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Abstract Given a modulus of continuity ω, we consider the Teichmüller space T C1+ω as the space of

all orientation-preserving circle diffeomorphisms whose derivatives are ω-continuous functions modulo

the space of Möbius transformations preserving the unit disk. We study several distortion properties

for diffeomorphisms and quasisymmetric homeomorphisms. Using these distortion properties, we give

the Bers complex manifold structure on the Teichmüller space T C1+H as the union of T C1+α over all

0 < α ≤ 1, which turns out to be the largest space in the Teichmüller space of C1 orientation-preserving

circle diffeomorphisms on which we can assign such a structure. Furthermore, we prove that with the

Bers complex manifold structure on T C1+H , Kobayashi’s metric and Teichmüller’s metric coincide.
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1 Introduction

In 1960s, Bers [4] gave a complex manifold structure on Teichmüller spaces of Riemann Sur-
faces by using Bers’ embedding, which embeds a Teichmüller space into a bounded domain in
the space of quadratic differentials on a disk. Here a Teichmüller space can be thought as a
quotient space of the space of Beltrami coefficients on a fixed Riemann surface. Then there
is a natural Teichmüller metric induced from the space of Beltrami coefficients. For the Bers
complex manifold structure on a Teichmüller space, there is Kobayashi’s metric. Royden and
Gardiner proved in [8, 25] that these two metrics coincide. In particular, this holds for the
universal Teichmüller space which is the quotient space of the space of all quasisymmetric cir-
cle homeomorphisms modulo the space of all Möbius transformations preserving the unit disk.
Using the Beurling–Ahlfors extension [2], one can show that the universal Teichmüller space
is a quotient space of the space of all Beltrami coefficients on the unit disk. Bers’ embedding
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embeds the universal Teichmüller space into a bounded domain in the space of all holomorphic
functions on the outside of the unit disk. Therefore, for the Bers complex manifold struc-
ture on the universal Teichmüller space, Kobayashi’s metric and Teichmüller’s mertic coincide.
Later, Gardiner and Sullivan [13] showed that one can give the Bers complex manifold on the
universal asymptotically conformal Teichmüller space. Note that the universal asymptotically
conformal Teichmüller space is the quotient space of the space of all symmetric circle home-
omorphisms modulo the space of all Möbius transformations preserving the unit disk. Still
using the Beurling–Ahlfors extension, one can show that it is a quotient space of the space of
all Beltrami coefficients on the unit disk asymptotically to zero on the boundary of the unit
disk. Then it has been showed in [6, 14] that for the Bers complex manifold structure on the
universal asymptotically conformal Teichmüller space, Kobayashi’s metric and Teichmüller’s
mertic coincide. In [22], Nag showed that the C∞ Teichmüller space which is the quotient
space of the space of all C∞ orientation-preserving circle diffeomorphisms modulo the space
of all Möbius transformations preserving the unit disk can be given the Bers complex mani-
fold structure. It becomes a natural question for a long time (refer to [22, 23]) that could we
give the Bers complex manifold structure on the C1 Teichmüller space which is the quotient
space of all C1 orientation-preserving circle diffeomorphisms modulo the space of all Möbius
transformations preserving the unit disk? This question is important in our study of a complex
manifold structure on the space of geometric Gibbs theory in [16] and originally it was written
as part of that paper. Due to its own interest in Teichmüller theory, we write it as a separate
sequel paper in our research in the geometric Gibbs theory. In this paper, we study this ques-
tion. More precise, we study the C1+ω Teichmüller space which is the quotient space of the
space of all C1+ω orientation-preserving circle diffeomorphisms modulo the space of all Möbius
transformations preserving the unit disk, where ω is a given modulus of continuity. We study
several distortion properties for diffeomorphisms and quasisymmetric homeomorphisms in §2.
For example, there is the sharpest estimation of quasisymmetric distortion (Lemma 2.1) in §2.
In §3, we define several Teichmüller spaces and introduce Bers’ embedding. By using these dis-
tortion properties, in §4, we give the Bers complex manifold structure on C1+H =

⋃
0<α≤1 C1+α

(Theorem 4.2). Moreover, in §5, we prove that with the Bers complex manifold structure on
C1+H , Kobayashi’s metric and Teichmüller’s mertic coincide (Theorem 5.1).

2 Quasisymmetric Distortion and Differentiability

We first discuss in this section a very general quasisymmetric distortion result with the sharpest
estimation and several results as applications such as differentiability, asymptotical conforma-
bility, existence of dual derivative, and symmetric rigidity.

Suppose h : [0, 1] → [0, 1] is a homeomorphism with h(0) = 0 and h(1) = 1. An increasing
function ε(t) ≥ 0, t > 0, is called a quasisymmetric distortion function for h if

e−ε(t) ≤ h(x + t) − h(x)
h(x) − h(x − t)

≤ eε(t) (2.1)

for all x ∈ [0, 1] and all t > 0 with x + t, x − t ∈ [0, 1]. When ε(t) is a bounded function,
let M = supt>0 ε(t), then we call h an M -quasisymmertric homeomorphism. In addition, if
ε(t) → 0+ as t → 0+, then we call h a symmetric homeomorphism. It is not hard to check that
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if ε(t) ≡ 0, then h(x) ≡ x, the identity.
If h is a C1-diffeomorphism, the derivative h′(x) > 0 is a continuous function on [0, 1]. As

the common understanding, h′(0) and h′(1) mean one-side derivatives. Suppose ω(t) ≥ 0, t ≥ 0,
is an increasing bounded continuous function with ω(0) = 0. We call such a function a modulus
of continuity. We say h′(x) is an ω-continuous function if there is a constant C > 0 such that

sup
x,y∈[0,1],|x−y|≤t

| log h′(x) − log h′(y)| ≤ Cω(t), ∀t ≥ 0. (2.2)

One can check that if h′(x) is an ω-continuous function, we can take ε(t) = Cω(t), then h is a
symmetric homeomorphism with quasisymmetric distortion function ε(t).

We first prove a quasisymmetric distortion result, Lemma 2.1. This kind of results has been
contained in other places, for examples, [10, 16, 17]. The new point in Lemma 2.1 is that we
give the sharpest quasisymmetric distortion bound M − 1 if the map is M -quasisymmetric.

Let I0,0 = [0, 1]. For each integer n > 0, we cut [0, 1] into 2n equal-sized intervals,

In,k =
[

k

2n
,
k + 1
2n

]

, 0 ≤ k ≤ 2n − 1. (2.3)

Then we have that

In−1,k = In,2k ∪ In,2k+1, ∀0 ≤ k ≤ 2n−1 − 1. (2.4)

From (2.1), we have that

1
1 + eε( 1

2n )
|h(In−1,k)| ≤ |h(In,2k)|, |h(In,2k+1)| ≤

1
1 + e−ε( 1

2n )
|h(In−1,k)|.

This implies that
n∏

i=1

1

1 + eε( 1
2i )

≤ |h(In,k)| ≤
n∏

i=1

1

1 + e−ε( 1
2i )

, ∀0 ≤ i ≤ 2n − 1. (2.5)

Moreover, by using the fact that |In,k| = 1/2n, we have a more precise estimation, whenever
In,k ⊂ Im,l,

( n∏

i=m+1

2

1 + eε( 1
2i )

)
|h(Im,l)|
|Im,l|

≤ |h(In,k)|
|In,k|

≤
( n∏

i=m+1

2

1 + e−ε( 1
2i )

)
|h(Im,l)|
|Im,l|

. (2.6)

Then we have the following lemma.

Lemma 2.1 (Quasisymmetric Distortion) Suppose ε(t) is a bounded quasisymmetric distor-
tion function for a homeomorphism h : [0, 1] → [0, 1]. Let

M = sup
t>0

eε(t) ≥ 1.

That is, h is an M -quasisymmetric homeomorphism. Then we have that

|h(x) − x| ≤ M − 1, ∀x ∈ [0, 1].

The bound M − 1 is the sharpest estimation.

Proof Remember that In,k = [k/2n, (k + 1)/2n]. From (2.5), we have that
(

1
1 + M

)n

≤ |h(In,k)| ≤
(

M

1 + M

)n

.
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This implies that
(

1
1 + M

)n

+ h

(
k

2n

)

≤ h

(
k + 1
2n

)

≤
(

M

1 + M

)n

+ h

(
k

2n

)

.

And for any even integer k = 2i,

−gn(M) +
(

h

(
i

2n−1

)

− i

2n−1

)

≤ h

(
k + 1
2n

)

− k + 1
2n

≤
(

h

(
i

2n−1

)

− i

2n−1

)

+ fn(M),

where

fn(M) =
(

M

M + 1

)n

− 1
2n

and gn(M) =
1
2n

−
(

1
M + 1

)n

.

Consider hn(M) = fn(M) − gn(M) as a function of M ≥ 1. We have that hn(1) = 0 and

h′
n(M) =

n(Mn−1 − 1)
(M + 1)n+1

≥ 0, M ≥ 1.

This implies that fn(M) ≥ gn(M) for all M ≥ 1. Thus we get that for any n ≥ 1,

max
0≤k≤2n

∣
∣
∣
∣h

(
k

2n

)

− k

2n

∣
∣
∣
∣ ≤ max

0≤k≤2n−1

∣
∣
∣
∣h

(
k

2n−1

)

− k

2n−1

∣
∣
∣
∣ + fn(M).

This implies that

max
0≤k≤2n

∣
∣
∣
∣h

(
k

2n

)

− k

2n

∣
∣
∣
∣ ≤

n∑

m=1

fm(M) = M − 1 +
1
2n

− M

(
M

1 + M

)n

≤ M − 1.

So we have that

sup
n≥0

max
0≤k≤2n

∣
∣
∣
∣h

(
k

2n

)

− k

2n

∣
∣
∣
∣ ≤ M − 1, ∀n ≥ 0.

Since the dyadic points {k/2n}n≥0,0≤k≤2n are dense in the unit interval [0, 1] and since h is
continuous, we get

|h(x) − x| ≤ M − 1, ∀x ∈ [0, 1].

For M > 1, let 0 < A < 1 − 1/M − 1/M2 and define

h(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mx, 0 ≤ x ≤ 1
M2

;

x − 1
M2

+
1
M

,
1

M2
≤ x ≤ 1

M2
+ A;

1 − A − 1
M

1 − A − 1
M2

(

x − A − 1
M2

)

+ A +
1
M

,
1

M2
+ A ≤ x ≤ 1.

Since 1/M < (1−A−1/M)/(1−A−1/M2) < M , h is M -quasisymmetric. One can check that
|h(1/M2) − 1/M2| = (M − 1)(1/M2). As M → 1, we have shown that M − 1 is the sharpest
possible estimation. This completes the proof. �

Lemma 2.1 actually says the following important fact: For all M -quasisymmetric orient-
ation–preserving homeomorphisms of [0, 1], their deviations from identity are always controlled
by M − 1.

From (2.6), we observe that ratios
{

log
(
|h(In,k)|
|In,k|

)}
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may form a Cauchy sequence if we can endorse an appropriate topology on the set of natural
numbers and if

∞∏

i=1

1 + eε( 1
2i )

2

is a convergent infinite product.
Consider the doubling map f0(x) = 2x (mod 1). It has two inverse branches

g0(x) =
x

2
and g1(x) =

x + 1
2

.

For any finite string wn = i0i1 · · · in−1 of 0’s and 1’s of length n ≥ 1, define

gwn
= gi0 ◦ gi1 ◦ · · · ◦ gin−1

and
Iwn

= gwn
([0, 1]).

Let k = i02n−1 + i12n−2 + · · · + 2in−2 + in−1. Then we have that In,k = Iwn
. We have that

Iwn
⊂ Iwn−1 .

Note that Iwn−1 = In−1,l for l = i02n−2 + i12n−3 + · · · + in−2. Thus (2.6) becomes
( n∏

i=m+1

2

1 + eε( 1
2i )

)
|h(Iwm

)|
|Iwm

| ≤ |h(Iwn
)|

|Iwn
| ≤

( n∏

k=m+1

2

1 + e−ε( 1
2k )

)
|h(Iwm

)|
|Iwm

| (2.7)

for all 1 ≤ m < n, wn = wmim · · · in−1.
Now we consider the symbolic space

Σ =
∞∏

0

{0, 1} = {w = i0i1 · · · in · · · | in ∈ {0, 1}}

with the product topology. The product topology can be induced by the metric

d(w, w′) =
∞∑

n=1

|in−1 − i′n−1|
2n

where w = i0i1 · · · in · · · , w′ = i′0i
′
1 · · · i′n · · · ∈ Σ.

For any point w = i0i1 · · · in · · · ∈ Σ, let wn = i0i1 · · · in, then we have that

· · · ⊂ Iwn
⊂ Iwn−1 ⊂ Iw1 ⊂ [0, 1].

Thus
∞⋂

n=1

Iwn
= {xw}

since |Iwn
| = 1/2n. Let

π(w) = xw : Σ → [0, 1].

Then π is a continuous map and 1–1 except for a countable subset A of points w = wn000 · · · ,
wn111 · · · for all finite strings wn = i0 · · · in−1. On the set A, π is 2–1, that is,

π(wn000 · · · ) = π(wn111 · · · ).
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Lemma 2.2 If
∏∞

i=1(1 + eε(1/2i))/2 is a convergent infinite product, then for every w ∈ Σ,
{

log
(
|h(Iwn

)|
|Iwn

|

)}∞

n=1

(2.8)

is a Cauchy sequence and

φ(w) = lim
n→∞

log
(
|h(Iwn

)|
|Iwn

|

)

: Σ → R (2.9)

defines a continuous function. Moreover,

φ(wn000 · · · ) = φ(wn111 · · · ) (2.10)

on A.

Proof Since
∏∞

i=1(1 + eε(1/2i))/2 is convergent, we have that
n∑

i=m+1

log
(

2

1 + e−ε( 1
2i )

)

≤
n∑

i=m+1

log
(

1 + eε( 1
2i )

2

)

→ 0 as n ≥ m → ∞.

Then (2.7) implies the sequence (2.8) is a Cauchy sequence. Thus the limit

φ(w) = lim
n→∞

log
(
|h(Iwn

)|
|Iwn

|

)

exists. To show φ(w) is a continuous function, we assume w, w′ ∈ Σ with wm = w′
m. Then

we have Iwm
= Iw′

m
. For any n > m, we have (2.7) for both |h(Iwn

)|/|Iwn
| and |h(Iw′

n
)|/|Iw′

n
|.

This implies that

|φ(w) − φ(w′)| ≤
∞∑

i=m+1

log
(

1 + eε( 1
2i )

2

)

→ 0 as m → ∞.

To show (2.10), for any m > 0, we consider the interval

Jm = Iwn 0 · · · 0︸ ︷︷ ︸
m

∪ Iwn 1 · · · 1︸ ︷︷ ︸
m

,

then we have

( n+k∏

i=n+m+1

2

1 + eε( 1
2i )

)
|h(Jm)|
|Jm| ≤

|h(Iwn 0 · · · 0︸ ︷︷ ︸
k

)|

|Iwn 0 · · · 0︸ ︷︷ ︸
k

| ,

|h(Iwn 1 · · · 1︸ ︷︷ ︸
k

)|

|Iwn 1 · · · 1︸ ︷︷ ︸
k

|

≤
( n+k∏

i=m+1

2

1 + e−ε( 1
2i )

)
|h(Jm)|
|Jm| , ∀k > m. (2.11)

Similarly, {

log
(
|h(Jm)|
|Jm|

)}∞

n=1

is a Cauchy sequence and

φ(wn000 · · · ) = φ(wn · · · 111 · · · ) = lim
m→∞

log
(
|h(Jm)|
|Jm|

)

. �

Since Σ is a compact metric space, φ(w) in Lemma 2.2 is a bounded continuous function.
Furthermore, eφ(π−1(x)) is a positive continuous bounded function on [0, 1].
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Corollary 2.3 If
∏∞

i=1(1 + eε(1/2i))/2 is a convergent infinite product, then h is a C1-
diffeomorphism.

Proof For any x ∈ [0, 1], let w ∈ Σ such that π(w) = x. For any t > 0, we have the largest
integer n > 0 such that Iwn

⊃ [x + t, x]. We know that n → ∞ as t → 0. Consider [x + t, x] as
a union of all dyadic intervals Iwm

⊂ [x + t, x] ⊂ Iwn
. Then we have that

( ∞∏

i=m+1

2

1 + eε( 1
2i )

)
|h(Iwn

)|
|Iwn

| ≤ h(x + t) − h(x)
t

=

∑
wm

|h(Iwm
)|

∑
wm

|Iwm
|

≤
( ∞∏

i=n+1

2

1 + e−ε( 1
2i )

)
|h(Iwn

)|
|Iwn

| . (2.12)

Note that in the last estimation, we use the additive formula, that is, if ai, bi > 0 are two
sequences of positive real numbers and if C−1 ≤ ai/bi < C for all i and for a constant C > 0,
then C−1 ≤ (

∑
i ai)/(

∑
i bi) ≤ C. Thus we have a similar estimate for (h(x) − h(x − t))/t.

This combining with (2.10) implies that h′(x) = eφ(w) > 0 exists and is a continuous function
on [0, 1]. Since [0, 1] is a compact space, we have that (h−1)′ is also a continuous function on
[0, 1]. So h is a C1-diffeomorphism. �

Lemma 2.4 The infinite product
∏∞

i=1(1 + eε(1/2i))/2 is convergent if and only if
∫ 1

0

ε(t)
t

dt < ∞. (2.13)

Proof First, we have that
∫ 1

2

0

ε(t)
t

dt =
∞∑

i=1

∫ 1
2i

1
2i+1

ε(t)
t

dt

≤
∞∑

i=1

ε

(
1
2i

) ∫ 1
2i

1
2i+1

1
t
dt

≤ (log 2)
∞∑

i=1

ε

(
1
2i

)

. (2.14)

Second, we prove that
∞∑

i=1

ε

(
1
2i

)

≤
∫ ∞

0

ε

(
1
2x

)

dx =
1

log 2

∫ 1

0

ε(t)
t

dt.

In the last equality, we use the change of variable t = 1/2x. So we have that
∑∞

i=1 ε(1/2i)
is convergent if and only if

∫ 1

0
ε(t)/tdt < ∞. But the infinite product

∏∞
i=1(1 + eε( 1

2i ))/2 is
convergent if and only if the infinite series

∑∞
i=1 ε(1/2i) is convergent. We proved the lemma. �

We call a positive function satisfying (2.13) a Dini function. Define

ε̃(t) =
∫ t

0

ε(s)
s

ds, ∀t > 0, (2.15)

if ε(t) is a Dini modulus of continuity. Then ε̃(t) is also a modulus of continuity. Finally, we
got a result due originally to Carlson [5] as follows.
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Corollary 2.5 If ε(t) is a Dini modulus of continuity, then h is a C1-diffeomorphism. More-
over, h′(x) is an ε̃-continuous function.

In general ε̃(t) may not be a Dini modulus of continuity anymore. In order h′(x) is a Dini
function again, we need ε(t) satisfying

∫ 1

0

ε(t) log t

t
dt < ∞. (2.16)

When ε(t) = Ctα for some constants 0 < α ≤ 1 and C > 0, then one can check that ε̃(t) =
(C/α)tα. In this case, we call h′(x) an α-Hölder continuous function. When α = 1, it is
also called a Lipschitz continuous function. We call h C1+α if its derivative h′ is α-Hölder
continuous.

Corollary 2.6 If ε(t) = Ctα, then h is a C1+α-diffeomorphism.

In general, a quasisymmetric homeomorphism is not differentiable and the same is true for a
symmetric homeomorphism. Thus if we consider the map f(x) = h ◦ f0 ◦h−1 where f0(x) = 2x
(mod 1), then it is not differentiable in general. However, from the dynamical systems point of
view, we can study the dual derivative of f . We can prove that the dual derivative is always
the constant function 2 when h is a symmetric homeomorphism. A general continuous dual
derivative for some quasisymmetric homeomorphism has been studied in our sequel paper [16].
Moreover, general L1 dual derivatives for all quasisymmetric homeomorphisms such that f

preserves the Lebesgue measure have been studied in our sequel paper [15] by using martingale
theory. In this section, we give a proof of the dual derivative is 2 when h is symmetric. The
reader who is interested in the more general theory in this direction can go to [15, 16]. We
would like to note that a general dual derivative is a highly non-trivial function, that is, as long
as it is piece-wise constants, then it must be global constant and thus h must be symmetric
(see Lemma 2.7), furthermore, if f also preserves the Lebesgue measure, it must be the identity
(see Lemma 2.8).

We first give a dual topology on the symbolic space as follows. For any wn = i0i1 · · · in−2

in−1, we relabel it as w∗
n = jn−1jn−2 · · · j1j0, where jn−1 = i0, . . ., j0 = in−1. In this way, we

say two w∗
n and w∗′

n = j′n−1j
′
n−2 · · · j′1j′0 are m-close if j0 = j′0, . . ., jm−1 = j′m−1. Remember

that previously, we say wn and w′
n are m-close if i0 = i′0, . . ., im−1 = i′m−1. Thus we consider

the dual symbolic space

Σ∗ =
0∏

∞
{0, 1} = {w∗ = · · · jn−1 · · · j1j0|jn−1 ∈ {0, 1}, n = 1, 2, . . .}

with the metric

d(w∗, w∗′
) =

∞∑

n=1

|jn−1 − j′n−1|
2n

= |Iw∗
n
|,

where n ≥ 1 is the largest integer such that w∗
n = w∗′

n . Given any w∗ ∈ Σ∗, let w∗ = · · ·w∗
n.

The symbolic dynamical system under this dual topology is

σ∗(w∗) = · · · jn−1 · · · j1 : Σ∗ → Σ∗.

Similarly, we have σ∗(w∗
n) = jn−1 · · · j1. It is clearly a continuous map. A quasisymmetric
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homeomorphism h gives another metric on Σ∗ as that

dh(w∗, w∗′
) = |Iw∗

n
|h = |h(Iw∗

n
)|

for any w∗, w∗′ ∈ Σ∗, where n ≥ 1 is the largest integer such that w∗
n = w∗′

n . Under this metric,
σ∗ is again a continuous map. Moreover, we have that

Lemma 2.7 (Constant Dual Derivative [16]) Suppose h is a symmetric homeomorphism.
Then for any w∗ ∈ Σ∗, the sequence

{

log
( |h(I(σ∗(w∗))n−1)|

|h(Iw∗
n)|

)}∞

n=1

(2.17)

is a Cauchy sequence and the limit

φ∗(w∗) = lim
n→∞

log
( |h(I(σ∗(w∗))n−1)|

|h(Iw∗
n)|

)

= log 2. (2.18)

We call
dhσ∗

dh
(w∗) = eφ∗(w∗)

the dual derivative of σ∗ under the metric dh(·, ·).
Proof For any n > m > 0,

fn−m = h ◦ fn−m
0 ◦ h−1 : h(I(σ∗(w∗))n−1) → h(I(σ∗(w∗))m−1).

This map is actually

h : I(σ∗(w∗))m−1 = 2n−mI(σ∗(w∗))n−1(mod 1) → h(I(σ∗(w∗))m−1).

Let αn : I(σ∗(w∗))n−1 → I and βm : I(σ∗(w∗))m−1 → I be two increasing linear homeomorphisms.
Then hn,m = αn ◦ h(2m−nh−1) ◦ β−1

m : I → I is an eε(1/2m−1)-quasisymmetric homeomorphism.
For

0 < t =
|h(Iw∗

m
)|

|h(I(σ∗(w∗))m−1)|
< 1,

Lemma 2.1 implies
|hn,m(t) − t| ≤ eε(1/2m−1) − 1.

This is equivalent to
∣
∣
∣
∣

|h(Iw∗
n
)|

|h(I(σ∗(w∗))n−1)|
−

|h(Iw∗
m

)|
|h(I(σ∗(w∗))m−1)|

∣
∣
∣
∣ ≤ eε(1/2m−1) − 1.

Since ε(1/2m−1) → 0 as m → ∞, we see that (2.17) is a Cauchy sequence. Similarly, we also
get ∣

∣
∣
∣

|h(Iw∗
n
)|

|h(I(σ∗(w∗))n−1)|
−

|Iw∗
m
|

|I(σ∗(w∗))m−1 |

∣
∣
∣
∣ ≤ eε(1/2n−1) − 1.

But |Iw∗
m
|/|I(σ∗(w∗))m−1 | = 1/2. This implies (2.18). This completes the proof. �

Among all f = h ◦ f0 ◦ h−1, we are, in particular, interested in those preserve the Lebsegue
measure on [0, 1], that is,

|f−1(I)| = |I|

for all subintervals I ⊂ [0, 1]. By applying Lemma 2.7, we prove that among all f = h◦f0 ◦h−1

for all symmetric homeomorphisms h, f0 is the only one preserving the Lebesgue measure. This
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is a rigidity result. We studied such rigidity problem for f = h ◦ f0 ◦h−1 for all quasisymmetric
homeomorphisms h in [16].

Lemma 2.8 (Symmetric Rigidity [17]) Suppose h is a symmetric homeomorphism and sup-
pose f = h ◦ f0 ◦ h−1 preserves the Lebesgue measure. Then h(x) ≡ x is the identity.

Proof For any finite w∗
n of length n, then (σ∗)−m(w∗

n) = {w∗
mw∗

n} for all finite w∗
m of length

m. Since f preserves the Lebesgue measure, we have that as m → ∞,

|h(Iσ∗(w∗
n))|

|h(Iw∗
n
)| =

|f−m(h(Iσ∗(w∗
n)))|

|f−m(h(Iw∗
n
))| =

∑
w∗

m
|h(Iσ∗(w∗

mw∗
n))|

∑
w∗

m
|h(Iw∗

mw∗
n
)| = · · · = 2.

All boundary points {Iw∗
n
} for all n and all w∗

n are 2-adic numbers {k/2n | n ≥ 0, 0 ≤ k ≤ 2n}.
Inductively use the above equality, h fixes all 2-adic numbers and all these 2-adic numbers are
dense in [0, 1] and h is continuous, we get h = Id. This ends the proof. �

Now we consider the extension of h to the diamond domain in the complex plane C

D =
{

z = x + iy
∣
∣
∣
∣

∣
∣
∣
∣x − 1

2

∣
∣
∣
∣ + |y| ≤ 1

2

}

by using modified Beurling–Ahlfor’s formula

H(z) = u + iv

=
1
2

∫ 1

0

(h(x + ty) + h(x − ty))dt + i
∫ 1

0

(h(x + ty) − h(x − ty))dt. (2.19)

Note that

u =
1
2

∫ 1

0

(h(x + ty) + h(x − ty))dt =
1
2y

∫ x+y

x−y

h(t)dt

and

v =
∫ 1

0

(h(x + ty) − h(x − ty))dt =
1
y

( ∫ x+y

x

h(t)dt −
∫ x

x−y

h(t)dt

)

.

It is clear that H(z) = H(z). The complex dilatation of H is

μH =
Hz

Hz
.

From the calculation in [1], we have that ‖μH‖∞ ≤ k < 1. Actually, one can make more precise
estimation for k ≤ (M2 − 1)/(M2 + 1) where M = supt>0 eε(t). Thus H is a quasiconformal
homeomorphism. We will not provide detailed calculation of this estimation. The reader who
is interested in this calculation may refer to [20]. However, we will provide more detailed
calculation for the asymptotical behavior of μH(x + iy) when y → 0 by using Lemma 2.1 when
ε(t) → 0+ as t → 0+ (see [13] and other related papers for other estimations).

Since

Hz =
1
2
(ux + vy) +

i
2
(vx − uy) and Hz =

1
2
(ux − vy) +

i
2
(vx + uy),

we have that

|μH | =
∣
∣
∣
∣
(ux − vy) + i(vx + uy)
(ux + vy) + i(vx − uy)

∣
∣
∣
∣

=

√
(ux − vy)2 + (vx + uy)2

(ux + vy)2 + (vx − uy)2
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=

√
(1 − vy

ux
)2 + ( vx

ux
)2(1 + uy

vx
)2

(1 + vy

ux
)2 + ( vx

ux
)2(1 − uy

vx
)2

. (2.20)

Now we estimate ratios of partial derivatives in the last formula. First, we have

ux =
h(x + y) − h(x − y)

2y

and denote a(x, y) = (h(x) − h(x − y))/(h(x + y) − h(x)). Then we get

vx =
h(x + y) + h(x − y) − 2h(x)

y
= 2ux

1 − a(x, y)
1 + a(x, y)

.

Since e−ε(y) ≤ a(x, y) ≤ eε(y), we have that
∣
∣
∣
∣
vx

ux

∣
∣
∣
∣ ≤ 2

eε(y) − 1
eε(y) + 1

. (2.21)

Now

uy = − 1
2y2

( ∫ x+y

x−y

h(t)dt

)

+
h(x + y) + h(x − y)

2y
=

vx

2

(

1 −
∫ 1

0

h1(t)dt

)

,

where
h1(t) =

h(x + ty) + h(x − ty) − 2h(x)
h(x + y) + h(x − y) − 2h(x)

: [0, 1] → [0, 1]

is a homeomorphism with h1(0) = 0 and h1(1) = 1. And, similarly,

vy = 2ux

(

1 −
∫ 1

0

h2(t)dt

)

,

where
h2(t) =

h(x + ty) − h(x − ty)
h(x + y) − h(x − y)

: [0, 1] → [0, 1]

is also a homeomorphism with h2(0) = 0 and h2(1) = 1. Both h1 and h2 are (M = eε(y))-
quasisymmetric, thus Lemma 2.1 implies that

|h1(t) − t|, |h2(t) − t| ≤ eε(y) − 1, ∀t ∈ [0, 1].

This implies that

3
2
− eε(y) ≤

(

1 −
∫ 1

0

h1(t)dt

)

,

(

1 −
∫ 1

0

h2(t)dt

)

≤ eε(y) − 1
2
.

We get
1
2

(
3
2
− eε(y)

)

≤ uy

vx
≤ 1

2

(

eε(y) − 1
2

)

and

2
(

3
2
− eε(y)

)

≤ vy

ux
≤ 2

(

eε(y) − 1
2

)

.

These give us that
∣
∣
∣
∣1 − vy

ux

∣
∣
∣
∣ ≤ 2(eε(y) − 1), (2.22)

4 − 2eε(y) ≤ 1 +
vy

ux
≤ 2eε(y), (2.23)

7
4
− 1

2
eε(y) ≤ 1 +

uy

vx
≤ 1

2
eε(y) +

3
4
, (2.24)
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and
5
4
− 1

2
eε(y) ≤ 1 − uy

vx
≤ 1

2
eε(y) +

1
4
. (2.25)

From the estimations of (2.21)–(2.25), we finally get that

|μH(z)| ≤ C0(eε(y) − 1) ≤ C1ε(y), ∀z = x + iy ∈ D, (2.26)

where C0 > 0 and C1 > 0 are constants. This estimate implies that when h is symmetric,
then its extension to D is asymptotically conformal near [0, 1]. In particular, when h is a C1-
diffeomorphism such that h′ is an ω-continuous function, then we can take ε(t) = Cω(t) for
some constant C > 0. Therefore, we have the following lemma.

Lemma 2.9 Suppose h is a C1-diffeomorphism such that h′ is an ω-continuous function.
Then we have that

|μH(z)| ≤ Cω(y), ∀z = x + iy ∈ D, as y → 0+ (2.27)

for some constant C > 0.

3 Teichmüller Structures on Circle Diffeomorphisms

We denote C the complex plane and Ĉ = C ∪ {∞} the Riemann sphere. We denote R the real
line. Let Δ = {z ∈ C | |z| < 1} be the unit disk and Δ∞ = Ĉ \ Δ. We use Δ∗ = Δ \ {0} to
denote the punctured disk and Δ∗

∞ = C \ Δ. We use T = {z ∈ C | |z| = 1} to denote the unit
circle. It has a universal cover π(x) = e2πix : R → T. Let

H = {z = x + iy ∈ C | y > 0} and L = {z = x + iy ∈ C | y < 0}

be the upper and lower half planes. Then

π(z) = e2πiz : H → Δ∗ and L → Δ∗
∞

are both universal covers.
Consider the space H of all orientation-preserving homeomorphisms of T . Let M be the

subspace of all Möbius transformations in H preserving the unit disk. Let T H = H/M. It can
be identified with all h ∈ H fixing −1, 1, and i.

For any h ∈ T H, let H : R → R be the lift of h such that H(0) = 0. Then H is a
strictly increasing continuous function such that H(x + 1) = H(x) + 1 and H(1/2) = 1/2 and
H(1/4) = 1/4.

We say h is quasisymmetric if there is a bounded increasing function ε(t) > 0 such that

e−ε(t) ≤ H(x + t) − H(x)
H(x) − H(x − t)

≤ eε(t), ∀x ∈ R, t > 0. (3.1)

We say h is symmetric if, in additional, ε(t) → 0+ as t → 0+. In the above formula, we only
need to check for x ∈ [0, 1]. It is also clear that if h is quasisymmetric or symmetric, then
H|[0, 1] is quasisymmetric or symmetric in the sense of §2.

We use Q to denote the space of all quasisymmetric h in H and T Q = Q/M. Here T Q is
called the universal Teichmüller space.

We use S to denote the space of all symmetric h in Q and T S = S/M, which is called the
universal asymptotically conformal Teichmüller space.
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Given a modulus of continuity ω, we use C1+ω to denote the space of all diffeomorphisms h

in S such that H ′ are ω-continuous functions. We call T C1+ω = C1+ω/M the C1+ω Teichmüller
space.

Another space A is the space of all analytic diffeomorphisms h in S. We call T A = A/M
the real analytic Teichmüller space. Thus we have the following sequence of spaces,

T A ⊂ T C1+ω ⊂ T S ⊂ T Q ⊂ T H. (3.2)

The Teichmüller structure on T Q is introduced by identifying it with the Teichmüller
space T (Δ) of all Riemann surfaces with the basepoint Δ. And the Teichmüller structure
on T A, T C1+ω, or T S, respectively, just inherits from T Q, that is, we just treat them as
sub-Teichmüller spaces of the universal Teichmüller space T Q. Let us define it in more details.

Consider the unit ball

BM(Δ) = {μ ∈ L∞(Δ) | ‖μ‖∞ < 1}

of all measurable complex functions on C with bounded essential maximum norms. Then one
can define the Teichmüller metric on BM(Δ) as

dBM(μ, ν) = tanh−1

∥
∥
∥
∥

μ − ν

1 − μν

∥
∥
∥
∥
∞

=
1
2

log
(1 + ‖ μ−ν

1−μν ‖∞
1 − ‖ μ−ν

1−μν ‖∞

)

. (3.3)

It induces the same topology as the topology when we think BM(Δ) as a subset of L∞(Δ).
But the distance between any point μ to the boundary of BM(Δ) is infinite.

A measurable function μ on C is called a Beltrami coefficient if its L∞-norm k = ‖μ‖∞ < 1.

Let BM(C) be the space of all Beltrami coefficients. It is the unit ball of the space of L∞(C).
Since L∞(C) is an infinite-dimensional complex vector space, BM(C) is an infinite-dimensional
complex manifold.

Given μ ∈ BM(C), the equation
wz = μwz (3.4)

is called the Beltrami equation. A solution w is a quasiconformal self-homeomorphism of Ĉ

whose quasiconformal dilatation is less than or equal to 1 ≤ K = (1 + k)/(1 − k) < ∞. We
have the following important theorem in Teichmüller theory.

Theorem 3.1 (The Measurable Riemann Mapping Theorem) The Beltrami equation (3.4)
always has a solution w which is a K-quasiconformal homeomorphism of the Riemann sphere
Ĉ. If we consider a normalized solution wμ in the meaning that it always fixes three given
points −1, 1, and i, then it is unique for any given μ, and moreover, depends on μ ∈ BM(C)
holomorphically.

The reader may refer to [11] for the development of this theorem and relating references.
Using this theorem, Bers gave a complex manifold structure on T Q by using Bers’ embedding
as we will explain now.

For any μ ∈ BM(Δ), we can extend it to the whole complex plane by defining μ(z) = μ(z∗)∗

for any z ∈ Δ∞ where z∗ is the reflection point of z with respect to the unit circle T , that is,
zz∗ = 1. We still denote it as μ. By Theorem 3.1, we have the normalized K-quasiconformal
homeomorphism wμ of C solving (3.4). Since μ is invariant under the reflection with respect to
T , h = wμ|T is a self-homeomorphism of T .
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Denote
Cr(z1, z2, z3, z4) =

(z1 − z4)(z3 − z2)
(z4 − z3)(z1 − z2)

as the modified cross-ratio of four distinct points on Ĉ. It takes values in Ĉ \ {−1, 0,∞}. Let
Q(z1, z2, z3, z4) be the quadrilateral with vertices z1, z2, z3, z4 positively orientated. Since h is
K-quasiconformal, we have that

mod(Q(h(z1), h(z2), h(z3), h(z4)) ≤ Kmod(Q(z1, z2, z3, z4))

for any four distinct points.
Now we consider four distinct points z1, z2, z3, z4 on T positively orientated and the quadri-

lateral Δ(z1, z2, z3, z4). Let λ : (0,∞) → (0,∞) be the distortion function defined as

λ(mod(Δ(z1, z2, z3, z4))) = Cr(z1, z2, z3, z4).

It is a continuous increasing function satisfying λ(1/t) = 1/λ(t) for all t ∈ (0,∞). So λ(1) = 1.
Consider four distinct points z1, z2, z3, z4 ∈ T with Cr(z1, z2, z3, z4) = 1, then

Cr(h(z1), h(z2), h(z3), h(z4)) = λ(mod(h(Δ(z1, z2, z3, z4))))

≤ λ(Kmod(Δ(z1, z2, z3, z4)))

= λ(Kλ−1(Cr(z1, z2, z3, z4)))

= λ(K). (3.5)

Now take z1 = e2πi(x+t), z4 = e2πix, z3 = e2πi(x−t), and z2 = e2πi(x+π) for x ∈ [0, 1] and
small t > 0. We have Cr(z1, z2, z3, z4) = 1. Notice that h(z1) = e2πiH(x+t), h(z4) = e2πiH(x),
h(z3) = e2πiH(x−t), h(z2) = e2πiH(x+π). We have a bounded function λ̃(t) ≥ 1 such that
λ̃(t) → 1 as t → 0 and such that

H(x + t) − H(x)
H(x) − H(x − t)

≤ λ̃(t)Cr(h(z1), h(z2), h(z3), h(z4)) ≤ λ̃(t)λ(K) = eε(t), (3.6)

where ε(t) = log(λ̃(t)λ(K)) is a bounded positive function. Since h is uniformly continuous
on T , we can make this inequality holding for all t > 0. Similarly, by taking z3 = e2πi(x−t),
z2 = e2πix, z4 = e2πi(x+t), and z1 = e2πi(x+π) for x ∈ [0, 1] and small t > 0, we get

H(x) − H(x − t)
H(x + t) − H(x)

≤ λ̃(t)Cr(h(z1), h(z2), h(z3), h(z4)) ≤ λ̃(t)λ(K) = eε(t).

Therefore, h is a quasisymmetric homeomorphism of T . Then we have a map

P : μ ∈ BM(Δ) → τ = [wμ|T ] ∈ T Q. (3.7)

This map is onto. This can be shown by using the modified Beurling–Alhfors extension given
in formula (2.19).

Suppose τ = [h] ∈ T Q. Let H be the lift homeomorphism of h to R with H(0) = 0.
We still use H to mean the extended homeomorphism defined on the complex plane C by
using formula (2.19). Then H is a K-quasiconformal homeomorphism of C where K ≤ M2,
M = supt>0 eε(t), and H(z) = H(z). Moreover, in our case, H(z + 1) = H(z) + 1 for all
z = x + iy ∈ C. This induces an extended K-quasiconfomal homeomorphism w of h on the
Riemann sphere Ĉ. Let μ = wz/wz be the Beltrami coefficient of w, then μ ∈ BM(C). Since
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μ(z) = μ(z∗)∗, we have that μ|Δ, which we still denote as μ, is in BM(Δ) and [w|T ] = [h] = τ .
We will not provide the detailed calculation of this since they are standard. The map P in (3.7)
is an onto map. We say that μ, ν ∈ BM(Δ) are equivalent, denote as μ ∼ ν, if P(μ) = P(ν).
One can check that it is an equivalent relation. Thus we can identify T Q = BM/ ∼, the space
of all equivalent classes [μ] in BM(Δ) and P induces a bijective map, which we still denote as
P. Teichmüller’s metric on T Q is, by definition,

dT (τ, η) = inf{dBM(μ, ν) | μ, ν ∈ BM(Δ), μ ∈ τ, ν ∈ η}. (3.8)

The space (T Q, dT (·, ·)) is called the universal Teichmüller space. We will not give a detailed
calculation of this because it is standard. The reader who is interested in it may refer to [1, 20].
Three spaces

(T A, dT (·, ·)), (T C1+ω, dT (·, ·)), (T S, dT (·, ·))
are considered as sub-Teichmüller spaces of (T Q, dT (·, ·)). We will give a detailed calculation
about the asymptotical behavior of μ near T by following formula (2.26), which we write it as

|μ(z)| ≤ Cε

(

− log |z|
2π

)

, as |z| → 1. (3.9)

We define three subspaces of BM(Δ). Let Ar = {z | r < |z| < 1} and C > 0 means a
constant. Define

BMa(Δ) = {μ ∈ BM(Δ) | μ|Ar ≡ 0 for some 0 < r < 1}, (3.10)

BMω(Δ) = {μ ∈ BM(Δ) | ‖μ|Ar‖∞ ≤ Cω(1 − r), ∀0 < r < 1} (3.11)

BM0(Δ) = {μ ∈ BM(Δ) | ‖μ|Ar‖∞ → 0 as r → 1} (3.12)

Inequality (3.9) implies that if h ∈ C1+ω, then, for Beurling–Ahlfors extension w, μw ∈ BMω(Δ)
and if h ∈ S, then, for Beurling–Ahlfors extension w, μw ∈ BM0(Δ).

Suppose μ ∈ BM0(Δ). Reflecting it with respect to T , we have a Beltrami cofficient which
we still denote it as μ ∈ BM(C). Remember that we use wμ to denote the normalized solution
of (3.4) fixing −1, 1, i. Let

An =
{

z ∈ C

∣
∣
∣
∣ 1 − 1

n
< |z| < 1 +

1
n

}

for any integer n > 1. Define μn = μ on Δ \An and μn = 0 on An for any integer n ≥ 1. Then
we get a sequence of {μn}∞n=1 of Beltrami coefficients in BMa(C) with μn(z) = μn(z∗)∗. Let
wμn

be the normalized quasiconformal homeomorphism with Beltrami coefficient μn. Consider
wνn

= wμ ◦ w−1
μn

where

νn ◦ wμn
=

μ − μn

1 − μnμ
· (wμn

)z

(wμn
)z

.

Then kn = ‖νn‖∞ → 0 as n → ∞. Let Kn = (1 + kn)/(1 − kn) → 1 as n → ∞. For any four
points z1, z2, z3, and z4 in T positively orientated,

Cr(wμ(z1), wμ(z2), wμ(z3), wμ(z4)) ≤ λ(Kn) · Cr(wμn
(z1), wμn

(z2), wμn
(z3), wμn

(z4)).

Since wμn
is conformal on the annulus An, the Koebe distortion theorem implies that for any

z, w ∈ T with |z − w| ≤ 1/n2,

|w′
μn

(z)|
|w′

μn
(w)| ≤

1 + n|z − w|
(1 − n|z − w|)3 ≤

1 + 1
n

(1 − 1
n )3

.
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Consider h = wμ|T and H is its lift to R. Take z1 = e2πi(x+t), z4 = e2πix, z3 = e2πi(x−t), and
z2 = e2πi(x+π) for x ∈ [0, 1] and |1 − e2πit| < 1/n2, we get

H(x) − H(x − t)
H(x + t) − H(x)

≤ λ̃

(
1
n

)

λ(Kn)
1 + 1

n

(1 − 1
n )3

= eε( 1
n ),

where we modify λ̃(t) in (3.6) such that it is still a bounded positive function with λ̃(t) → 1 as
t → 0 and ε(t) → 0, as t → 0, is a bounded positive function. Similarly, we have that

H(x) − H(x − t)
H(x + t) − H(x)

≤ eε(1/n).

This implies that h = wμ|T is a symmetric homeomorphism. Conclude from our calculation
from the previous two paragraphs, we get that

P(μ) = [wμ|T ] : BM0(Δ) → T S (3.13)

is an onto map. We will prove in the next section that

P(μ) = [wμ|T ] : BMα(Δ) → T C1+α (3.14)

is an onto map and only when ω is a Hölder modulus of continuity, we have this property.

4 Bers’ Embedding on Circle Diffeomorphisms

The process from μ ∈ BM(Δ) to P(μ) = [wμ|T ] is not holomorphic because the reflection with
respect to T is not. The holomorphic process is so called Bers’ embedding.

Given μ ∈ BM(Δ), extend it on Δ∞ by assigning value 0. We still use μ to denote
it. Then it is a Beltrami coefficient in BM(C). By Theorem 3.1, we have the normalized
quasiconformal homeomorphism wμ with Beltrami coefficient μ. Then wμ depends on μ ∈
BM(Δ) holomorphically.

Since wμ on Δ∞ is analytic and w′(z) �= 0, we have the derivative

Dw = log w′,

which is a 0-form; the non-linearity

Nw = (log w′)′dz =
w′′

w′ dz,

which is a 1-form; and the Schwarzian derivative

Sw =
(

(Nw)′ − 1
2
(Nw)2

)

dz2 =
(

w′′′

w′ − 3
2

(
w′′

w′

)2)

dz2 = φ(z)dz2,

which is a 2-form. All three forms satisfy the chain rule:

D(w2 ◦ w1) = Dw1 + w∗
1(Dw2),

N(w2 ◦ w1) = Nw1 + w∗
1(Nw2),

S(w2 ◦ w1) = Sw1 + w∗
1(Sw2).

Moreover, we have that Dw = 0 if and only if w = const, a constant function; Nw = 0 if
and only if w = az + b, a linear function; and Sw = 0 if and only if w = (az + b)/(cz + d),
a Möbius transformation. Since φ is holomorphic on Δ∞ and since the Schwarzian derivative
is invariant under post composition of Möbius transformation, we are enable to embed the
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universal Teichmüller space into the space QD of all holomorphic quadratic differentials on
Δ∞,

π : τ = [μ] ∈ T Q ↪→ Swμ ∈ QD. (4.1)

This definition is independent of the choice of representation μ in the equivalent class τ because
if P(μ) = P(ν), then wμ|T = wν |T . Both wμ ◦w−1

μ and wν ◦w−1
ν are holomorphic on Δ. Since

wμ|T = wν |T , we can extend the holomorphic map

(wμ ◦ w−1
μ ) ◦ (wν ◦ (wν)−1)−1 = wμ ◦ (w−1

μ ◦ wν) ◦ (wν)−1

on wν(Δ) to wν(Δ∞) by wμ ◦ (wν)−1 homomorphically and to wν(T ) continuously. Since
wν(T ) is a quasicircle, we get a holomorphic map on the Riemann sphere, which is a Möbius
transformation. Since it fixes −1, 1, and i, this Möbius transformation must be the identity.
This implies that wμ = wν and thus Swμ = Swν on Δ∞. Conversely, if Swμ = Swν on Δ∞,
then S(wμ ◦ (wν)−1) = 0, which implies that wμ ◦ (wν)−1 is a Möbius transformation and thus
the identity since it fixes −1, 1, i. So wμ = wν on Δ∞ ∪ T . Since wμ ◦ w−1

μ and wν ◦ w−1
ν are

both conformal on Δ with the same image and both fix −1, 1, and i, they are the same, that
is, wμ ◦ w−1

μ = wν ◦ w−1
ν on Δ ∪ T . This implies that wμ|T = wν |T and P(μ) = P(ν).

Let
ρ∞(z)|dz| =

|dz|
|z|2 − 1

be the hyperbolic metric on Δ∞. For a quadratic holomorphic differential q = φdz2 in QD,
define its norm

‖q‖ = sup
z∈Δ∞

|φ(z)ρ−2
∞ (z)|.

Since wμ is conformal on Δ∞, we have that ‖Swμ‖ ≤ 6 (refer to [20]). This says that the
embedding π in (4.1) embeds the universal Teichmüller space T Q into a bounded set in the
complex Banach space QD.

Given a modulus of continuity ω(t). Consider the Teichmüller space T C1+ω. For any
τ = [μ] ∈ T C1+ω, (3.9) implies that we have a representation μ ∈ τ such that |μ(z)| ≤ Cω(1−|z|)
for all z ∈ Δ for some constant C > 0.

Given any point z ∈ Δ∞, let z∗ ∈ Δ be the reflection of z with respect to the unit circle.
Let r = 1 − |z∗|. For any 0 < β < 1, let

Ar,β = {z ∈ C | 1 − rβ < |z| < 1}.

Define

μr,β(ξ) =

⎧
⎪⎨

⎪⎩

μ(ξ)
Cω(rβ)

, ξ ∈ Ar,β ;

0, ξ ∈ C.

(4.2)

Since ω(·) is an increasing function, we have that ‖μr,β‖∞ ≤ 1.
Let wcμr,β be the normalized solution of the Beltrami equation (3.4) for c ∈ Δ. We still

use Swcμr,β to denote the coefficient of the holomorphic quadratic differential Swcμr,β . The
measurable Riemann Mapping Theorem implies that

f(c) = ρ−2
∞ (z)Swcμr,β (z) : Δ → C
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is an analytic function with upper bound 6. The Schwarz lemma implies that

|f(c)| = |ρ−2
∞ (z)Swcμr,β (z)| ≤ 6|c|, c ∈ Δ

since f(0) = 0. In particular, when c0 = Cω(rβ), we have that

|ρ−2
∞ (z)Swc0μr,β (z)| ≤ 6Cω((1 − |z∗|)β).

Note that c0μr,β(ξ) = μ(ξ) on Ar,β and 0 on C \ Ar,β .
Now consider the map wν = wμ ◦ (wc0μr,β )−1. By the composition formula, we have

ν =
μ − c0μr,β

1 − c0μr,βμ
θ, where |θ| = 1. (4.3)

This implies that ν(ξ) = 0 for all ξ ∈ Ar,β ∪ (C \ Δ). Thus wν is conformal on ξ ∈ Dr,β =
Ar,β ∪ (Ĉ \ Δ). The hyperbolic metric on the disk Dr,β is

ρr,β(ξ)|dξ| =
(1 − rβ)|dξ|

|ξ|2 − (1 − rβ)2
.

Since wν is a conformal map on Dr,β , we have that

|ρ−2
r,β(ξ)Swν(ξ)| ≤ 6, ∀ξ ∈ Dr,β .

Therefore, we have that for any ξ ∈ Ĉ \ Δ,

|ρ−2
∞ (ξ)Swν(ξ)| =

(1 − rβ)2(|ξ|2 − 1)2

(|ξ|2 − (1 − rβ)2)2
|ρ−2

r,β(ξ)Swν(ξ)| ≤ 6
(1 − rβ)2(|ξ|2 − 1)2

(|ξ|2 − (1 − rβ)2)2
.

When ξ = z, we have that |z| = 1/(1 − r),

|ρ−2
∞ (z)Swν(z)| ≤ C1r

2(1−β),

where C1 > 0 is a constant.
Since wν = wμ ◦ (wc0μr,β )−1, we have that

ρ−2
∞ (z)Swν(z) = ρ−2

∞ (z)Swμ(z) − ρ−2
∞ (z)Swc0μr,β (z).

Thus we have that

|ρ−2
∞ (z)Swμ(z)| ≤ |ρ−2

∞ (z)Swν(z)| + |ρ−2
∞ (z)Swc0μr,β (z)|

≤ C1(1 − |z∗|)2(1−β) + 6Cω((1 − |z∗|)β)

≤ C2

((

1 − 1
|z|

)2(1−β)

+ ω

((

1 − 1
|z|

)β))

, (4.4)

where C2 > 0 is a constant.
Replacing ω(t) by ε(t) for each [μ] ∈ T S in the above calculation, Inequality (4.4) becomes

|ρ−2
∞ (z)Swμ(z)| ≤ C2

((

1 − 1
|z|

)2(1−β)

+ ε

((

1 − 1
|z|

)β))

, (4.5)

Define
QD0 =

{
q = φdz2 ∈ QD

∣
∣
∣ sup
1<|z|≤r

|ρ−2
∞ (z)q(z)| → 0, r → 1

}
. (4.6)

Then we have an embedding

π : [μ] ∈ T S ↪→ Swμ ∈ QD0. (4.7)
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Combining with (3.13), we have a chain

BM0(Δ) P−→ T S π
↪→ QD0, (4.8)

where P is onto and π is an embedding. This fact combining with a similar argument to that
in the last two paragraphs in this section, we have

Theorem 4.1 ([13]) One can give the Bers complex manifold structure on T S.

We continue on the smooth case and will prove a similar result in the smooth case. We
already knew that if τ ∈ T C1+ω, then there are a representation μ ∈ τ and a constant C > 0
such that

|μ(z)| ≤ Cω(1 − |z|), for a.e. z ∈ Δ. (4.9)

We need to prove the converse.
Given μ ∈ BMω(Δ), we still consider wcμr,β with μr,β defined in (4.2). Then g(z) =

wcμr,β (z) is an analytic function defined on Δ∞ with g(∞) = ∞. Consider f(ξ) = 1/g(1/z).
Then it is an analytic function defined on Δ with f(0) = 0 and

f ′(ξ) = g′(z)
z2

g(z)2
. (4.10)

From the Measurable Riemann Mapping Theorem (Theorem 3.1), we know g(z) = z + b0 +
b1/z + · · · , so f ′(0) = 1. From the area theorem for univalent functions (see [20]), we have that

∣
∣
∣
∣(1 − |ξ|2)f ′′(ξ)

f ′(ξ)
− 2ξ

∣
∣
∣
∣ ≤ 4, ∀ξ ∈ Δ.

Since f(Δ) is a quasi-disk, from the Carathéodory theorem (see [24]), f or g can be extended
as a homeomorphism on Δ or Δ∞, respectively. Then (4.10) implies that g′ and f ′ have the
same modulus of continuity on T , which is the common boundary of both Δ and Δ∞. What
we have seen is that to study the modulus of continuity of the derivative of wcμr,β (z) on T , we
can use the model of Δ∞ with the coordinate ξ = 1/z. Under this model, we have that

∣
∣
∣
∣

(

1 − 1
|z|

)

Nwcμr,β (z)
∣
∣
∣
∣ ≤ 6.

Following this, we have that for any fixed z ∈ Δ∞, k(c) = (1 − 1/|z|)Nwcμr,β (z) is an analytic
function of c ∈ Δ with upper bound 6 and k(0) = 0. The Schwarz lemma implies that

∣
∣
∣
∣

(

1 − 1
|z|

)

Nwcμr,β (z)
∣
∣
∣
∣ ≤ 4|c|.

In particular, when c0 = Cω(rβ),
∣
∣
∣
∣

(

1 − 1
|z|

)

Nwc0μr,β (z)
∣
∣
∣
∣ ≤ 4ω

((

1 − 1
|z|

)β)

.

Remember that c0μr,β(ξ) = μ(ξ) on Ar,β and 0 on C \ Ar,β .
Since wν = wμ ◦ (wc0μr,β )−1 is conformal on Dr,β = Ar,β ∪ (Ĉ\Δ). Similar to what we have

done for the Schwarzian derivative, we have that
∣
∣
∣
∣

(

1 − 1
|z|

)

Nwμ(z)
∣
∣
∣
∣ ≤ C3

((

1 − 1
|z|

)1−β

+ ω

((

1 − 1
|z|

)β))

.
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Let z = re2πiθ, then we have that

|Dwμ(z) − Dwμ(e2πiθ)| ≤ C4

((

1 − 1
|z|

)1−β

+
∫ r

1

ω((1 − 1
s )β)

1 − 1
s

ds

)

.

(Note that C4 may depend on β.) Define

ω̂(t) = t1−β +
∫ t

0

ω(sβ)
s

ds. (4.11)

If ω̃(t) → 0 as t → 0 (⇐⇒ ω̃(1) < ∞), then Dwμ|T exists and is a ω̃-continuous function.
On the other hand, we have an explicit formula for

·
w

μr,β

= dwcμr,β /dc|c=0,

·
w

μr,β

(z) =
1

2πi

∫ ∫

C

μr,β(ξ)
z(z − 1)

ξ(ξ − 1)(ξ − z)
dξ ∧ dξ.

If 0 < c ≤ |μr,β(ξ)| ≤ C for all ξ ∈ Ar,β, then

k′(0) = N
·
w

μr,β

(z) �= 0.

The Keobe 1/4-Theorem implies that there is a constant C5 > 0 such that
∣
∣
∣
∣

(

1 − 1
|z|

)

Nwc0μr,β (z)
∣
∣
∣
∣ ≥ C5ω

((

1 − 1
|z|

)β)

≥ C5ω

(

1 − 1
|z|

)

.

So we have a constant C6 > 0 such that

|Dwμ(z) − Dwμ(e2πiθ)| ≥ C6

((

1 − 1
|z|

)1−β

+
∫ r

1

ω(1 − 1
s )

1 − 1
s

ds

)

. (4.12)

Define

ω̃(t) =
∫ t

0

ω(s)
s

ds. (4.13)

Thus, Dwμ|T is exact ω̂-continuous. Therefore, if we want ω̃(t) is in the same class as ω(t),
that is,

ω̃(t) = Cω(t), (4.14)

then ω(t)/t = Cω′(t), which implies that ω(t) ≈ tα for some 0 < α ≤ 1. In this case, ω̂(t) ≈ tβα

(when β closes to 1).
Concluding from our calculations we just did, we define

T C1+H =
⋃

0<α≤1

T C1+α (4.15)

as the Teichmüller space of all C1 circle diffeomorphisms whose derivative is Hölder continuous
functions. For q = φdz2 ∈ QD and 0 < α ≤ 1, define

‖q‖α = sup
z∈Δ∞

∣
∣
∣
∣

(

1 − 1
|z|

)−α

ρ−2
∞ (z)q(z)

∣
∣
∣
∣.

We define a subspace

QDH = {q = φdz2 ∈ QD | ‖q‖α < ∞ for some 0 < α ≤ 1}. (4.16)

It is a complex Banach vector space. From our above calculation, we have an embedding

π : [μ] ∈ T C1+H ↪→ Swμ ∈ QDH . (4.17)
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For the circle homeomorphism wμ|T , we can weld it by two conformal maps wμ defined on
Δ∞ and wμ∗

defined on Δ. Here we define μ∗(z) = μ(z∗)∗ on Δ∞ and 0 on Δ. Similarly,
we have that Dwμ∗ |T exists and is an ω̃-continuous function. Thus wμ|T = (wμ∗

)−1 ◦ wμ is a
C1+ω̃-diffeomorphism of T . In particular, when ω(t) = tα for some 0 < α ≤ 1, then ω̃(t) = tβ

for some 0 < β ≤ 1. Let
BMH(Δ) =

⋃

0<α≤1

BMα(Δ)

Thus we a chain
BMH(Δ) P−→ T C1+H π

↪→ QDH . (4.18)

Now we are ready to give the Bers complex manifold structure on T C1+H . We will still
work on it for arbitrary modulus of continuous ω, and eventually see, why it only works for the
Hölder case.

Let QD1+ω(2) be the open ball of QD1+ω of radius 2. Following Ahlfors and Weill [3], for
any q = φdz2 in this ball, we define

μ(z) = −1
2
φ

(
1
z

)(
z

z

)2(

1 −
∣
∣
∣
∣
1
z

∣
∣
∣
∣

2)2

for z ∈ Δ; 0 for z ∈ Δ∞.

Let wμ be the normalized solution of the Beltrami equation (3.4) with the Beltrami coefficient μ.
Take two independent solutions w1 and w2 of the ordinary differential equation

w′′ = −φ

2
w on Δ∞.

Then we have that

wμ(z) =
w1(z)
w2(z)

for z ∈ Δ∞;
w1( 1

z ) + (z − 1
z )w′

1(
1
z )

w2( 1
z ) + (z − 1

z )w′
2(

1
z )

for z ∈ Δ

and Swμ = φ on Δ∞. Since μ ∈ BMω(Δ), we have a holomorphic embedding

ι(q) = μ(q) : QD1+ω(2) → BMω(Δ).

As we have already seen that P(μ) = [wμ|T ] ∈ T C1+ω̃(Δ), so in order that the following
chain (4.19) stays in the same class we need ω(t) = tα for some 0 < α ≤ 1 and then ω̃(t) = tα̃

for some 0 < α̃ ≤ 1. In this case, we have a homeomorphism

P ◦ ι : QDH(2) → U = h0(QDH(2)) ⊂ T C1+H . (4.19)

Let h0 be the inverse. Then (h0,U) is a local chart at the basepoint P(0).
Given any point τ = P(μ) in T C1+H for μ ∈ BMH(Δ). Consider wμ and Swμ. For any

P(ν) ∈ U for ν ∈ BMH(Δ), consider the map wδ = wμ ◦ wν , then δ ∈ BMH(Δ). It defines
a homeomorphism P(ν) → P(δ) mapping U to Uτ homeomorphically. Let βτ be the inverse of
this homeomorphism and

hτ = h0 ◦ βτ : Uτ → QDH(2).

Then (hτ ,Uτ ) is a chart at τ . Thus we have a cover of charts on T C1+H(Δ),

C = {(hτ ,Uτ )}τ∈T C1+H ,

such that the transition map for any two charts is

hτ,τ ′ = hτ ◦ h−1
τ ′ : hτ ′(QDH(2)) → hτ (QDH(2))
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whenever Uτ ′ ∩ Uτ �= ∅.
Let τ = P(μ) and τ ′ = P(μ′) for any μ, μ′ ∈ BMH(Δ) and let P◦ι(q) = [μ(q)] for q ∈ QDH .

From our above calculation, one can see the transition map is

hτ,τ ′(q) = q + (wμ(q))∗(S((wμ)−1 ◦ wμ′
)).

From the Measurable Riemann Mapping Theorem (Theorem 3.1), it is a holomorphic map.
Thus the cover of charts C gives us the Bers type complex manifold structure model on the
complex Banach space QDH . Under this Bers type complex manifold structure, the smooth
Teichmüller space T C1+H becomes a sub-complex manifold of the universal Teichmüller space
T Q and a sub-complex manifold of the universal aymptotically conformal Teichmüller space
T S. We have already proved the following theorem.

Theorem 4.2 We can give the Bers complex manifold structure on the smooth Teichmüller
space T C1+H . And it is the largest space in the space of all C1 circle diffeomorphisms on which
we can assign the Bers complex manifold structure.

5 Teichmüller’s Metric and Kobayashi’s Metric

In the previous section, we have shown that the smooth Teichmüller space T C1+H can be given
the Bers complex manifold structure which is compatible with the Bers complex manifold struc-
ture of the universal Teichmüller structure T Q and with the Bers complex manifold structure
of the universal asymptotically conformal Teichmüller structure T Q. As a subspace, T C1+H

has an induced Teichmüller’s metric dT (·, ·) on it. As a complex manifold, it has Kobayashi’s
metric on it. In this section, we will prove they are the same.

First let us give a brief introduction of Kobayashi’s metric. Consider the unit disk Δ as a
hyperbolic Riemann surface, its hyperbolic metric

dΔ(z, w) = tanh−1(z, w) =
1
2

log
1 + |z−w|

|1−zw|

1 − |z−w|
|1−zw|

, z, w ∈ Δ. (5.1)

is Kobayashi’s metric on it. Consider a connected complex manifold M modeled by a complex
Banach space, let H(Δ, M) be the space of all holomorphic maps from Δ into M . Kobayashi’s
pseudo-metric dK(·, ·) on M is defined to be the largest pseudo metric on M such that

dK(f(z), f(w)) ≤ ρΔ(z, w), ∀z, w ∈ Δ and ∀f ∈ H(Δ, M). (5.2)

Another way to describe Kobayashi’s metric on M is as follows. Given p, q ∈ M , consider
the subspace Hp,q consisting of all f ∈ H(Δ, M) such that f(0) = p and f(s) = q for some
s ∈ Δ. Let r = inff∈Hp,q

|s| and

d1(p, q) =
1
2

log
1 + r

1 − r
. (5.3)

Note that if Hp,q = ∅, then d1(p, q) = ∞. Now consider the space

Cn = {p0 = p, p1, . . . , pn−1, pn = q}

of n-chains connecting p, q ∈ M and define

dn(p, q) = inf
Cn

n∑

i=1

d1(pi−1, pi). (5.4)
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It is clear that dn+1(p, q) ≤ dn(p, q) for all n > 0 and p, q ∈ M . Kobayashi’s pseudo-metric is

dK(p, q) = lim
n→∞

dn(p, q), p, q ∈ M. (5.5)

By using this description of Kobayashi’s metric, one can show that for the complex plane C, its
Kobayashi’s pseudo metric is 0 and that for the hyperbolic disk Δ, its Kobayashi’s pseudo metric
is the hyperbolic metric. Furthermore, using this description, one can see that a holomorphic
map contracts Kobayashi’s metrics. Precisely, let M and M ′ be two complex manifolds, let
F : M → M ′ be a holomorphic map, then

d′K(F (p), F (q)) ≤ dK(p, q), ∀p, q ∈ M,

where dK(·, ·) and dK(·, ·) are Kobayashi’s metrics on M and M ′, respectively.
It is well-known among experts that when M = T Q the universal Teichmüller space,

Kobayashi’s metric and Teichmüller’s metric coincide, that is, dK(·, ·) = dT (·, ·) (see [7, 8,
11, 25]). It is also known that when M = T S the universal asymptotically conformal Te-
ichmüler space, Kobayashi’s metric and Teichmüller’s metric coincide, that is, dK(·, ·) = dT (·, ·)
(see [6, 14]). We now prove that

Theorem 5.1 For M = T C1+H , Kobayashi’s metric and Teichmüller’s metric coincide.

Let us use dT,H(·, ·) and dK,H(·, ·) to denote Techmüller’s metric and Kobayashi’s metric
on T C1+H , respectively. Then for any two points τ, η ∈ T C1+H ,

dT,H(τ, η) = inf{dBM(μ, ν) | μ, ν ∈ BM(Δ),P(μ) = τ,P(ν) = η},

where

dBM(μ, ν) = tanh−1

∥
∥
∥
∥

μ − ν

1 − μν

∥
∥
∥
∥
∞

=
1
2

log
(1 + ‖ μ−ν

1−μν ‖∞
1 − ‖ μ−ν

1−μν ‖∞

)

.

Furthermore, we have

dT,H(τ, η) =
1
2

inf
μ∈τ,ν∈η

log K(wμ ◦ w−1
ν ) =

1
2

inf
μ∈τ,ν∈η

log K(wμ ◦ (wν)−1).

Let dK(·, ·) and dT (·, ·) be Teichmüller’s metric and Kobayashi’s metric on the universal Te-
ichmüller space T Q. From the definition, we have that

dK,H(τ, η) ≥ dK(τ, η) = dT (τ, η) = dT,H(τ, η)

for any τ, η ∈ T C1+H . Thus we have the easy part in the proof of Theorem 5.1,

Lemma 5.2 For any two points τ, η ∈ T C1+H ,

dK,H(τ, η) ≥ dT,H(τ, η). (5.6)

The hard part in the proof of Theorem 5.1 is

Lemma 5.3 For any two points τ, η ∈ T C1+H ,

dK,H(τ, η) ≤ dT,H(τ, η). (5.7)

We will divide the proof of Lemma 5.3 into trhee subsections. For any ν ∈ η ∩ T C1+H , we
can define a right translation (biholomorphicmap) [wμ|T ] → [wμ ◦ (wν)−1|T ] on T C1+H which
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moves η to P(0) = [0] and preserves both Teichmüller’s metric and Kobayashi’s metric. Thus
to prove (5.7) for any points τ, η ∈ T C1+H , we only need to prove

dK,H([0], τ ) ≤ dT,H([0], τ ). (5.8)

Before to prove this inequality, we review some properties in Teichmüller theory without proofs.
The reader who is interested in them may refer to [12, 19, 26].

5.1 Extremal Point

Suppose φ is a holomorphic function on Δ. Let

‖φ‖ =
∫

Δ

|φ(z)|dxdy, z = x + iy.

Given a point τ = [μ] ∈ T Q, let

k0 = inf
μ∈τ

‖μ‖∞.

From the normal family theory in quasiconformal theory, we have a μ0 ∈ τ such that ‖μ0‖∞ =
k0. We call μ0 an extremal point in τ .

A sequence {ϕn} of holomorphic functions is called a Hamilton sequence for μ0 if ‖φn‖ = 1
and limn→∞ sup

∫
Δ

μ0ϕndxdy = ‖μ0‖∞.

Theorem 5.4 (Hamilton–Krushkal Theorem) Given any point τ = [μ] ∈ T Q, if μ0 ∈ τ is an
extremal point, then μ0 has a Hamilton sequence {φn}.

5.2 Frame Point

Given a point τ = [μ] ∈ T Q, an element μ1 ∈ τ is called a frame point if there is a compact set
D ⊂ Δ such that

‖μ1|(Δ \ D)‖∞ < k0.

Lemma 2.9 says that if τ �= [0] ∈ T C1+H , then it always has a frame point.

Theorem 5.5 (Strebel’s Frame Mapping Theorem) For ant τ �= [0] ∈ T Q, if it has a frame
point, then it has a unique extremal point μ0 in the Teichmüller form,

μ0 = k0
|ϕ0|
ϕ0

,

for a holomorphic function ϕ0 with ‖φ0‖ = 1. Moreover, for any ν ∈ τ ,

K0 =
1 + k0

1 − k0
≤

∫

Δ

|1 + ν ϕ0
|ϕ0| |

2

1 − |ν|2 |ϕ0|dxdy.

5.3 Holomorphic Functions

Suppose {ϕn} is a sequence of holomorphic functions with ‖φn‖ = 1. Suppose D ⊂ Δ is a
compact subset. We claim that {ϕn} is uniformly bounded on D. We prove the claim by
contradiction. Suppose not, then there exists a sequence of points {zn} ⊂ D and a subsequence
of {ϕn}, still denoted by {ϕn}, such that |ϕn(zn)| ≥ n. Since D is compact, {zn} has an
accumulation point z0 ∈ D. Then there exists a subsequence of {zn}, still denoted by {zn},
such that zn converges to z0. Choose a small r > 0 such that the closed disk Dr(z0) = {|z−z0| ≤
r} ⊂ Δ. Then zn ∈ Dr/4(z0) when n is large enough, say n > N .
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For any n > N , one can apply the Cauchy integral formula for ϕn(zn) to obtain

n ≤ |ϕn(zn)| ≤ 1
2π

∫

|z−z0|=r′

|ϕn(z)|
|z − zn|

r′dθ

for each r
2 ≤ r′ ≤ r. And then

n ≤ 1
2π

∫

|z−z0|=r′
|ϕn(z)|4

r
rdθ =

2
π

∫

|z−z0|=r′
|ϕn(z)|dθ.

Multiplying the previous inequality by r′ and integrating both sides in radial direction from r
2

to r, we obtain

3
8
nr2 = n

∫ r

r
2

r′dr′ ≤ 2
π

∫ r

r
2

r′
∫

|z−z0|=r′
|ϕn(z)|dθdr′ ≤ 2

π
‖ϕn‖ =

2
π

.

Hence 3
8nr2 ≤ 2

π for any n > N . This is a contradiction when n is large enough. We proved
the claim.

Applying the Cauchy integral formula for derivatives {φ′
n}, one can see it is also uniformly

bounded on D and thus {φn} is a uniformly bounded equi-continuous family. The Ascoli–Arzela
Theorem implies {φn} has a convergent subsequence, still denoted as {φn}, on D. Taking
an increasing sequence of compact sets {Dm} such that Δ =

⋃
m Dm, we get a convergent

subsequence of {φn}, still denoted as {φn}, on Δ. Suppose φ0 is its limiting function. By
Fatou’s Lemma, ‖φ0‖ ≤ 1.

5.4 The Proof of Lemma 5.3

For any τ ∈ T C1+H , take μ ∈ τ in Lemma 2.9. Let k = ‖μ‖∞. Let

Δn =
{

z ∈ Δ
∣
∣
∣
∣ |z| < rn = 1 − 1

n

}

and An = Δ \ Δn.

Let ln = ‖μ|An‖∞. Lemma 2.9 implies that ln < k0 for n large enough, say n > N . So μ is a
frame point in τ . This implies that τ has a unique extremal point μ0 in the Teichmüller form
μ0 = k0|φ0|/φ0 for some holomorphic function φ0 with ‖φ0‖ = 1. Moreover, 0 < k0 < k.

Let fn(z) = wμ(rnz). It maps Δ to a quasi-disk Dn = fn(Δ). Let gn : Dn → Δ be
the Riemann mapping. Then hn = gn ◦ fn is a quasiconformal self-homeomorphism of Δ and
τn = [hn|T ] is in T Q. From Lemma 2.9, for N large enough, every point τn has a frame point
for n > N . Thus for every n > N , τn has a unique extremal point μn,0 in the Teichmüller form,

μn,0 = kn,0
|φn,0|
φn,0

with a holomorphic function φn,0 with ‖φn,0‖ = 1. By our definition, one can see that kn,0 ≥ k0

for all n > N .
Now we define Fn(z) = g−1

n ◦ wμn,0(z/rn) for z ∈ Δn and Fn(z) = wμ(z) for z ∈ An. It
agrees on the circle ∂Δn. Thus it is a quasiconformal self-homeomorphism of Δ. The Beltrami
coefficient νn of Fn is μn,0(z/rn) on Δn and μ on An. Thus νn ∈ τ ∈ T C1+α. And ‖νn‖∞ > k0.
We have a holomorphic map

p(c) =
[

c
νn

‖νn‖∞

]

: Δ → T C1+α
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such that p(0) = [0] and p(‖νn‖∞) = τ . This implies that

dK,α([0], τ ) ≤ d1([0], τ ) ≤ 1
2

log
1 + ‖νn‖∞
1 − ‖νn‖∞

.

Our final step is to prove ‖νn‖∞ → k0 as n → ∞.
From Subsection 5.3, there exists a subsequence of {ϕn,0}, still denoted by {ϕn,0}, con-

verging uniformly to a holomorphic function ϕ̂ on any compact subset D ⊂ Δ. Furthermore,
‖φ̂‖ ≤ 1. We claim that ‖φ̂‖ > 0. We prove the claim by contradiction.

Suppose ‖ϕ̂‖ = 0. Then {ϕn,0} has a subsequence, we still denote by {φn,0}, converging
uniformly to zero on any compact subset D ⊂ Δ. For any ε > 0, we first choose a compact
subset D ⊂ Δ such that

‖μ|(Δ \ D)‖∞ < ε.

There exists N1 > N such that ∫

D

|ϕn,0(z)|dxdy ≤ ε

and such that D ⊂ Δn for all n > N1.
From Subsection 5.2,

Kn,0 =
1 + kn,0

1 − kn,0
≤

∫

Δ

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy.

This says

Kn,0 ≤
∫

Δ\D

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy +
∫

D

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy.

Then, for K = (1 + k)/(1 − k),

Kn,0 ≤
∫

Δ\D

1 + ε

1 − ε
|ϕn,0|dxdy + K

∫ ∫

D

|ϕn,0|dxdy,

and hence

Kn,0 ≤ 1 + ε

1 − ε

∫

Δ

|ϕn,0|dxdy +
(

K − 1 + ε

1 − ε

) ∫ ∫

D

|ϕn,0|dxdy.

Therefore

1 < k0 < kn,0 ≤ 1 + ε

1 − ε
+

(

K − 1 + ε

1 − ε

)

· ε.

This is a contradiction when ε is sufficient small. Therefore ‖ϕ̂‖ > 0.
Now let μ̂ = k̂ |ϕ̂|

ϕ̂ , where k̂ = limn→∞ kn,0 (by taking a limit of a convergent subsequence if
it is necessary). Then μn,0 → μ̂ a.e. on Δ. By the convergence theorem (see [20, Theorem 4.6])
of families of quasiconformal maps, we obtain

lim
n→∞

wμn,0 |T = wμn,0 |T = wμ|T = wμ̂|T.

By the uniqueness of the extremal point in τ , k̂ = k0. Thus kn,0 → k0 as n → ∞ for a
subsequence of n’s. We completed the proof of Lemma 5.3. Both Lemmas 5.2 and 5.3 give a
proof of Theorem 5.1.
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Remark 5.6 (Added Remark) We can only give the Bers complex Banach manifold structure
on the union space T C1+H of T C1+α over all 0 < α ≤ 1 due to the estimation before (4.11),
which is the largest space in the space of all C1 orientation-preserving circle diffeomorphisms on
which we can do so (see Theorem 4.2). Moreover, we proved that Kobayashi’s metric and proved
that Teichmüller’s metric are the same on T C1+H with the Bers complex manifold structure
(Theorem 5.1). For a smaller space, we noticed recently that in [21], Matsuzaki has a similar
study and claimed that the Teichmüller space T C1+α for any fixed 0 < α ≤ 1 can be given the
Bers complex Banach manifold structure. If it is the case, then our proof of Theorem 5.1 works
in this case too.
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1607.06300

[22] Nag, S.: A period mapping in the universal Teichmüller space. Bulletin of the American Mathematics

Society, 26(2), 280–287 (1992)

[23] Nag, S., Sullivan, D.: Teichmüller theory and the universal period mapping via quantum calculus and the

H1/2 space on the circle. Osaka Journal of Mathematics, 32(1), 1–34 (1995)

[24] Pommerenke, C.: Boundart Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992

[25] Royden, H.: Automorphisms and isometries of Teichmüller space. In: Advances in the Theory of Riemann

Surfaces, 1969, Stony Brook Conference, Ann. of Math. Studies, Vol. 66, Princeton Univ. Press, 369–383,

1971

[26] Strebel, K.: Quadratic Differentials, Springer-Verlag, Berlin, 1984


