Conjecture 2. Suppose f and g are two uniformly quasisymmetric
circle endomorphisms of the same degree d ≥ 2 such that f(1) = g(1) =
1. Suppose both f and g preserve the Lebesgue measure on the circle.
Suppose h is the conjugacy from f to g with h(1) = 1. That is, h ◦ f =
g ◦ h. Then h is a symmetric circle homeomorphism if and only if h is
the identity.

In this paper, we will prove both of these conjectures completely by
proving the following more general theorem.

Theorem 1 (Main Theorem). Suppose f and g are two circle en-
domorphisms having bounded geometry of the same degree d ≥ 2 such
that f(1) = g(1) = 1. Suppose f and g preserve the Lebesgue measure
on the unit circle. Let h be the conjugacy from f to g with h(1) = 1.
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That is, h ◦ f = g ◦ h. If h is a symmetric homeomorphism, then h is
the identity.

Since a uniformly symmetric circle endomorphism is uniformly qua-
sisymmetric, and a uniformly quasisymmetric circle endomorphism has
bounded geometry (see [10,11]), Theorem 1 gives an affirmative answer
to both Conjecture 1 and Conjecture 2 (see Corollary 2 and Corol-
lary 3). Our main theorem (Theorem 1) also gives new proofs of the
previous symmetric rigidity results (Corollary 4 and Corollary 5) for
the smooth case which were proved in [16] by using transfer operators.

We organize this paper as follows. In Section 2, we define a circle
endomorphism having bounded geometry. In the same section, we re-
view the definition of a uniformly quasisymmetric circle endomorphism
and the definition of a uniformly symmetric circle endomorphism. We
also review the definition of a C1+Dini expanding circle endomorphism.
All of these are examples of circle endomorphisms having bounded
geometry. In Section 3, we study the symmetric rigidity for circle en-
domorphisms having bounded geometry and prove our main theorem
(Theorem 1). Finally, in the same section we state several corollaries
(Corollary 2, Corollary 3, Corollary 4, and Corollary 5) of our main
theorem.

Acknowledgment: We would like to thank Professor Frederick Gar-
diner for help and communications during this research.

2. Circle Endomorphisms Having Bounded Geometry

Let T = {z ∈ C | |z| = 1} be the unit circle in the complex plane C.
Let m be the Lebesgue probability measure on T (i.e. a Haar measure
on T ). Suppose

f : T → T

is an orientation-preserving covering map of degree d ≥ 2. We call it a
circle endomorphism. Suppose

h : T → T

is an orientation-preserving homeomorphism. We call it a circle home-
omorphism. Every circle endomorphism f has at least one fixed point.
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By conjugating f by a rotation of the circle if necessary, we assume
that 1 is a fixed point of f , that is, f(1) = 1.

The universal cover of T is the real line R with a covering map

π(x) = e2πix : R→ T.

In this way, we can think the unit interval [0, 1] as the unit circle T .
Then every circle endomorphism f can be lifted to a homeomorphism

F : R→ R, F (x+ 1) = F (x) + d, ∀x ∈ R.

R R

T T

F

π π

f

We will assume that F (0) = 0 so that there is a one-to-one correspon-
dence between f and F . Therefore, we also call such a map F a circle
endomorphism.

Similarly, every circle homeomorphism h can be lifted to an orientation-
preserving homeomorphism

H : R→ R, H(x+ 1) = H(x) + 1, ∀x ∈ R.

R R

T T

H

π π

h

We will assume that 0 ≤ H(0) < 1 so that there is a one-to-one cor-
respondence between h and H. Therefore, we also call such a map
H a circle homeomorphism. Since we only consider circle homeomor-
phisms as conjugacies of circle endomorphisms in this paper, we assume
h(1) = 1 (equivalently, H(0) = 0). We use id and ID to denote the
identity circle homeomorphism and its lift to R, respectively. That is,
id(z) = z and ID(x) = x.

Let CE(d) be the space of all circle endomorphisms f (or F ) of degree
d ≥ 2 fixing 1 (or 0) and let CH be the space of all circle homeomor-
phisms h (or H) fixing 1 (or 0).
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Definition 1. A circle homeomorphism h ∈ CH is called quasisym-
metric (refer to [2]) if there exists a constant M ≥ 1 such that

1

M
≤ H(x+ t)−H(x)

H(x)−H(x− t)
≤M ∀x ∈ R, ∀t > 0.

It is called symmetric (refer to [4]) if there exists a positive bounded
function ε(t) such that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ H(x+ t)−H(x)

H(x)−H(x− t)
≤ 1 + ε(t) ∀x ∈ R, ∀t > 0.

Definition 2. A circle endomorphism f ∈ CE(d) is called uniformly
quasisymmetric (refer to [10,11]) if there exists a constant M ≥ 1 such
that

1

M
≤ F−n(x+ t)− F−n(x)

F−n(x)− F−n(x− t)
≤M ∀n ≥ 1, ∀x ∈ R, ∀t > 0.

It is called uniformly symmetric (refer to [3,11]) if there exists a positive
bounded function ε(t) such that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ F−n(x+ t)− F−n(x)

F−n(x)− F−n(x− t)
≤ 1+ε(t) ∀n ≥ 1, ∀x ∈ R, ∀t > 0.

An example of a symmetric (and quasisymmetric) circle homeomor-
phism is a C1 circle diffeomorphism. However, in general, a symmetric
(or quasisymmetric) circle homeomorphism may not be differentiable,
and may even be totally singular with respect to the Lebesgue measure.

If a circle endomorphism f is differentiable and the derivative F ′ is
positive, then we can define the modulus of continuity,

ω(t) = sup
|ξ−η|≤t

| logF ′(ξ)− logF ′(η)|.

We say that f is C1+Dini if ω(t) satisfies the Dini condition that∫ 1

0

ω(t)

t
dt <∞.

We say that f is C1+α for some 0 < α ≤ 1 if the derivative F ′ is an
α-Hölder continuous function. It is clear that a C1+α map is a C1+Dini
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map. We say that f is expanding if there are two constants C > 0 and
λ > 1 such that

|(F n)′(z)| ≥ Cλn, ∀z ∈ T, ∀n ≥ 1.

Example 1. Every C1+Dini expanding circle endomorphism of degree
d ≥ 2 is uniformly symmetric.

See [11] for a proof of this example. However, in general, a uniformly
symmetric (or quasisymmetric) circle endomorphism may not be dif-
ferentiable, may not be absolutely continuous, and may even be totally
singular with respect to the Lebesgue measure.

Let QS be the space of all quasisymmetric circle homeomorphisms
in CH. Let S be the space of all symmetric circle homeomorphisms in
CH. Then we have from Definition 1

S ⊂ QS ⊂ CH.
Let UQCE(d) be the space of all uniformly quasisymmetric circle

endomorphisms in CE(d). Let USCE(d) be the space of all uniformly
symmetric circle endomorphisms in CE(d). Let CED(d) be the space of
all C1+Dini expanding circle endomorphisms of degree d ≥ 2. Then we
have from Example 1 and Definition 2

CED(d) ⊂ USCE(d) ⊂ UQCE(d) ⊂ CE(d).

Definition 3. We say f ∈ CE(d) preserves the Lebesgue measure m
if

(1) m(f−1(A)) = m(A)

holds for all Borel subsets A ⊆ T .

Henceforth, in order to avoid confusion, we will consistently use

[0, 1]/{0 ∼ 1} = R (mod 1)

to mean the unit circle. Likewise, we will consistently use

f = F (mod 1) : [0, 1]/{0 ∼ 1} → [0, 1]/{0 ∼ 1}
to mean a circle endomorphism and

h = H (mod 1) : [0, 1]/{0 ∼ 1} → [0, 1]/{0 ∼ 1}
to mean a circle homeomorphism.
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For any f ∈ CE(d), the preimage f−1(0) of the fixed point 0 partitions
[0, 1] into d closed and ordered intervals I0, I1, · · · , Id−1 (see Figure 1).
Let

η1 = {I0, I1, · · · , Id−1}.
Then η1 is a Markov partition. That is,

(i) [0, 1] = ∪d−1
i=0 Ii;

(ii) Ii and Ij have pairwise disjoint interiors for any 0 ≤ i < j ≤ d−1;
(iii) f(Ii) = [0, 1] for every 0 ≤ i ≤ d− 1;
(iv) the restriction of f to the interior of Ii is injective for every 0 ≤

i ≤ d− 1.

 

Figure 1. The initial Markov partition.

The preimage f−n(0) of the fixed point 0 partitions [0, 1] into dn

closed intervals Iwn labeled by

wn = i0i1 . . . in−1 ∈ Σn =
n−1∏
k=0

{0, 1, . . . , d− 1}

and defined inductively as

fk(Iwn) ⊂ Iik , ∀0 ≤ k ≤ n− 2, and fn−1(Iwn) = Iin−1 .

Let

ηn = {Iwn | wn = i0i1 . . . in−1 ∈ Σn}.
Then ηn is also a Markov partition. That is,

(1) [0, 1] = ∪wn∈ΣnIwn ;
(2) intervals in ηn have pairwise disjoint interiors;
(3) fn(Iwn) = [0, 1] for every wn ∈ Σn;
(4) the restriction of fn to the interior of Iwn is injective for every

wn ∈ Σn.
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Remark 1. Suppose A and B are two partitions of T . The partition

A ∨B = {A ∩B | A ∈ A, B ∈ B}
is the finer partition from A and B. Then we have that

ηn = ∨nk=1f
−kη1.

Let σ be the left-shift map and let σ∗ be the right-shift map on Σn,
that is,

σ(ωn) = σ(i0i1 . . . in−2in−1) = i1 . . . in−2in−1

and

σ∗(ωn) = σ∗(i0i1 . . . in−2in−1) = i0i1 . . . in−2.

Here we assume w0 = ∅ and Iw0 = [0, 1] and σ(w1) = w0 and σ∗(w1) =
w0. Then we have

Iwn = ∪d−1
k=0Iwnk = ∪wn+1∈(σ∗)−1(wn)Iwn+1

and

f−1(Iwn) = ∪d−1
k=0Ikωn = ∪wn+1∈σ−1(wn)Iwn+1 .

Figure 2. Iwn ⊂ Iσ∗(wn) and f(Iwn) = Iσ(wn).

Definition 4. A circle endomorphism f is said to have bounded ge-
ometry (refer to [10, 11]) if there is a constant C > 1 such that

(2)
|Iσ∗(ωn)|
|Iωn|

≤ C, ∀ωn ∈ Σn, ∀n ≥ 1. (See Figure 2)

Let BGCE(d) be the space of all f ∈ CE(d) having bounded geometry.
Then we have (refer to [10,11])

CED(d) ⊂ USCE(d) ⊂ UQCE(d) ⊂ BGCE(d) ⊂ CE(d).
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We know that USCE(d) is not equal to UQCE(d) (refer to [10]). Also,
UQCE(d) is not equal to BGCE(d). For example, for any α ∈ (1/2, 1),
the piecewise-linear degree 2 circle endomorphism

fα(x) =


fα(x+ 1)− 2 if x < 0
x/α if 0 ≤ x < α
1 + (x− α)/(1− α) if α ≤ x < 1
fα(x− 1) + 2 if 1 ≤ x

has bounded geometry because

|Iσ∗(ωn)|
|Iωn|

∈ {1/α, 1/(1− α)}, ∀ωn ∈ Σn, ∀n ≥ 1.

However, fα is not uniformly quasisymmetric since for any 0 < t <
1− α,

f−nα (0 + t)− f−nα (0)

f−nα (0)− f−nα (0− t)
=

(
α

1− α

)n
→∞ as n→∞.

Remark 2. The property of uniform quasisymmetry for a circle endo-
morphism can be equivalently characterized in terms of its sequence
of nested partitions {ηn} alone by saying that the circle enedomor-
phism has bounded nearby geometry. The precise definition of bounded
nearby geometry is given and its equivalence to uniform quasisymme-
try is proved in [8,9]. For more on circle endomorphisms with bounded
geometry and/or bounded nearby geometry, see also [1, 5, 10, 11]).

For f ∈ BGCE(d), let

τn = max{|Iwn| | wn ∈ Σn}.
Then from Definition 4, we have a constant 0 < τ < 1 such that

(3) τn ≤ τn, ∀n ≥ 1.

It follows that any two maps f, g ∈ BGCE(d) are topologically conju-
gate. That is, there is an h ∈ CH such that

(4) f ◦ h = h ◦ g.
Here h is called the conjugacy from f to g, and when h ∈ S we call it
a symmetric conjugacy. In the special case that both f and g are in
UQCE(d), we further know that the conjugacy h ∈ QS. However, as
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long as at least one of the maps is not in UQCE(d), the conjugacy h
may not be quasisymmetric. Refer to [1, 5, 7, 10,11].

3. Symmetric Rigidity, the Proof of the Main Result

We start with the following lemma.

Lemma 1. Suppose f ∈ BGCE(d). Let {ηn}∞n=1 be the corresponding
sequence of partitions. Suppose Iwn ∈ ηn is a fixed partition interval
for some n ≥ 1. Then

lim
k→∞

∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n···wk

n
| = 0,

where the ωin are all words of length n.

Proof. From the definition of bounded geometry (Definition 4), we have
that

|Iwn| ≥ A =
1

Cn
.

Since ⋃
w1

n 6=wn

Iw1
n

= [0, 1] \ Iwn ,

we get ∑
w1

n 6=wn

|Iw1
n
| = 1− |Iwn| ≤ 1− A.

For any w1
n, we have that Iw1

nwn
⊂ Iw1

n
. Because of bounded geometry,

we further have
|Iw1

nwn
| ≥ A|Iw1

n
|.

Since ⋃
w2

n 6=wn

Iw1
nw

2
n

= Iw1
n
\ Iw1

nwn
,

we have∑
w2

n 6=wn

|Iw1
nw

2
n
| = |Iw1

n
| − |Iw1

nwn
| ≤ |Iω1

n
| − A|Iω1

n
| = (1− A)|Iw1

n
|.

This implies that∑
w1

n 6=wn

∑
w2

n 6=wn

|Iw1
nw

2
n
| ≤ (1− A)

∑
w1

n 6=wn

|Iw1
n
| ≤ (1− A)2.
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Inductively, suppose we know∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n...w

k−1
n
| ≤ (1− A)k−1

for k ≥ 3. Then∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n...w

k
n
| =

∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

(
|Iw1

n···w
k−1
n
|−|Iw1

n···w
k−1
n wn

|
)

=
∑

w1
n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n···w

k−1
n
|
(

1−
|Iw1

n···w
k−1
n wn

|
|Iw1

n···w
k−1
n
|

)
.

Notice that Iw1
n···w

k−1
n wn

⊂ Iw1
n···w

k−1
n

. The definition of bounded geome-
try implies that

|Iw1
n···w

k−1
n wn

|
|Iw1

n···w
k−1
n
|
≥ A.

This implies that

1−
|Iw1

n···w
k−1
n wn

|
|Iw1

n···w
k−1
n
|
≤ 1− A.

Thus∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n...w

k
n
| ≤ (1−A)

∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n···w

k−1
n
| ≤ (1−A)k.

Letting k →∞, this proves the lemma. �

Given a partition interval Iwn ∈ ηn for some n ≥ 1, define

C(Iwn) = {x ∈ [0, 1] | fkn(x) 6∈ Iwn , k = 0, 1, 2, · · · } =
∞⋂
i=1

 ⋃
ωj
n 6=ωn

1≤j≤i

Iω1
n...ω

i
n

 .

A consequence of Lemma 1 is the following.

Corollary 1. Suppose f ∈ BGCE(d). Then the set C(Iwn) has zero
Lebesgue measure. That is, m(C(Iwn)) = 0.
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Suppose f and g are both in BGCE(d) and h ∈ CH is the conjugacy
from f to g. Define the number

1 ≤ Φ = sup
I⊆[0,1]

|h(I)|
|I|

≤ ∞

and the set
(5)

X = {x ∈ [0, 1] | ∃Ixk = [ak, bk], lim
k→∞

ak = lim
k→∞

bk = x, lim
k→∞

|h(Ixk )|
|Ixk |

= Φ}

We would like to note that, in general, Φ =∞ and when Φ <∞, h is
a Lipschitz conjugacy.

Remark 3. Similarly, we can also define

0 ≤ φ = inf
I⊆[0,1]

|h(I)|
|I|

≤ 1

and use φ to prove Theorem 1.

Lemma 2. Suppose f, g ∈ BGCE(d). Then X is a non-empty subset
of T .

Proof. Suppose {Ik = [ak, bk]}∞k=1 is a sequence of intervals such that

lim
k→∞

|h(Ik)|
|Ik|

= Φ.

By taking a subsequence if necessary, we assume that {ak}∞k=1 and
{bk}∞k=1 are two convergent sequences of numbers and a = limk→∞ ak
and b = limk→∞ bk.

If a = b = x, then x ∈ X and X 6= ∅. Note that if Φ = ∞ then
a = b.

If a < b, then I = [a, b] is a non-trivial interval such that

(6)
|h(I)|
|I|

= Φ.

In this case, we claim that for any non-trivial subinterval I ′ ⊂ I,
|h(I ′)|/|I ′| = Φ. The claim implies that I ⊂ X, and thus, X 6= ∅. Now
we prove the claim as follows. Let I ′ = [a′, b′] with a ≤ a′ < b′ ≤ b.
Let L = [a, a′] and R = [b′, b]. Then we have I = L ∪ I ′ ∪ R and
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h(I) = h(L) ∪ h(I ′) ∪ h(R). Assume |h(I ′)|/|I ′| < Φ. Then, since
|h(L)| ≤ Φ|L|, and |h(R)| ≤ Φ|R|, we have

|h(I)|
|I|

=
|h(L)|+ |h(I ′)|+ |h(R)|
|L|+ |I ′|+ |R|

< Φ.

This is a contradiction. Thus we have proved the claim and completed
the proof. �

Furthermore, under the assumption that both f and g preserve the
Lebesgue measure m, we have the following stronger result.

Lemma 3. Suppose f, g ∈ BGCE(d) both preserve the Lebesgue mea-
sure m. Then X is dense in [0, 1]. That is, X = [0, 1].

Proof. We will prove that for any n ≥ 1 and for any partition interval
Iwn ∈ ηn, Iwn ∩ X 6= ∅. It will then follow from inequality (3) that
X = [0, 1]. We prove it by contradiction.

Assume we have a partition interval Iwn such that Iwn∩X = ∅. Then
we can find a number D < Φ such that

(7)
|h(I)|
|I|

≤ D

for all I ⊂ Iwn .
Since X 6= ∅, we have an interval ID ⊆ [0, 1] such that

(8)
|h(ID)|
|ID|

> D.

We pull back ID by fn to get f−n(ID) = ∪w1
n
IDw1

n
, where IDw1

n
⊂ Iw1

n
∈ ηn

and fn(IDw1
n
) = ID.



SYMMETRIC RIGIDITY 15

Since both f and g preserve the Lebesgue measure m, for all k ≥ 2
we have

|ID| = |IDωn
|+

∑
ω1
n 6=ωn

|IDω1
n
| = |IDωn

|+
∑
ω1
n 6=ωn

|f−n(IDω1
n
)|

= |IDωn
|+

∑
ω1
n 6=ωn

|IDωnω1
n
|+

∑
ω2
n 6=ωn

|IDω2
nω

1
n
|


= |IDωn

|+
∑
ω1
n 6=ωn

|IDωnω1
n
|+

∑
ω2
n 6=ωn

∑
ω1
n 6=ωn

|IDω2
nω

1
n
| = . . .

= |IDwn
|+

k−1∑
l=1

∑
wl

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwnwl
n...w

1
n
|+

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwk
n...w

1
n
|

(9)

and, similarly,
(10)

|h(ID)| = |h(IDwn
)|+

k−1∑
l=1

∑
wl

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwnwl
n...w

1
n
)|+

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwk
n...w

1
n
)|.

See Figure 3. Because IDwn
and ID

wnwl
n...w

1
n

are sub-intervals of Iwn , (7)

says that

|h(IDwn
)|

|IDwn
|
,
|h(ID

wnwl
n···w1

n
)|

|ID
wnwl

n···w1
n
|
≤ D ∀ l ≥ 1.

This implies that
(11)

|h(IDwn
)|+

∑k−1
l=1

∑
wl

n 6=wn
· · ·
∑

w1
n 6=wn

|h(ID
wnwl

n...w
1
n
)|

|IDwn
|+
∑k−1

l=1

∑
wl

n 6=wn
· · ·
∑

w1
n 6=wn

|ID
wnwl

n...w
1
n
|
≤ D ∀ k ≥ 2.

From Lemma 1

(12) lim
k→∞

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwk
n···w1

n
| = 0

and

(13) lim
k→∞

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwk
n···w1

n
)| = 0.



16 ADAMSKI, HU, JIANG, WANG

Figure 3. The interval ID has a preimage under fn

composed of dn intervals, one of which is a subset of Iωn .
Similarly, each of these preimage-intervals that is not a
subset of Iωn has a preimage under fn composed of dn in-
tervals, one of which is a subset of Iωn . Equation (9) says
that the length of ID is equal to the sum of the lengths
of all blue intervals belonging to the same arbitrary level
plus the lengths all pink intervals belonging to that same
level or any previous level.

Now (9), (10), (11), (12), and (13) imply that

|h(ID)|
|ID|

≤ D.

This contradicts (8). Thus our assumption that there exists a partition
interval Iωn such that Iωn ∩X = ∅ is false, and this proves the lemma.

�

Proof of Theorem 1. We will prove that Φ = 1. Equivalently, we will
prove that Φ > 1 cannot happen, regardless of Φ <∞ or Φ =∞.
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We proceed with a proof by contradiction. Assume Φ > 1 (possibly
∞). Then we have two numbers 1 < D1 < D2 < Φ. Since h is
symmetric (see definition 1), there exists a positive bounded function
ε(t) such that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ |h(I)|
|h(I ′)|

≤ 1 + ε(t)

holds for all closed intervals I and I ′ that have the same length t > 0
and are adjacent, i.e. the right endpoint of one interval is the left
endpoint of the other. Fix t0 such that

(14) ε(t) <
D2

D1

− 1 ∀t < t0.

Since X = [0, 1] (Lemma 3), there exists an interval I = [a, b] ⊂ (0, 1)
with |I| = b− a < t0 such that

(15)
|h(I)|
|I|

> D2.

Let L = [2a − b, a] ⊂ (0, 1) and R = [b, 2b − a] ⊂ (0, 1) (see figure 4).
Then the intervals L and R are adjacent to I and have the same length
as |I|. It follows from (14) that

|h(R)|
|R|

=
|h(R)|
|h(I)|

· |h(I)|
|I|

· |I|
|R|

>
1

1 + ε(b− a)
·D2 · 1 > D1

and

|h(L)|
|L|

=
|h(L)|
|h(I)|

· |h(I)|
|I|

· |I|
|L|

>
1

1 + ε(b− a)
·D2 · 1 > D1.

 

Figure 4. h is symmetric.
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Now we want to show that

|h([a, 1])|
|[a, 1]|

> D1.

Consider any interval J = [b, c] ⊃ R with 2b− a ≤ c ≤ 1 satisfying

(16)
|h(J)|
|J |

> D1.

If c = 1, we have

|h([a, 1])|
|[a, 1]|

=
|h(I ∪ J)|
|I ∪ J |

> D1.

Then we have nothing further to prove.
If c < 1, we have a number δ > 0 such that c+ δ < 1 and such that

for any x ∈ [c, c+ δ] we have

|h([b, x])|
|[b, x]|

> D1.

Since X = [0, 1] (Lemma 3), there is an interval I1 = [a1, b1] ⊂ [c, c+ δ]
with |I1| < t0 such that

|h(I1)|
|I1|

> D2.

Let J1 = [b, a1]. Then we have three consecutive intervals I, J1, and I1

such that
|h([a, b1])|
|[a, b1]|

=
|h(I ∪ J1 ∪ I1)|
|I ∪ J1 ∪ I1|

> D1.

(See Figure 5.)
Consider I1 as a new I and repeat the above construction. We get

three consecutive intervals I1 = [a1, b1], J2 = [b1, a2], and I2 = [a2, b2]
such that

|h([a1, b2])|
|[a1, b2]|

=
|h(I1 ∪ J2 ∪ I2)|
|I1 ∪ J2 ∪ I2|

> D1.

Inductively, for every integer n ≥ 2, we have three consecutive intervals
In−1 = [an−1, bn−1], Jn = [bn−1, an], and In = [an, bn] such that

|h([an−1, bn])|
|[an−1, bn]|

=
|h(In−1 ∪ Jn ∪ In)|
|In−1 ∪ Jn ∪ In|

> D1.
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Figure 5. Construction of J1 and I1.

This implies that

|h([a, bn])|
|[a, bn]|

=
|h(I ∪ (∪ni=1(Ji ∪ Ii)))|
|I ∪ (∪ni=1(Ji ∪ Ii))|

> D1.

If bn = 1, we have
|h([a, 1])|
|[a, 1]|

> D1.

Then we have nothing further to prove.
In the case that bn < 1 for all n ≥ 1, since {bn}∞n=1 is a strictly

increasing sequence in [0, 1), we have

b∞ = lim
n→∞

bn ≤ 1.

and
|h([a, b∞])|
|[a, b∞]|

=
|h(I ∪ (∪∞n=1(Jn ∪ In)))|
|I ∪ (∪∞n=1(Jn ∪ In))|

> D1.

Since b∞ depends on the initially chosen interval J , we write it as
b∞(J). Consider the set

B = {b∞(J) | J satisfies (16)}

Let β = supB. We claim β = 1. Otherwise, we take J = [b, β]. It
satisfies (16). Then b∞(J) > β. This contradiction proves the claim,
and so

|h([a, 1])|
|[a, 1]|

> D1.
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Similarly, by using L instead of R and applying the procedure above,
we get

|h([0, a])|
|[0, a]|

> D1.

Finally, we get the following contradiction.

1 =
|h([0, 1])|
|[0, 1]|

=
|h([0, a)|+ |h([a, 1])|
|[0, a]|+ |[a, 1]|

> D1 > 1.

The contradiction implies that Φ = 1.
Since Φ = 1, we have that for any non-trivial interval J ⊂ [0, 1],

|h(J)|/|J | = 1. Otherwise, if there is an interval J ⊂ [0, 1] such that
|h(J)|/|J | < 1, let L ∪R = [0, 1] \ J . Then

1 =
|h([0, 1])|
|[0, 1]|

=
|h(L)|+ |h(J)|+ |h(R)|
|L|+ |J |+ |R|

< 1,

since |h(L)| ≤ |L| and |h(R)| ≤ |R|. This is a contradiction. Since
h(0) = 0, it follows that h = id. This completes the proof of Theorem 1.

�

Theorem 1 has many consequences. In particular, we have affirma-
tive answers to Conjecture 1 and Conjecture 2, which we state as the
following two corollaries.

Corollary 2. Suppose f, g ∈ USCE(d) and both maps preserve the
Lebesgue measure m. Suppose h is the conjugacy from f to g, and
h(1) = 1 . If h ∈ S, then h = id.

Corollary 3. Suppose f, g ∈ UQCE(d) and both maps preserve the
Lebesgue measure m. Suppose h is the conjugacy from f to g, and
h(1) = 1. If h ∈ S, then h = id.

Other consequences are new proofs of some known results in [16]
where we proved them by using transfer operators.

Corollary 4. Suppose f and g are C1+Dini expanding circle endomor-
phisms and both preserve the Lebesgue measure m. Suppose h is the
conjugacy from f to g, and h(1) = 1. If h ∈ S, then h = id.
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Corollary 5. Suppose f and g are C1+Dini expanding circle endomor-
phisms and both preserve the Lebesgue measure m. Suppose h is the
conjugacy from f to g, and h(1) = 1. If h is absolutely continuous,
then h = id.

Proof. As shown in [19] (see also [13,14]), if h is absolutely continuous,
then h is a C1 diffeomorphism. A C1 diffeomorphism is symmetric.
Now this corollary follows from Corollary 4. �
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