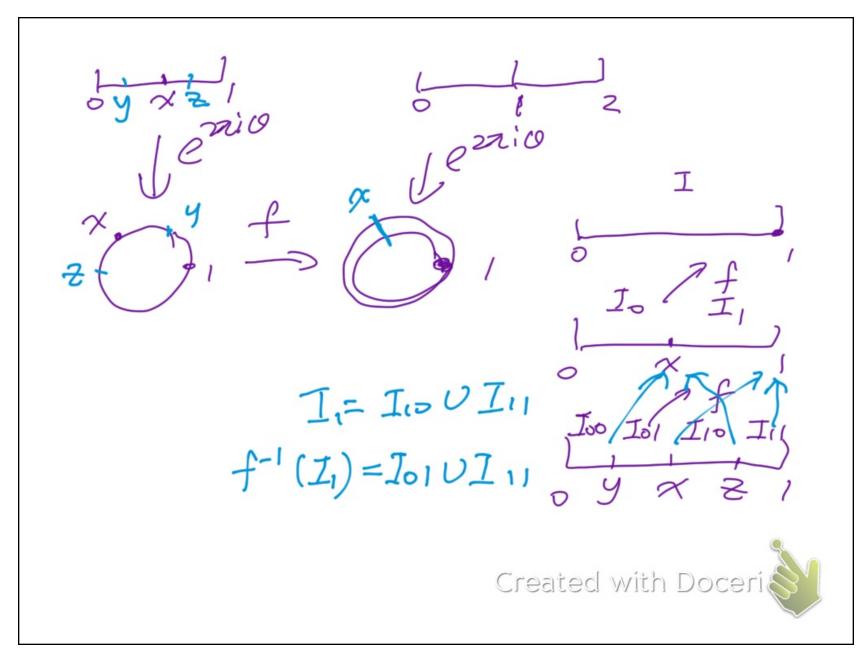
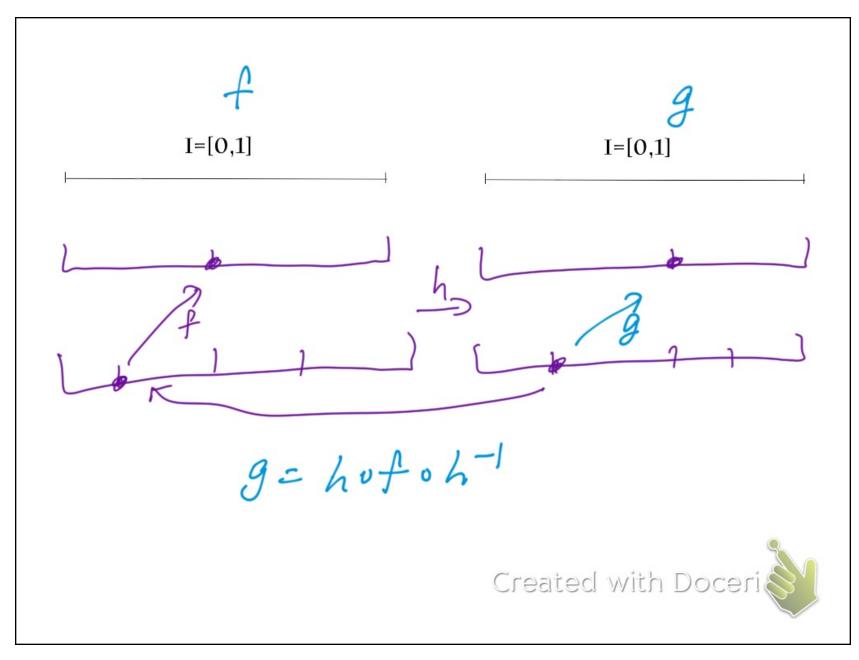
SYMMETRIC RIGIDITY FOR CIRCLE ENDOMORPHISMS HAVING BOUNDED GEOMETRY

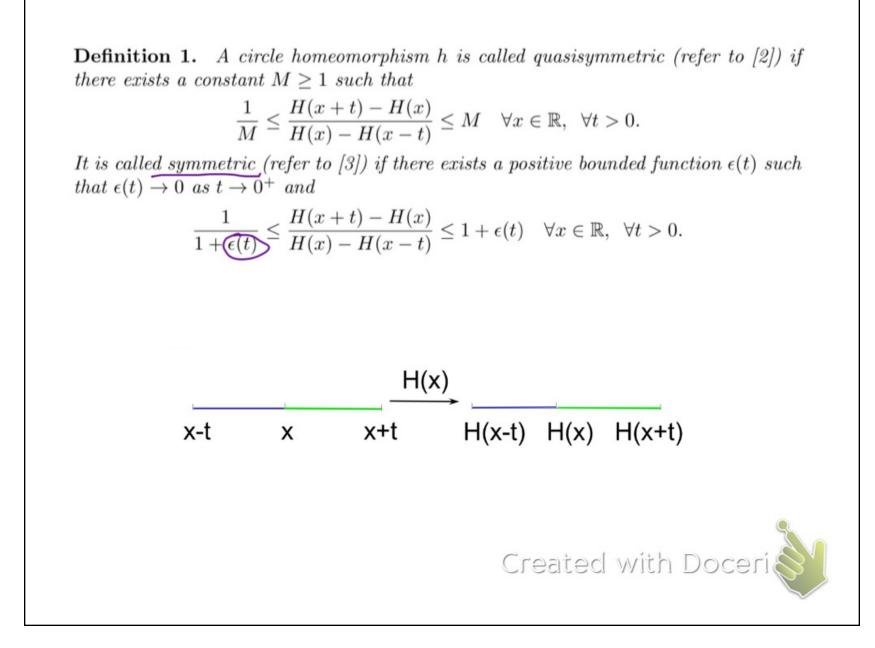
JOHN ADAMSKI, YUNCHUN HU, YUNPING JIANG, AND ZHE WANG

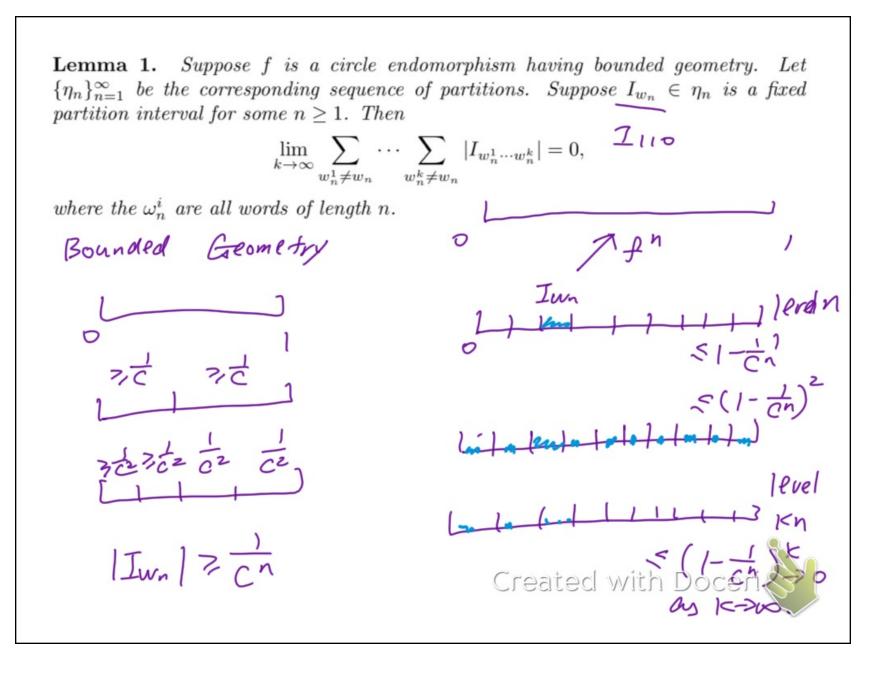
Theorem 1 (Main Theorem). Suppose f and g are two circle endomorphisms of the same degree $d \ge 2$ having bounded geometry such that f(1) = g(1) = 1 and suppose f and g both preserve the Lebesgue measure on the unit circle. Let h be the conjugacy from f to g with h(1) = 1. That is, $h \circ f = g \circ h$. If h is a symmetric homeomorphism, then h must be the identity.



Bounded Grometry Ι f Io I_1 I_{11} Ioo Io1 I10 Iwn I100 \mathbf{I}_{m} I000 I I001 I I010 I I011 I101 Iwnd Zic Iwn Markov partitions of the unit interval for a degree 2 covering map f(z). Leb. Inv. Wn=length n word of 1 Im 1= 1 Jown + Imm) o's and i's Construction Iwn = Iwno U Iwni -(Inn)= Iown UIIwn 1=1, In -1 +







$$X = \{x \in [0,1] \mid \exists I_k^x = [a_k, b_k], \lim_{k \to \infty} a_k^x = \lim_{k \to \infty} b_k^x = x, \lim_{k \to \infty} \frac{|h(I_k^x)|}{|I_k^x|} = \Phi\}$$

Lemma 2. Suppose f and g are both circle endomorphisms having bounded geometry. Then X is a non-empty subset of T.

$$\boxed{D} \boxed{E} = \infty \qquad \lim_{\substack{k \to \infty \\ k \to \infty}} \frac{|h|[I_{k}]|^{e_{1}}}{|I_{k}| \to 0} = \infty \qquad \lim_{\substack{k \to \infty \\ k \to \infty}} a_{k} = x \\ \boxed{E} \boxed{E} < \infty \qquad \text{and} \qquad a = b = x \\ \boxed{Created with Doceri}}$$

3, 10 -00 and a<b. h(a) I=Ca, LJ $\overline{\Phi} = \lim_{k \to \infty} \frac{(h\overline{\mu})}{|I_k|} = \lim_{k \to \infty} \frac{h(b_k) - ha}{b_k - c}$ CI hll T (hlz', = Ø => ICX Created with Docer

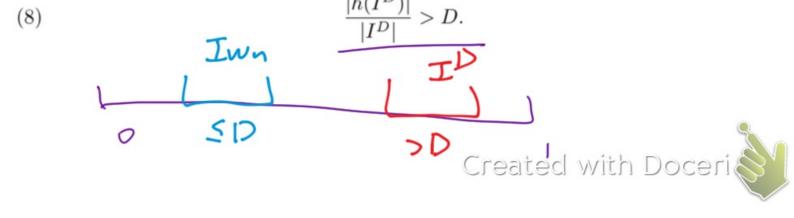
Lemma 3. Suppose f and g are both circle endomorphisms having bounded geometry and both preserve the Lebesgue measure m. Then X is dense in [0,1]. That is, $\overline{X} = [0,1]$.

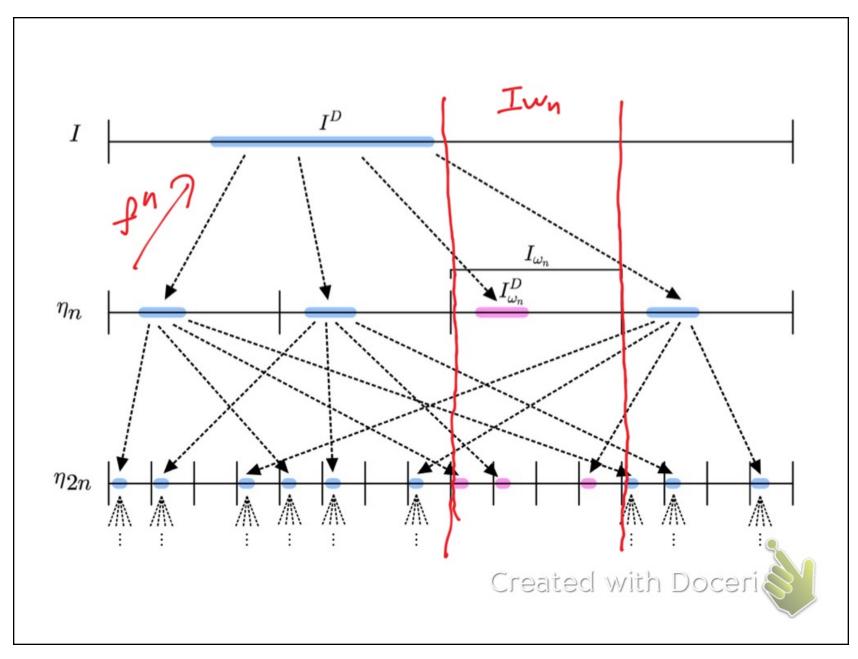
Proof. We will prove that for any $n \ge 1$ and for any partition interval $I_{w_n} \in \eta_n$, $I_{w_n} \cap X \ne \emptyset$. It will then follow from inequality (3) that $\overline{X} = [0, 1]$. We prove it by contradiction.

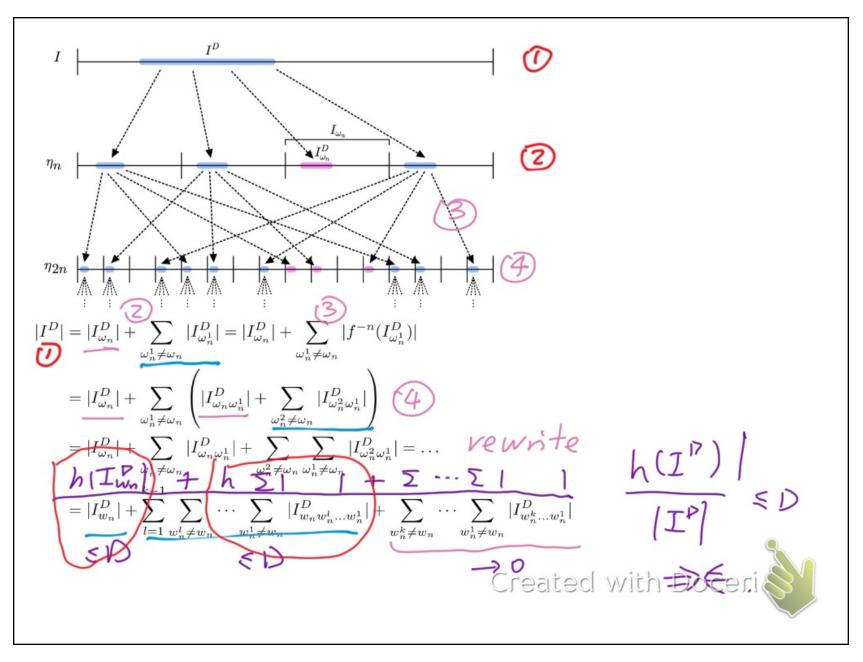
Assume we have a partition interval I_{w_n} such that $I_{w_n} \cap X = \emptyset$. Then we can find a number $D < \Phi$ such that

(7)
$$\frac{|h(I)|}{|I|} \le D \leq \underline{\Phi}$$

for all $I \subset I_{w_n}$. Since $X \neq \emptyset$, we have an interval $I^D \subseteq [0, 1]$ such that $|h(I^D)|$

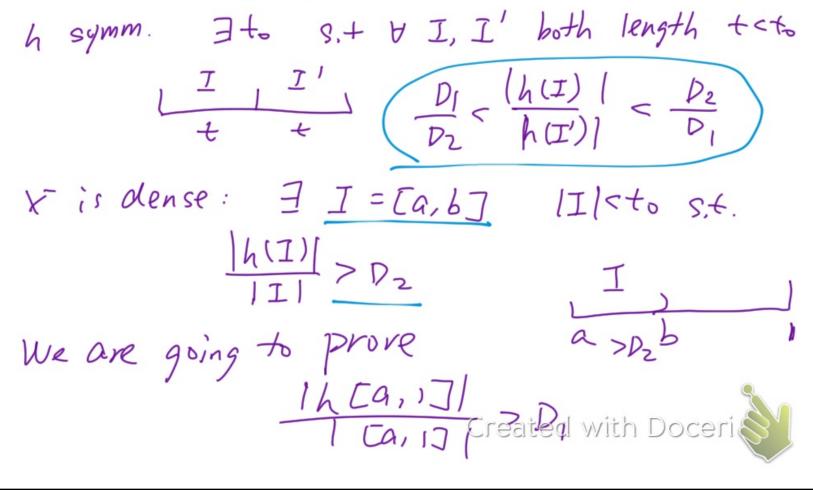


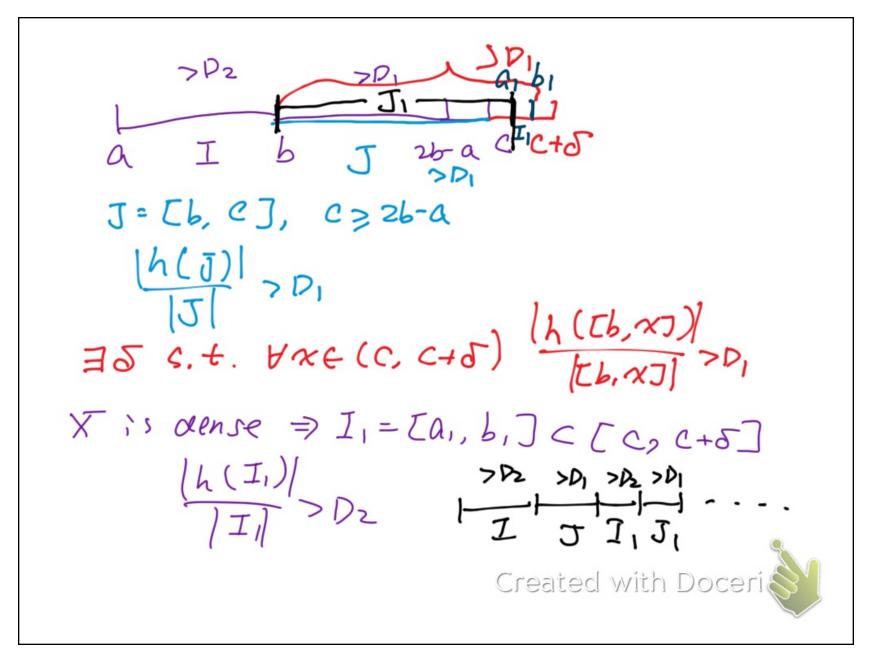


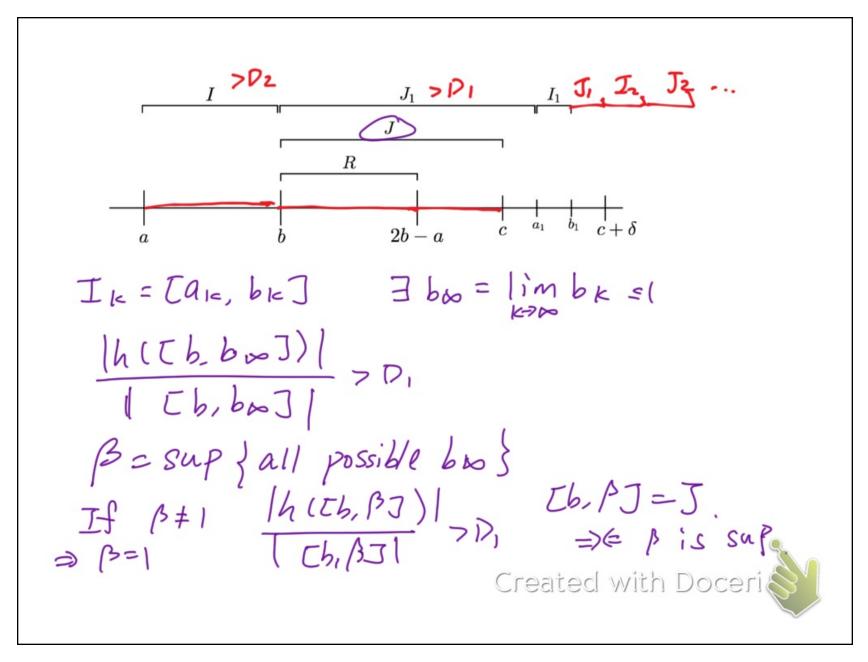


Proof of Theorem 1. We will prove that $\Phi = 1$. Equivalently, we will prove that $\Phi > 1$ cannot happen, regardless of $\Phi < \infty$ or $\Phi = \infty$.

We proceed with a proof by contradiction. Assume $\Phi > 1$ (possibly ∞). Then we have two numbers $1 < D_1 < D_2 < \Phi$.







h([a,1])/ >D, ([a,1])/ 1h (Co, 6J)) (Co, 6J) >D, ⇒€ \$ =1 Created with Doceri