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moves η to P(0) = [0] and preserves both Teichmüller’s metric and Kobayashi’s metric. Thus
to prove (5.7) for any points τ, η ∈ T C1+H , we only need to prove

dK,H([0], τ ) ≤ dT,H([0], τ ). (5.8)

Before to prove this inequality, we review some properties in Teichmüller theory without proofs.
The reader who is interested in them may refer to [12, 19, 26].

5.1 Extremal Point

Suppose φ is a holomorphic function on Δ. Let

‖φ‖ =
∫

Δ

|φ(z)|dxdy, z = x + iy.

Given a point τ = [μ] ∈ T Q, let

k0 = inf
μ∈τ

‖μ‖∞.

From the normal family theory in quasiconformal theory, we have a μ0 ∈ τ such that ‖μ0‖∞ =
k0. We call μ0 an extremal point in τ .

A sequence {ϕn} of holomorphic functions is called a Hamilton sequence for μ0 if ‖φn‖ = 1
and limn→∞ sup

∫
Δ

μ0ϕndxdy = ‖μ0‖∞.

Theorem 5.4 (Hamilton–Krushkal Theorem) Given any point τ = [μ] ∈ T Q, if μ0 ∈ τ is an
extremal point, then μ0 has a Hamilton sequence {φn}.

5.2 Frame Point

Given a point τ = [μ] ∈ T Q, an element μ1 ∈ τ is called a frame point if there is a compact set
D ⊂ Δ such that

‖μ1|(Δ \ D)‖∞ < k0.

Lemma 2.9 says that if τ �= [0] ∈ T C1+H , then it always has a frame point.

Theorem 5.5 (Strebel’s Frame Mapping Theorem) For ant τ �= [0] ∈ T Q, if it has a frame
point, then it has a unique extremal point μ0 in the Teichmüller form,

μ0 = k0
|ϕ0|
ϕ0

,

for a holomorphic function ϕ0 with ‖φ0‖ = 1. Moreover, for any ν ∈ τ ,

K0 =
1 + k0

1 − k0
≤

∫

Δ

|1 + ν ϕ0
|ϕ0| |

2

1 − |ν|2 |ϕ0|dxdy.

5.3 Holomorphic Functions

Suppose {ϕn} is a sequence of holomorphic functions with ‖φn‖ = 1. Suppose D ⊂ Δ is a
compact subset. We claim that {ϕn} is uniformly bounded on D. We prove the claim by
contradiction. Suppose not, then there exists a sequence of points {zn} ⊂ D and a subsequence
of {ϕn}, still denoted by {ϕn}, such that |ϕn(zn)| ≥ n. Since D is compact, {zn} has an
accumulation point z0 ∈ D. Then there exists a subsequence of {zn}, still denoted by {zn},
such that zn converges to z0. Choose a small r > 0 such that the closed disk Dr(z0) = {|z−z0| ≤
r} ⊂ Δ. Then zn ∈ Dr/4(z0) when n is large enough, say n > N .



Complex Manifold Structure on Circle Diffeomorphisms 269

For any n > N , one can apply the Cauchy integral formula for ϕn(zn) to obtain

n ≤ |ϕn(zn)| ≤ 1
2π

∫

|z−z0|=r′

|ϕn(z)|
|z − zn|

r′dθ

for each r
2 ≤ r′ ≤ r. And then

n ≤ 1
2π

∫

|z−z0|=r′
|ϕn(z)|4

r
rdθ =

2
π

∫

|z−z0|=r′
|ϕn(z)|dθ.

Multiplying the previous inequality by r′ and integrating both sides in radial direction from r
2

to r, we obtain

3
8
nr2 = n

∫ r

r
2

r′dr′ ≤ 2
π

∫ r

r
2

r′
∫

|z−z0|=r′
|ϕn(z)|dθdr′ ≤ 2

π
‖ϕn‖ =

2
π

.

Hence 3
8nr2 ≤ 2

π for any n > N . This is a contradiction when n is large enough. We proved
the claim.

Applying the Cauchy integral formula for derivatives {φ′
n}, one can see it is also uniformly

bounded on D and thus {φn} is a uniformly bounded equi-continuous family. The Ascoli–Arzela
Theorem implies {φn} has a convergent subsequence, still denoted as {φn}, on D. Taking
an increasing sequence of compact sets {Dm} such that Δ =

⋃
m Dm, we get a convergent

subsequence of {φn}, still denoted as {φn}, on Δ. Suppose φ0 is its limiting function. By
Fatou’s Lemma, ‖φ0‖ ≤ 1.

5.4 The Proof of Lemma 5.3

For any τ ∈ T C1+H , take μ ∈ τ in Lemma 2.9. Let k = ‖μ‖∞. Let

Δn =
{

z ∈ Δ
∣
∣
∣
∣ |z| < rn = 1 − 1

n

}

and An = Δ \ Δn.

Let ln = ‖μ|An‖∞. Lemma 2.9 implies that ln < k0 for n large enough, say n > N . So μ is a
frame point in τ . This implies that τ has a unique extremal point μ0 in the Teichmüller form
μ0 = k0|φ0|/φ0 for some holomorphic function φ0 with ‖φ0‖ = 1. Moreover, 0 < k0 < k.

Let fn(z) = wμ(rnz). It maps Δ to a quasi-disk Dn = fn(Δ). Let gn : Dn → Δ be
the Riemann mapping. Then hn = gn ◦ fn is a quasiconformal self-homeomorphism of Δ and
τn = [hn|T ] is in T Q. From Lemma 2.9, for N large enough, every point τn has a frame point
for n > N . Thus for every n > N , τn has a unique extremal point μn,0 in the Teichmüller form,

μn,0 = kn,0
|φn,0|
φn,0

with a holomorphic function φn,0 with ‖φn,0‖ = 1. By our definition, one can see that kn,0 ≥ k0

for all n > N .
Now we define Fn(z) = g−1

n ◦ wμn,0(z/rn) for z ∈ Δn and Fn(z) = wμ(z) for z ∈ An. It
agrees on the circle ∂Δn. Thus it is a quasiconformal self-homeomorphism of Δ. The Beltrami
coefficient νn of Fn is μn,0(z/rn) on Δn and μ on An. Thus νn ∈ τ ∈ T C1+α. And ‖νn‖∞ > k0.
We have a holomorphic map

p(c) =
[

c
νn

‖νn‖∞

]

: Δ → T C1+α
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such that p(0) = [0] and p(‖νn‖∞) = τ . This implies that

dK,α([0], τ ) ≤ d1([0], τ ) ≤ 1
2

log
1 + ‖νn‖∞
1 − ‖νn‖∞

.

Our final step is to prove ‖νn‖∞ → k0 as n → ∞.
From Subsection 5.3, there exists a subsequence of {ϕn,0}, still denoted by {ϕn,0}, con-

verging uniformly to a holomorphic function ϕ̂ on any compact subset D ⊂ Δ. Furthermore,
‖φ̂‖ ≤ 1. We claim that ‖φ̂‖ > 0. We prove the claim by contradiction.

Suppose ‖ϕ̂‖ = 0. Then {ϕn,0} has a subsequence, we still denote by {φn,0}, converging
uniformly to zero on any compact subset D ⊂ Δ. For any ε > 0, we first choose a compact
subset D ⊂ Δ such that

‖μ|(Δ \ D)‖∞ < ε.

There exists N1 > N such that ∫

D

|ϕn,0(z)|dxdy ≤ ε

and such that D ⊂ Δn for all n > N1.
From Subsection 5.2,

Kn,0 =
1 + kn,0

1 − kn,0
≤

∫

Δ

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy.

This says

Kn,0 ≤
∫

Δ\D

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy +
∫

D

|1 + μ
ϕn,0
|ϕn,0| |

2

1 − |μ|2 |ϕn,0|dxdy.

Then, for K = (1 + k)/(1 − k),

Kn,0 ≤
∫

Δ\D

1 + ε

1 − ε
|ϕn,0|dxdy + K

∫ ∫

D

|ϕn,0|dxdy,

and hence

Kn,0 ≤ 1 + ε

1 − ε

∫

Δ

|ϕn,0|dxdy +
(

K − 1 + ε

1 − ε

) ∫ ∫

D

|ϕn,0|dxdy.

Therefore

1 < k0 < kn,0 ≤ 1 + ε

1 − ε
+

(

K − 1 + ε

1 − ε

)

· ε.

This is a contradiction when ε is sufficient small. Therefore ‖ϕ̂‖ > 0.
Now let μ̂ = k̂ |ϕ̂|

ϕ̂ , where k̂ = limn→∞ kn,0 (by taking a limit of a convergent subsequence if
it is necessary). Then μn,0 → μ̂ a.e. on Δ. By the convergence theorem (see [20, Theorem 4.6])
of families of quasiconformal maps, we obtain

lim
n→∞

wμn,0 |T = wμn,0 |T = wμ|T = wμ̂|T.

By the uniqueness of the extremal point in τ , k̂ = k0. Thus kn,0 → k0 as n → ∞ for a
subsequence of n’s. We completed the proof of Lemma 5.3. Both Lemmas 5.2 and 5.3 give a
proof of Theorem 5.1.




