Teichmüller's metriz and Kobayashi's metriz
on the Smooth Teichmüller Space. Yunping Jiang City University of New York A talk given in The summer seminar on
quasiconformal mappings and Teizhmüller spaces Nanjing University of Science and Technology August 10, 2021 $9:30$ am $-10:30$ am

Suppose
$$
R: [0, 1] \Rightarrow [0, 1]
$$
 is a homeomorphism with $R(s) = 0$, $R(4) = 1$, consider the g data: g numbers, ds for k is a base. Then, g is a base. Then, $R(s) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right$

 ℓ

Let $I_{0,0}=[0,1]$ $I_{n,k} = \begin{bmatrix} \frac{k}{2^n} & \frac{k+1}{2^n} \end{bmatrix}$, osk szⁿ-1 Then $I_{n-l,k} = I_{n,k} \cup I_{n,k+1}$ osk $\{z^{n-l}\}$ $n = 1$ $\frac{1}{2}$ $\begin{array}{ccc} & x & x \ \hline x & x & x \end{array}$ $\begin{array}{ccc} & x & x \ \hline x & x & y \end{array}$ $\begin{array}{ccc} & x & x \ \hline x & x & y \end{array}$ $\begin{array}{ccc} & x & x \ \hline x & x & y \end{array}$ $\Rightarrow \frac{1}{1+e^{\xi(\frac{1}{2^n})}}|f_n(\mathbb{I}_{n-1,k})| \leq |f_n(\mathbb{I}_{n,\frac{1}{2}})| \leq \frac{1}{1+e^{\xi(\frac{1}{2^n})}}|f_n(\mathbb{I}_{n-1,k})|$ $\hat{S} = 2k$ or $2k+1$. (4) $\pi \frac{a}{i=m+1} \frac{|f_i(x_{n,k})|}{|x_{m,k}|} \leq \frac{|f_i(x_{n,k})|}{|x_{m,k}|} \leq \frac{\pi}{i=m+1} \frac{z}{e^{-\overline{\epsilon}(\frac{1}{2}\epsilon)}} \frac{|f_i(x_{m,k})|}{|x_{m,k}|}$ $\begin{picture}(120,110) \put(0,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150$ for any $\sum_{n,k} C \sum_{m,k}$ Consider the infinite product $S = \frac{80}{\sqrt{7}} \frac{1+e^{E(\frac{1}{20})}}{2}$ (z)

If S is convergent, then

\n
$$
\begin{aligned}\n\left\{\n\begin{array}{l}\n\log \left| \frac{f_{h}(\pm_{\omega_{n}})}{f_{\omega_{n}}}\right| & \int_{h_{\pm}}^{h_{\infty}} f_{h_{\pm}} \right| \\
\frac{f_{h}(\pm_{\omega_{n}})}{f_{\omega_{n}}}\n\end{array}\n\right\} \\
\Rightarrow \quad \text{R = i_0 2^{n-1} + i_1 2^{n-2} + \cdots + 2 i_{n-2} + i_{n-1}, \quad \omega = i_0 i_1 \cdots i_{n-1}} \\
\Rightarrow \quad \text{P}(\omega) = \lim_{n \to \infty} \log \frac{|f_{h}(\pm_{\omega_{n}})}{|\pm_{\omega_{n}}|} \pm \sum_{\pm} \sum_{\pm} f_{h_{\pm}} \\
\frac{f_{h}(\omega_{n}, \omega_{n+1})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\nand, for ω and ω are given by the following equations:

\n
$$
\begin{aligned}\n\omega_{n}(\omega_{n}, \omega_{n+1}) & \text{otherwise,} \\
\frac{f_{h}(\omega_{n}, \omega_{n+1})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\nand, for ω and ω are given by the following equations:

\n
$$
\begin{aligned}\n\omega_{n}(\omega_{n}, \omega_{n+1}) & \text{otherwise,} \\
\frac{f_{h}(\omega_{n}, \omega_{n+1})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\omega_{n}(\omega_{n}, \omega_{n+1}) & \text{otherwise,} \\
\frac{f_{h}(\omega_{n}, \omega_{n+1})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\omega_{n}(\omega_{n}, \omega_{n+1}) & \text{otherwise,} \\
\frac{f_{h}(\omega_{n}, \omega_{n+1})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\omega_{n}(\omega_{n}, \omega_{n+1}) & \text{otherwise,} \\
\frac{f_{h}(\omega_{n}, \omega_{n})}{\sqrt{2\omega_{n}}}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\omega_{n}
$$

In particular,
$$
f = \epsilon(t) = t^d
$$
, $0 < \epsilon d \le 1$, then
\n $\tilde{\epsilon}(t) = c e^{at} \Rightarrow R$ or $c^{nd} = d$ (ffeomorphism)
\nIn general: $\epsilon(t) \ne \tilde{\epsilon}(t)$. Actually $\epsilon(t) \approx \tilde{\epsilon}(t)$
\n $\Leftrightarrow \epsilon(t) = t^d$.
\nIn general, a quasisymmeth. a homeomorphism
\n $(\sigma$ symmetry, however, however,
\nor even, totally singular,
\n**Proposition 2** (The least estimated gaasisymmethic
\ndastotim)
\nSuppose, $h: [0, 1] \Rightarrow [0, 1], R(a) = 0, R(a) = 1$,
\n $R(a) = N -$ gaasisymmetric, hence morphism.
\nThen
\n $|h(x) = X | \le N - 1, \quad \forall x \in [0, 1]$
\nThe bound $M - 1$ is the **léet** shangest, estimator
\n(see the proper for a detailed proof.)

Now let us back to circle homeomorphism h (we will think heather on II, or TR or $[0,1/011]$

A) Beurling-Ahlfor's extension. Here we think h on TR

 $H(x,y) = u + i v$ $u = \frac{1}{2} \int_{0}^{1} (f(x + xy) + f(x - ty)) dt = \frac{1}{2y} \int_{x-y}^{x} f(x) dx$ $v = \frac{1}{y}$ $(\int_{x}^{x+9} f(x) dx - \int_{x-y}^{x} f(x) dx)$ \Rightarrow $\frac{1}{H(x)} = H(\overline{x})$, $H(\overline{x}) = R$ $\left| \mu_{\mathsf{k}}(z) \right| = \left| \frac{H_{\overline{z}}}{H_{z}}(z) \right| \leq C_{o} \left(e^{\frac{\mathcal{E}(y)}{\varepsilon}} \right)$ \leq C ϵ (y).

 (5)

 $H = x + y$

Proposition 3	Supprecherive theorem, $z \in C$
(Here we think $k \approx m \pi$)	
(Here we think $k \approx m \pi$)	
(Here we think $k \approx m \pi$)	
(π BMA) = π ln m ⁻¹ $\frac{M-2}{1-\pi^2} \parallel_{\infty} = \frac{1}{2} log(\frac{1 + \frac{M-2}{1-\pi^2} }{1 - \frac{M-2}{1-\pi^2} \parallel_{\infty}})$	
(π), M) = π ln m ⁻¹ $\frac{M-2}{1-\pi^2} \parallel_{\infty} = \frac{1}{2} log(\frac{1 + \frac{M-2}{1-\pi^2} }{1 - \frac{M-2}{1-\pi^2} \parallel_{\infty}})$	
(π), M) = π ln m ⁻¹ π ln m <sup< td=""></sup<>	

Let $A_r = \begin{cases} 2 & |r < |z| < |y| \end{cases}$ oct of For a modulus of continuity with, let $BM^w(\Delta) = \left\{ \mu \in BM(\Delta) \mid \mu \mu |A_{r}||_{L^{\infty}} \leq C \omega(1-r) \right\}$ Proposition 4 $P:BN^{\omega}(a) \rightarrow Te^{+\omega}$ $B.$ West onto and $D(BM^{w}(0))$) Te HW For a general $\mu \in \mathcal{B}M^{w}(\Delta)$, we have
only $w_{\mu}|\pi \in C^{H^{\frac{1}{w}}}$. $f(x) = \frac{1}{2} \int_{0}^{x} f(x) dx = \frac{1}{2} \int_{0}^{x} f(x) dx = \frac{1}{2} \int_{0}^{x} f(x) dx$ $S_{0}^{k}\stackrel{\text{w}(t^{\beta})}{\leftarrow}dt, oc\beta<1$ => We may not have =".
Our estimation re-verify that $(D(BM(G))) = TS$ where $BM^o(\delta) = \frac{1}{2} \mu \epsilon BM(\delta) / \mu |A_r||_{\infty} \rightarrow 0, r \rightarrow 0$ \bigodot

 $L:Z = [I\omega] \in TQ \rightarrow SW^{\mu} \in QD$ Then B the Bers embedding such that $i(TQ) \subseteq B_6 \subset QD$ B6 is the ball of radius 6 centered at v. Let $QD^{\omega} = \left\{ \frac{p}{\phi} \in QD \right| |p(\phi) p_{\phi}^{-2}(\phi) | \le C \omega (1-\frac{1}{k_1}) \right\}$ for a modulus of continuity with. Then we have for $\tau = [R] \in T e^{\mu \omega}$, $\left|S\omega^{\mu}(z) f_{\omega}^{-2}(z)\right| \leq C\left(1-\frac{1}{|z|}\right)^{2\left(1-\beta\right)} + \omega\left(\left(1-\frac{1}{|z|}\right)^{\beta}\right)$ $\frac{1}{2} < \beta < 1$

trede. \Rightarrow ((c) \in QD

 $\frac{1}{\omega} = t^{2(I-\beta)} + \omega(t^{\beta})$

 $\left(\frac{9}{2}\right)$

Consider B) and C) if we want

\nwith,
$$
\overrightarrow{w}(t)
$$
, $\overrightarrow{w}(t)$, $\overrightarrow{w}(t)$ in the same class of

\nmoduli of continuity, then $w(t) = t^d$

\n(=) $\overrightarrow{w}(t) = t^d$, $\overrightarrow{w}(t) = t^d$, $\overrightarrow{w}(t) = t^d$

\nConsider $\overrightarrow{P}e^{HH} = \bigcup_{0 \leq d \leq 1} T e^{Hd}$

\n $\overrightarrow{BM}(\triangle) = \bigcup_{0 \leq d \leq 1} B M^d(\triangle)$

\nand

Then we have $P:BM^{H}(8) \rightarrow Te^{HH} \stackrel{\cdot}{\hookrightarrow} GH^{H}$ and $P(BM^H(\Delta)) = Te^{HH}$ Thus we have the Bers complex manifold structure on TC 4H such that P B a holomorphic split submersion. (10)

 $d_{\mathcal{B}M}(\mu,\omega) = (an \ln \frac{1}{1 - \pi \omega} ||_{\omega})$ induces the Teichmüller metrie on TQ
 $d_{\tau}(r, r') = m f \{ d_{BM}(u, v) | p(u) \in T, p(v) \in r' \}$ $d_{\tau,H}$ be the restriction of d_{τ} on \mathbb{R}^{n+H} . Since TCHH is a complex Banach man. fold, it has a natural Kobaycshi metriz dr,H which is the largest pseudo metriz on TCHH such Ilat $d_{\kappa, \beta}(f(z), f(w)) \leq f_{\beta}(x, w), z, w \in Q$ for any holomorphic map $f:Q \rightarrow Te^{HH}$. where $\begin{pmatrix} 2 & u \end{pmatrix} = \begin{pmatrix} 2 & u \end{pmatrix} = \begin{pmatrix} 2 & u \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & u \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & \frac{2-u}{2w} \end{pmatrix}$ be the hyperboliz metric on &. $\boxed{\theta}$

Then we have

Lemman, V =, 2' E TC " $d_{k,H}(\tau, t') \geq d_{T,H}(\tau, \tau')$ Proof. Since TeH C TQ $d_{k,H}(z,z') \geq d_{k}(z,z') = \Phi_{T}(z,z') = d_{T,H}(z,z')$ \Rightarrow Lemma 2 H=, 2' E TC HH $d_{k,H}(\tau, t') \leq d_{T,H}(\tau, t')$

Cemma 1 and Lemma 2 => Theorem: On TCHH, $d_{\kappa,H} = d_{\tau,H}$

We need to prove lemme 2.

 $\binom{n}{k}$

moves η to $\mathcal{P}(0) = [0]$ and preserves both Teichmüller's metric and Kobayashi's metric. Thus to prove (5.7) for any points $\tau, \eta \in \mathcal{TC}^{1+H}$, we only need to prove

$$
d_{K,H}([0],\tau) \le d_{T,H}([0],\tau). \tag{5.8}
$$

Before to prove this inequality, we review some properties in Teichmüller theory without proofs. The reader who is interested in them may refer to [12, 19, 26].

5.1 Extremal Point

Suppose ϕ is a holomorphic function on Δ . Let

$$
\|\phi\| = \int_{\Delta} |\phi(z)| dx dy, \quad z = x + iy.
$$

Given a point $\tau = [\mu] \in \mathcal{TQ}$, let

$$
k_0 = \inf_{\mu \in \tau} \|\mu\|_{\infty}.
$$

From the normal family theory in quasiconformal theory, we have a $\mu_0 \in \tau$ such that $\|\mu_0\|_{\infty} =$ k_0 . We call μ_0 an extremal point in τ .

A sequence $\{\varphi_n\}$ of holomorphic functions is called a *Hamilton sequence* for μ_0 if $\|\phi_n\|=1$ and $\lim_{n\to\infty}$ sup $\int_{\Delta} \mu_0 \varphi_n dx dy = ||\mu_0||_{\infty}$.

Theorem 5.4 (Hamilton–Krushkal Theorem) *Given any point* $\tau = [\mu] \in T\mathcal{Q}$, if $\mu_0 \in \tau$ is an *extremal point, then* μ_0 *has a Hamilton sequence* $\{\phi_n\}$ *.*

5.2 Frame Point

Given a point $\tau = |\mu| \in \mathcal{TQ}$, an element $\mu_1 \in \tau$ is called a frame point if there is a compact set $D \subset \Delta$ such that

$$
\|\mu_1|(\Delta \setminus D)\|_{\infty} < k_0.
$$

Lemma 2.9 says that if $\tau \neq [0] \in \mathcal{TC}^{1+H}$, then it always has a frame point.

Theorem 5.5 (Strebel's Frame Mapping Theorem) *For ant* $\tau \neq [0] \in TQ$, if it has a frame *point, then it has a unique extremal point* μ_0 *in the Teichmüller form,*

$$
\mu_0 = k_0 \frac{|\varphi_0|}{\varphi_0},
$$

for a holomorphic function φ_0 *with* $\|\phi_0\| = 1$ *. Moreover, for any* $\nu \in \tau$ *,*

$$
K_0 = \frac{1 + k_0}{1 - k_0} \le \int_{\Delta} \frac{|1 + \nu \frac{\varphi_0}{|\varphi_0|}|^2}{1 - |\nu|^2} |\varphi_0| dx dy.
$$

5.3 Holomorphic Functions

Suppose $\{\varphi_n\}$ is a sequence of holomorphic functions with $\|\phi_n\|=1$. Suppose $D\subset\Delta$ is a compact subset. We claim that $\{\varphi_n\}$ is uniformly bounded on D. We prove the claim by contradiction. Suppose not, then there exists a sequence of points $\{z_n\} \subset D$ and a subsequence of $\{\varphi_n\}$, still denoted by $\{\varphi_n\}$, such that $|\varphi_n(z_n)| \geq n$. Since D is compact, $\{z_n\}$ has an accumulation point $z_0 \in D$. Then there exists a subsequence of $\{z_n\}$, still denoted by $\{z_n\}$, such that z_n converges to z_0 . Choose a small $r > 0$ such that the closed disk $D_r(z_0) = \{|z - z_0| \leq$ r } $\subset \Delta$. Then $z_n \in D_{r/4}(z_0)$ when n is large enough, say $n > N$.

For any $n>N$, one can apply the Cauchy integral formula for $\varphi_n(z_n)$ to obtain

$$
n \le |\varphi_n(z_n)| \le \frac{1}{2\pi} \int_{|z-z_0|=r'} \frac{|\varphi_n(z)|}{|z-z_n|} r' d\theta
$$

for each $\frac{r}{2} \leq r' \leq r$. And then

$$
n \le \frac{1}{2\pi} \int_{|z-z_0|=r'} |\varphi_n(z)| \frac{4}{r} r d\theta = \frac{2}{\pi} \int_{|z-z_0|=r'} |\varphi_n(z)| d\theta.
$$

Multiplying the previous inequality by r' and integrating both sides in radial direction from $\frac{r}{2}$ to r , we obtain

$$
\frac{3}{8}nr^2 = n\int_{\frac{r}{2}}^r r' dr' \leq \frac{2}{\pi} \int_{\frac{r}{2}}^r r' \int_{|z-z_0|=r'} |\varphi_n(z)| d\theta dr' \leq \frac{2}{\pi} ||\varphi_n|| = \frac{2}{\pi}.
$$

Hence $\frac{3}{8}nr^2 \leq \frac{2}{\pi}$ for any $n > N$. This is a contradiction when n is large enough. We proved the claim.

Applying the Cauchy integral formula for derivatives $\{\phi'_n\}$, one can see it is also uniformly bounded on D and thus $\{\phi_n\}$ is a uniformly bounded equi-continuous family. The Ascoli–Arzela Theorem implies $\{\phi_n\}$ has a convergent subsequence, still denoted as $\{\phi_n\}$, on D. Taking an increasing sequence of compact sets $\{D_m\}$ such that $\Delta = \bigcup_m D_m$, we get a convergent subsequence of $\{\phi_n\}$, still denoted as $\{\phi_n\}$, on Δ . Suppose ϕ_0 is its limiting function. By Fatou's Lemma, $\|\phi_0\| \leq 1$.

5.4 The Proof of Lemma 5.3

For any $\tau \in \mathcal{TC}^{1+H}$, take $\mu \in \tau$ in Lemma 2.9. Let $k = ||\mu||_{\infty}$. Let

$$
\Delta_n = \left\{ z \in \Delta \mid |z| < r_n = 1 - \frac{1}{n} \right\} \quad \text{and} \quad A_n = \Delta \setminus \Delta_n.
$$

Let $l_n = ||\mu||A_n||_{\infty}$. Lemma 2.9 implies that $l_n < k_0$ for n large enough, say $n > N$. So μ is a frame point in τ . This implies that τ has a unique extremal point μ_0 in the Teichmüller form $\mu_0 = k_0 |\phi_0| / \phi_0$ for some holomorphic function ϕ_0 with $\|\phi_0\| = 1$. Moreover, $0 < k_0 < k$.

Let $f_n(z) = w_\mu(r_n z)$. It maps Δ to a quasi-disk $D_n = f_n(\Delta)$. Let $g_n : D_n \to \Delta$ be the Riemann mapping. Then $h_n = g_n \circ f_n$ is a quasiconformal self-homeomorphism of Δ and $\tau_n = [h_n]$ is in $\mathcal{T} \mathcal{Q}$. From Lemma 2.9, for N large enough, every point τ_n has a frame point for $n>N$. Thus for every $n>N$, τ_n has a unique extremal point $\mu_{n,0}$ in the Teichmüller form,

$$
\mu_{n,0} = k_{n,0} \frac{|\phi_{n,0}|}{\phi_{n,0}}
$$

with a holomorphic function $\phi_{n,0}$ with $\|\phi_{n,0}\|=1$. By our definition, one can see that $k_{n,0}\geq k_0$ for all $n>N$.

Now we define $F_n(z) = g_n^{-1} \circ w_{\mu_{n,0}}(z/r_n)$ for $z \in \Delta_n$ and $F_n(z) = w_\mu(z)$ for $z \in A_n$. It agrees on the circle $\partial \Delta_n$. Thus it is a quasiconformal self-homeomorphism of Δ . The Beltrami coefficient ν_n of F_n is $\mu_{n,0}(z/r_n)$ on Δ_n and μ on A_n . Thus $\nu_n \in \tau \in \mathcal{TC}^{1+\alpha}$. And $\|\nu_n\|_{\infty} > k_0$. We have a holomorphic map

$$
p(c) = \left[c\frac{\nu_n}{\|\nu_n\|_{\infty}}\right] : \Delta \to \mathcal{T} \mathcal{C}^{1+\alpha}
$$

such that $p(0) = [0]$ and $p(||\nu_n||_{\infty}) = \tau$. This implies that

$$
d_{K,\alpha}([0], \tau) \le d_1([0], \tau) \le \frac{1}{2} \log \frac{1 + ||\nu_n||_{\infty}}{1 - ||\nu_n||_{\infty}}.
$$

Our final step is to prove $\|\nu_n\|_{\infty} \to k_0$ as $n \to \infty$.

From Subsection 5.3, there exists a subsequence of $\{\varphi_{n,0}\}\$, still denoted by $\{\varphi_{n,0}\}\$, converging uniformly to a holomorphic function $\hat{\varphi}$ on any compact subset $D \subset \Delta$. Furthermore, $\|\widehat{\phi}\| \leq 1$. We claim that $\|\widehat{\phi}\| > 0$. We prove the claim by contradiction.

Suppose $\|\hat{\varphi}\| = 0$. Then $\{\varphi_{n,0}\}\$ has a subsequence, we still denote by $\{\phi_{n,0}\}\$, converging uniformly to zero on any compact subset $D \subset \Delta$. For any $\epsilon > 0$, we first choose a compact subset $D \subset \Delta$ such that

$$
\|\mu|(\Delta \setminus D)\|_{\infty} < \epsilon.
$$

There exists $N_1 > N$ such that

$$
\int_D |\varphi_{n,0}(z)| dx dy \le \epsilon
$$

and such that $D \subset \Delta_n$ for all $n > N_1$.

From Subsection 5.2,

$$
K_{n,0} = \frac{1 + k_{n,0}}{1 - k_{n,0}} \le \int_{\Delta} \frac{|1 + \mu_{\sqrt{|\varphi_{n,0}|}}^{\varphi_{n,0}|^2}|^2}{1 - |\mu|^2} |\varphi_{n,0}| dx dy.
$$

This says

$$
K_{n,0}\leq \int_{\Delta\backslash D}\frac{|1+\mu\frac{\varphi_{n,0}}{|\varphi_{n,0}|}|^2}{1-|\mu|^2}|\varphi_{n,0}|dxdy+\int_D\frac{|1+\mu\frac{\varphi_{n,0}}{|\varphi_{n,0}|}|^2}{1-|\mu|^2}|\varphi_{n,0}|dxdy.
$$

Then, for $K = (1 + k)/(1 - k)$,

$$
K_{n,0} \leq \int_{\Delta \setminus D} \frac{1+\epsilon}{1-\epsilon} |\varphi_{n,0}| dx dy + K \int \int_D |\varphi_{n,0}| dx dy,
$$

and hence

$$
K_{n,0} \le \frac{1+\epsilon}{1-\epsilon} \int_{\Delta} |\varphi_{n,0}| dx dy + \left(K - \frac{1+\epsilon}{1-\epsilon} \right) \int \int_{D} |\varphi_{n,0}| dx dy.
$$

Therefore

$$
1 < k_0 < k_{n,0} \le \frac{1+\epsilon}{1-\epsilon} + \left(K - \frac{1+\epsilon}{1-\epsilon}\right) \cdot \epsilon.
$$

This is a contradiction when ϵ is sufficient small. Therefore $\|\widehat{\varphi}\| > 0$.

Now let $\hat{\mu} = \hat{k} \frac{|\hat{\varphi}|}{\hat{\varphi}},$ where $\hat{k} = \lim_{n \to \infty} k_{n,0}$ (by taking a limit of a convergent subsequence if it is necessary). Then $\mu_{n,0} \to \hat{\mu}$ a.e. on Δ . By the convergence theorem (see [20, Theorem 4.6]) of families of quasiconformal maps, we obtain

$$
\lim_{n \to \infty} w_{\mu_{n,0}} |T = w_{\mu_{n,0}}|T = w_{\mu}|T = w_{\hat{\mu}}|T.
$$

By the uniqueness of the extremal point in τ , $\hat{k} = k_0$. Thus $k_{n,0} \to k_0$ as $n \to \infty$ for a subsequence of n's. We completed the proof of Lemma 5.3. Both Lemmas 5.2 and 5.3 give a proof of Theorem 5.1.