Teichmüller's metriz and Kobayashi's metriz on the smooth Teichmüller Space. Yanping Jiang city University of New York A talk given in The summer seminar on guasiconformal mappings and Teichmüller spaces Nanjing University of Science and Technology August 10, 2021 9:30 am - 10:30 am

let I0,0 = [0,1] $I_{n,k} = \left(\frac{k}{2^{n}}, \frac{k+i}{2^{n}}\right), \quad \text{osk sen-i}$ Then In-1, k = In, 2k U In, 2k+1, OSR E2"-1 1 n = 10 1/2 0 1/4 1/2 1/4 1 two new points $= \frac{1}{1+e^{\xi(\frac{1}{2}n)}} \left| h(\underline{I}_{n-1,k}) \right| \leq \left| h(\underline{I}_{n,j}) \right| \leq \frac{1}{1+e^{\xi(\frac{1}{2}n)}} \left| h(\underline{I}_{n-1,k}) \right|$ j= zk or zktl. $(4) \frac{n}{\Pi} \frac{2}{1+e^{\varepsilon(\frac{1}{2}\varepsilon)}} \frac{|f_{k}(\underline{I}_{m,k})|}{|\underline{I}_{m,k}|} \leq \frac{|f_{k}(\underline{I}_{n,k})|}{|\underline{I}_{m,k}|} \leq \frac{n}{|\underline{I}_{m,k}|} \frac{2}{(\varepsilon_{m+1})! + e^{-\varepsilon(\frac{1}{2}\varepsilon)}}{|\underline{I}_{m,k}|} \frac{|f_{k}(\underline{I}_{m,k})|}{|\underline{I}_{m,k}|}$ Im, l Im, l I I I I I N, k for any In, k C Im, l Consider the infinite product $S = \prod_{i=1}^{\infty} \frac{1+e^{\epsilon(\frac{1}{2}i)}}{2}$ (2)

If S is convergent, then

$$\begin{cases} \log \frac{|f_{n}(I \cup w_{n})|}{|I \cup w_{n}|} \int_{N=1}^{10} \int_{$$

In purticular, of E(t)=to, ocds1, Then €(t)=ct² ⇒ R o a CH2 diffeomorphism. In general Elt) \$ Eft). Actually Elt) \$ E(4) $\iff \mathcal{E}(t) = t^{\alpha}$. In general, a genasisymmetric homeormorphism (or symmetric homeomorphism) is not differentiasie or even totally singular. Proposition 2 (The kest estimated geasisymmetric distortion) Suppose h: [0,1] > [0,1], h(0)=0, h(1)=1, Ba M-quasisymmetric homeomorphism. Then $|h(x)-x| \leq M-1, \forall x \in [0,1]$ The bound M-1 B The Kest sharpest estimation. (see the paper for a detailed proof) (4)

Now let us back to circle homeomorphism h (we will think the either on TT, or R or [01]/001)

A) Beurling-Ahlfor's extension. Here we Think h on TR

H(x,y) = u + iv $u = \frac{1}{2} \int_{0}^{1} \left(h(x + ty) + h(x - ty) \right) dt = \frac{1}{2y} \int_{0}^{1} h(t) dt$ $v = \frac{1}{y} \left(\int_{x}^{x+y} h(t) dt - \int_{y-y}^{x} h(t) dt \right)$ \Rightarrow H(z) = H(z), H|R = R $\frac{|\mu_{\chi}(z)|}{H_{z}} = \frac{H_{\overline{z}}}{H_{z}} |z| \leq \left(\circ \left(e^{\frac{\mathcal{E}(y)}{-1}} \right) \right)$ ECE(y).

(5)

+==×+yi

Proposition 3. Suppose
$$h \in C^{HW}$$
 then
 $\left[\mathcal{U}_{g}(z) \right] \leq C \cup (1-r) \quad \text{orrel}, z \in \mathbb{C}$
(Here we think $h \gg m T$)
(at $BN(\Delta) = \text{the unit ball of } L^{(0)}(\Delta)$
 $d_{BM}(\Delta) = \text{the unit ball of } L^{(0)}(\Delta)}$
 $d_{BM}(\Delta) = \text{the unit b$

let Ar= Sz /1-ra/2/01/ ocrc1. For a modulus of continuity w(+), let BM (a) = SueBM(a) 11,41 a sc w(1-r)/ Proposition 4 P: BM (a) -> Te + W B. that onto and $\mathcal{O}(BM^{W}(OI)) > TC^{HW}$ For a general $\mu \in \mathcal{BM}^{w}(\mathfrak{S})$, we have only $w_{\mu}|T \in \mathbb{C}^{H \cdot \widehat{W}}$. for $\widehat{\omega}(t) = t^{1-\beta} + \widehat{\omega}(t^{\beta})$ $S_{0}^{k} \xrightarrow{w(t^{\beta})} dt, oc \beta < 1$ => We may not have =" Our estimation re-verify that $\mathcal{P}(\mathcal{BM}(\sigma)) = TS$ where BM° (a) = SuEBM(a) IIMArll , >0, r>1 $\overline{7}$

c) Bers embedding.

$$\forall \mu \in BM(a)$$
, let
 $\hat{\mu}(e) = \int_{a}^{a} \mu(e), z \in a$
 $\hat{\mu}(e) = \int_{a}^{a} \mu(e), z \in a$
 $\hat{\mu}(e) = \int_{a}^{a} \frac{1}{e} e a = e^{-1}(a)$.
 $(e^{-1}) = \int_{a}^{a} \frac{1}{e} e^{-1} \frac{1}{e} e^{-1}(a) = \int_{a}^{a} \frac{1}{e} e^{-1}(a) =$

L: Z=[N] ETQ > SW" EQD Then B Ile Bers embedding such That $i(TQ) \leq B_{c} \subset QD$ B6 is the ball of radius 6 centered at U. $[et QD'' = \{ \{ e Q P | | \varphi(e) p_{b}(e) | \leq C W(1 - \frac{1}{|e|}) \}$ for a modulus of continuity with. Then we have for $c = [h] \in Te^{+\omega}$, $\left| S w^{\mu}(z) f_{\mu}^{-2}(z) \right| \leq C \left(1 - \frac{1}{|z|} \right)^{2(1-\beta)} + w \left(\left(1 - \frac{1}{|z|} \right)^{\beta} \right)$ South. ~ 1<B<1 $\Rightarrow \iota(z) \in QD$ $\widetilde{\omega} = t^{2(1-\beta)} + \omega(t^{\beta})$ 9

Consider B) and c) if we want with, with, with m the same class of modulis of continuity, then w(t) = to (=) $\widehat{\omega}(t) = t^2$, $\widetilde{\omega}(t) = t^2 \notin are all Hölder)$ consider TeHH= UTEHZ OSZEI $BM^{H}(\Delta) = UBM^{d}(\Delta)$ $QD^{H} = UQD^{(a)}$

Then we have P: BM^H(2) \rightarrow TC^{HH} $\stackrel{i}{\longrightarrow}$ QH^H and $\mathcal{P}(BM^{H}(2)) = TC^{I+H}$ Thus we have the Bers complex manifold structure on TC^{HH} such that \mathcal{O} B a holomorphic split submersion. [0]

 $d_{BM}(\mu, \omega) = \left(a_{n}h^{-1}\left(\left\|\frac{\mu-\omega}{1-\mu\omega}\right\|_{6}\right)\right)$ induces the Terchmüller metric on TQ $d_T(\tau, \tau') = mf \S d_{BM}(u, v) \left[P(w) \in \tau, P(v) \in \tau' \right]$ dT, H he The restriction of dT on TCHH. Since TCHH is a complex Banach man. fold, it has a natural Kobayeshi metriz dK,H which is the largest pseudo metric on TeHH such that $d_{k,(f(z),f(w))} \leq f_{a}(z,w), z, w \in O$ for any holomorphic map f: a > Tett. where $P_{\Delta}(z, w) = (a_{1}h^{-1}(z, w)) = \frac{1}{2} \log \frac{(1+|\frac{z-w}{1-zw}|)}{|1-|\frac{z-w}{1-zw}|}$ he the hyperbolic metric on is. 1\$

Then we have

 $\frac{\text{lemma 1}}{\text{d}_{K,H}(z,z') \ge \text{d}_{T,H}(z,z')}$ $\frac{\text{d}_{K,H}(z,z') \ge \text{d}_{T,H}(z,z')}{\text{Proof. Since $Te^{HH} \subset TQ$}$ $\Rightarrow \quad \text{d}_{K,H}(z,z') \ge \text{d}_{K}(z,z') = \text{d}_{T,H}(z,z') = \text{d}_{T,H}(z,z')$ $\frac{\text{lemma 2}}{\text{d}_{K,H}(z,z') \le \text{d}_{T,H}(z,z')}$

Lemma 1 and Lemna 2 => Theorem: On TEHH, dK, H=dT, H.

We need to prove lemma 2.

(12)

moves η to $\mathcal{P}(0) = [0]$ and preserves both Teichmüller's metric and Kobayashi's metric. Thus to prove (5.7) for any points $\tau, \eta \in \mathcal{TC}^{1+H}$, we only need to prove

$$d_{K,H}([0],\tau) \le d_{T,H}([0],\tau).$$
(5.8)

Before to prove this inequality, we review some properties in Teichmüller theory without proofs. The reader who is interested in them may refer to [12, 19, 26].

5.1 Extremal Point

Suppose ϕ is a holomorphic function on Δ . Let

$$\|\phi\| = \int_{\Delta} |\phi(z)| dx dy, \quad z = x + iy.$$

Given a point $\tau = [\mu] \in \mathcal{TQ}$, let

$$k_0 = \inf_{\mu \in \tau} \|\mu\|_{\infty}.$$

From the normal family theory in quasiconformal theory, we have a $\mu_0 \in \tau$ such that $\|\mu_0\|_{\infty} = k_0$. We call μ_0 an extremal point in τ .

A sequence $\{\varphi_n\}$ of holomorphic functions is called a *Hamilton sequence* for μ_0 if $\|\phi_n\| = 1$ and $\lim_{n\to\infty} \sup \int_{\Delta} \mu_0 \varphi_n dx dy = \|\mu_0\|_{\infty}$.

Theorem 5.4 (Hamilton–Krushkal Theorem) Given any point $\tau = [\mu] \in \mathcal{TQ}$, if $\mu_0 \in \tau$ is an extremal point, then μ_0 has a Hamilton sequence $\{\phi_n\}$.

5.2 Frame Point

Given a point $\tau = [\mu] \in \mathcal{TQ}$, an element $\mu_1 \in \tau$ is called a frame point if there is a compact set $D \subset \Delta$ such that

$$\|\mu_1|(\Delta \setminus D)\|_{\infty} < k_0.$$

Lemma 2.9 says that if $\tau \neq [0] \in \mathcal{TC}^{1+H}$, then it always has a frame point.

Theorem 5.5 (Strebel's Frame Mapping Theorem) For ant $\tau \neq [0] \in \mathcal{TQ}$, if it has a frame point, then it has a unique extremal point μ_0 in the Teichmüller form,

$$\mu_0 = k_0 \frac{|\varphi_0|}{\varphi_0},$$

for a holomorphic function φ_0 with $\|\phi_0\| = 1$. Moreover, for any $\nu \in \tau$,

$$K_0 = \frac{1+k_0}{1-k_0} \le \int_{\Delta} \frac{|1+\nu\frac{\varphi_0}{|\varphi_0|}|^2}{|1-|\nu|^2} |\varphi_0| dx dy.$$

5.3 Holomorphic Functions

Suppose $\{\varphi_n\}$ is a sequence of holomorphic functions with $\|\phi_n\| = 1$. Suppose $D \subset \Delta$ is a compact subset. We claim that $\{\varphi_n\}$ is uniformly bounded on D. We prove the claim by contradiction. Suppose not, then there exists a sequence of points $\{z_n\} \subset D$ and a subsequence of $\{\varphi_n\}$, still denoted by $\{\varphi_n\}$, such that $|\varphi_n(z_n)| \geq n$. Since D is compact, $\{z_n\}$ has an accumulation point $z_0 \in D$. Then there exists a subsequence of $\{z_n\}$, still denoted by $\{z_n\}$, such that z_n converges to z_0 . Choose a small r > 0 such that the closed disk $D_r(z_0) = \{|z-z_0| \leq r\} \subset \Delta$. Then $z_n \in D_{r/4}(z_0)$ when n is large enough, say n > N.

For any n > N, one can apply the Cauchy integral formula for $\varphi_n(z_n)$ to obtain

$$n \le |\varphi_n(z_n)| \le \frac{1}{2\pi} \int_{|z-z_0|=r'} \frac{|\varphi_n(z)|}{|z-z_n|} r' d\theta$$

for each $\frac{r}{2} \leq r' \leq r$. And then

$$n \le \frac{1}{2\pi} \int_{|z-z_0|=r'} |\varphi_n(z)| \frac{4}{r} r d\theta = \frac{2}{\pi} \int_{|z-z_0|=r'} |\varphi_n(z)| d\theta.$$

Multiplying the previous inequality by r' and integrating both sides in radial direction from $\frac{r}{2}$ to r, we obtain

$$\frac{3}{8}nr^2 = n\int_{\frac{r}{2}}^r r'dr' \le \frac{2}{\pi}\int_{\frac{r}{2}}^r r'\int_{|z-z_0|=r'} |\varphi_n(z)|d\theta dr' \le \frac{2}{\pi} \|\varphi_n\| = \frac{2}{\pi}.$$

Hence $\frac{3}{8}nr^2 \leq \frac{2}{\pi}$ for any n > N. This is a contradiction when n is large enough. We proved the claim.

Applying the Cauchy integral formula for derivatives $\{\phi'_n\}$, one can see it is also uniformly bounded on D and thus $\{\phi_n\}$ is a uniformly bounded equi-continuous family. The Ascoli–Arzela Theorem implies $\{\phi_n\}$ has a convergent subsequence, still denoted as $\{\phi_n\}$, on D. Taking an increasing sequence of compact sets $\{D_m\}$ such that $\Delta = \bigcup_m D_m$, we get a convergent subsequence of $\{\phi_n\}$, still denoted as $\{\phi_n\}$, on Δ . Suppose ϕ_0 is its limiting function. By Fatou's Lemma, $\|\phi_0\| \leq 1$.

5.4 The Proof of Lemma 5.3

For any $\tau \in \mathcal{TC}^{1+H}$, take $\mu \in \tau$ in Lemma 2.9. Let $k = \|\mu\|_{\infty}$. Let

$$\Delta_n = \left\{ z \in \Delta \mid |z| < r_n = 1 - \frac{1}{n} \right\}$$
 and $A_n = \Delta \setminus \Delta_n$.

Let $l_n = \|\mu|A_n\|_{\infty}$. Lemma 2.9 implies that $l_n < k_0$ for n large enough, say n > N. So μ is a frame point in τ . This implies that τ has a unique extremal point μ_0 in the Teichmüller form $\mu_0 = k_0 |\phi_0|/\phi_0$ for some holomorphic function ϕ_0 with $\|\phi_0\| = 1$. Moreover, $0 < k_0 < k$.

Let $f_n(z) = w_\mu(r_n z)$. It maps Δ to a quasi-disk $D_n = f_n(\Delta)$. Let $g_n : D_n \to \Delta$ be the Riemann mapping. Then $h_n = g_n \circ f_n$ is a quasiconformal self-homeomorphism of Δ and $\tau_n = [h_n|T]$ is in \mathcal{TQ} . From Lemma 2.9, for N large enough, every point τ_n has a frame point for n > N. Thus for every n > N, τ_n has a unique extremal point $\mu_{n,0}$ in the Teichmüller form,

$$\mu_{n,0} = k_{n,0} \frac{|\phi_{n,0}|}{\phi_{n,0}}$$

with a holomorphic function $\phi_{n,0}$ with $\|\phi_{n,0}\| = 1$. By our definition, one can see that $k_{n,0} \ge k_0$ for all n > N.

Now we define $F_n(z) = g_n^{-1} \circ w_{\mu_{n,0}}(z/r_n)$ for $z \in \Delta_n$ and $F_n(z) = w_{\mu}(z)$ for $z \in A_n$. It agrees on the circle $\partial \Delta_n$. Thus it is a quasiconformal self-homeomorphism of Δ . The Beltrami coefficient ν_n of F_n is $\mu_{n,0}(z/r_n)$ on Δ_n and μ on A_n . Thus $\nu_n \in \tau \in \mathcal{TC}^{1+\alpha}$. And $\|\nu_n\|_{\infty} > k_0$. We have a holomorphic map

$$p(c) = \left[c\frac{\nu_n}{\|\nu_n\|_{\infty}}\right] : \Delta \to \mathcal{TC}^{1+\alpha}$$

such that p(0) = [0] and $p(||\nu_n||_{\infty}) = \tau$. This implies that

$$d_{K,\alpha}([0],\tau) \le d_1([0],\tau) \le \frac{1}{2}\log\frac{1+\|\nu_n\|_{\infty}}{1-\|\nu_n\|_{\infty}}.$$

Our final step is to prove $\|\nu_n\|_{\infty} \to k_0$ as $n \to \infty$.

From Subsection 5.3, there exists a subsequence of $\{\varphi_{n,0}\}$, still denoted by $\{\varphi_{n,0}\}$, converging uniformly to a holomorphic function $\hat{\varphi}$ on any compact subset $D \subset \Delta$. Furthermore, $\|\hat{\varphi}\| \leq 1$. We claim that $\|\hat{\varphi}\| > 0$. We prove the claim by contradiction.

Suppose $\|\widehat{\varphi}\| = 0$. Then $\{\varphi_{n,0}\}$ has a subsequence, we still denote by $\{\phi_{n,0}\}$, converging uniformly to zero on any compact subset $D \subset \Delta$. For any $\epsilon > 0$, we first choose a compact subset $D \subset \Delta$ such that

$$\|\mu|(\Delta \setminus D)\|_{\infty} < \epsilon.$$

There exists $N_1 > N$ such that

$$\int_{D} |\varphi_{n,0}(z)| dx dy \le \epsilon$$

and such that $D \subset \Delta_n$ for all $n > N_1$.

From Subsection 5.2,

$$K_{n,0} = \frac{1+k_{n,0}}{1-k_{n,0}} \le \int_{\Delta} \frac{|1+\mu \frac{\varphi_{n,0}}{|\varphi_{n,0}|}|^2}{1-|\mu|^2} |\varphi_{n,0}| dx dy.$$

This says

$$K_{n,0} \leq \int_{\Delta \setminus D} \frac{|1 + \mu \frac{\varphi_{n,0}}{|\varphi_{n,0}|}|^2}{1 - |\mu|^2} |\varphi_{n,0}| dx dy + \int_D \frac{|1 + \mu \frac{\varphi_{n,0}}{|\varphi_{n,0}|}|^2}{1 - |\mu|^2} |\varphi_{n,0}| dx dy.$$

Then, for K = (1+k)/(1-k),

$$K_{n,0} \leq \int_{\Delta \setminus D} \frac{1+\epsilon}{1-\epsilon} |\varphi_{n,0}| dx dy + K \int \int_D |\varphi_{n,0}| dx dy,$$

and hence

$$K_{n,0} \leq \frac{1+\epsilon}{1-\epsilon} \int_{\Delta} |\varphi_{n,0}| dx dy + \left(K - \frac{1+\epsilon}{1-\epsilon}\right) \int \int_{D} |\varphi_{n,0}| dx dy.$$

Therefore

$$1 < k_0 < k_{n,0} \le \frac{1+\epsilon}{1-\epsilon} + \left(K - \frac{1+\epsilon}{1-\epsilon}\right) \cdot \epsilon.$$

This is a contradiction when ϵ is sufficient small. Therefore $\|\hat{\varphi}\| > 0$.

Now let $\hat{\mu} = \hat{k} \frac{|\hat{\varphi}|}{\hat{\varphi}}$, where $\hat{k} = \lim_{n \to \infty} k_{n,0}$ (by taking a limit of a convergent subsequence if it is necessary). Then $\mu_{n,0} \to \hat{\mu}$ a.e. on Δ . By the convergence theorem (see [20, Theorem 4.6]) of families of quasiconformal maps, we obtain

$$\lim_{n \to \infty} w_{\mu_{n,0}} | T = w_{\mu_{n,0}} | T = w_{\mu} | T = w_{\widehat{\mu}} | T.$$

By the uniqueness of the extremal point in τ , $\hat{k} = k_0$. Thus $k_{n,0} \to k_0$ as $n \to \infty$ for a subsequence of *n*'s. We completed the proof of Lemma 5.3. Both Lemmas 5.2 and 5.3 give a proof of Theorem 5.1.