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Abstract. Let f and g be two circle endomorphisms of degree d ≥ 2 such that

each has bounded geometry, preserves the Lebesgue measure, and fixes 1. Let h
fixing 1 be the topological conjugacy from f to g. That is, h◦f = g ◦h. We prove

that h is a symmetric circle homeomorphism if and only if h = Id.

1. Introduction

A remarkable rigidity result in geometry is the Mostow rigidity theorem for high-
dimensional closed hyperbolic manifolds (see [12]). For low-dimensional hyperbolic
manifolds, the situation is quite complicated and the study of the rigidity problem
can be used by one-dimensional dynamical systems. In this paper, we study the
symmetric rigidity problem in one-dimensional dynamical systems, which is motivated
by the study of geometric Gibbs theory (see [9–11]). The main result is that

Theorem 1 (Main Theorem). Suppose f and g are two circle endomorphisms of the
same degree d ≥ 2 having bounded geometry such that f(1) = g(1) = 1 and suppose f
and g both preserve the Lebesgue measure on the unit circle. Let h be the conjugacy
from f to g with h(1) = 1. That is, h◦f = g ◦h. If h is a symmetric homeomorphism,
then h must be the identity.

The result has many consequences, in particular, it gives an affirmative answer
to [11, Conjecture 2.4] and [10, Conjecture10.12] and [5, Conjecture 2] as follows.

Corollary 1. Suppose f and g are uniformly symmetric circle endomorphisms of
the same degree d and and suppose both f and g preserve the Lebesgue measure m.
Suppose h is the conjugacy from f to g, and h(1) = 1 . If h is symmetric, then h = id.
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Corollary 2. Suppose f and g are uniformly quasisymmetric circle endomorphisms
of the same degree d and both f and g preserve the Lebesgue measure m. Suppose h
is the conjugacy from f to g, and h(1) = 1. If h is symmetric, then h = id.

We organize this paper as follows. In Section 2, we define a circle endomorphism
having bounded geometry. In the same section, we review the definitions of uniformly
quasisymmetric circle endomorphisms and uniformly symmetric circle endomorphisms.
In Section 3, we prove our main theorem (Theorem 1).

Acknowledgment: We would like to thank Professor Frederick Gardiner for help
and communications during this research.

2. Circle Endomorphisms Having Bounded Geometry

Let T = {z ∈ C | |z| = 1} be the unit circle in the complex plane C. Let m be the
Lebesgue probability measure on T (i.e. a Haar measure on T ). Suppose

f : T → T

is an orientation-preserving covering map of degree d ≥ 2. We call it a circle endo-
morphism. Suppose

h : T → T

is an orientation-preserving homeomorphism. We call it a circle homeomorphism.
Every circle endomorphism f has at least one fixed point. By conjugating f by a
rotation of the circle if necessary, we assume that 1 is a fixed point of f , that is,
f(1) = 1.

The universal cover of T is the real line R with a covering map

π(x) = e2πix : R→ T.

In this way, we can think the unit interval [0, 1] as the unit circle T .
Then every circle endomorphism f can be lifted to a homeomorphism

F : R→ R, F (x+ 1) = F (x) + d, ∀x ∈ R.

We will assume that F (0) = 0 so that there is a one-to-one correspondence between
f and F . Therefore, we also call such a map F a circle endomorphism.

Similarly, every circle homeomorphism h can be lifted to an orientation-preserving
homeomorphism

H : R→ R, H(x+ 1) = H(x) + 1, ∀x ∈ R.

We will assume that 0 ≤ H(0) < 1 so that there is a one-to-one correspondence
between h and H. Therefore, we also call such a map H a circle homeomorphism.
Since we only consider circle homeomorphisms as conjugacies of circle endomorphisms
in this paper, we assume h(1) = 1 (equivalently, H(0) = 0). We use id and ID to
denote the identity circle homeomorphism and its lift to R, respectively. That is,
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id(z) = z and ID(x) = x. Henceforth, we assume that d ≥ 2 is fixed and will not
mention it always.

Definition 1. A circle homeomorphism h is called quasisymmetric (refer to [2]) if
there exists a constant M ≥ 1 such that

1

M
≤ H(x+ t)−H(x)

H(x)−H(x− t)
≤M ∀x ∈ R, ∀t > 0.

It is called symmetric (refer to [3]) if there exists a positive bounded function ε(t) such
that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ H(x+ t)−H(x)

H(x)−H(x− t)
≤ 1 + ε(t) ∀x ∈ R, ∀t > 0.

Definition 2. A circle endomorphism f is called uniformly quasisymmetric (refer
to [8, 10]) if there exists a constant M ≥ 1 such that

1

M
≤ F−n(x+ t)− F−n(x)

F−n(x)− F−n(x− t)
≤M ∀n ≥ 1, ∀x ∈ R, ∀t > 0.

It is called uniformly symmetric (refer to [10]) if there exists a positive bounded func-
tion ε(t) such that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ F−n(x+ t)− F−n(x)

F−n(x)− F−n(x− t)
≤ 1 + ε(t) ∀n ≥ 1, ∀x ∈ R, ∀t > 0.

An example of a uniformly symmetric circle endomorphism is a C1+Dini (or C1+α)
expanding circle endomorphism (see [10]).

Definition 3. We say a circle endomorphism f preserves the Lebesgue measure m
if

(1) m(f−1(A)) = m(A)

holds for all Borel subsets A ⊆ T .

Henceforth, in order to avoid confusion, we will consistently use

[0, 1]/{0 ∼ 1} = R (mod 1)

to mean the unit circle. Likewise, we will consistently use

f = F (mod 1) : [0, 1]/{0 ∼ 1} → [0, 1]/{0 ∼ 1}
to mean a circle endomorphism and

h = H (mod 1) : [0, 1]/{0 ∼ 1} → [0, 1]/{0 ∼ 1}
to mean a circle homeomorphism.

For any circle endomorphism f , the preimage f−1(0) of the fixed point 0 partitions
[0, 1] into d closed and ordered intervals I0, I1, · · · , Id−1 (see Figure 1). Let

η1 = {I0, I1, · · · , Id−1}.
Then η1 is a Markov partition. That is,



4 ADAMSKI, HU, JIANG, WANG

(i) [0, 1] = ∪d−1
i=0 Ii;

(ii) Ii and Ij have pairwise disjoint interiors for any 0 ≤ i < j ≤ d− 1;
(iii) f(Ii) = [0, 1] for every 0 ≤ i ≤ d− 1;
(iv) the restriction of f to the interior of Ii is injective for every 0 ≤ i ≤ d− 1.

 

Figure 1. The initial Markov partition.

The preimage f−n(0) of the fixed point 0 partitions [0, 1] into dn closed intervals
Iwn

labeled by

wn = i0i1 . . . in−1 ∈ Σn =

n−1∏
k=0

{0, 1, . . . , d− 1}

and defined inductively as

fk(Iwn) ⊂ Iik , ∀0 ≤ k ≤ n− 2, and fn−1(Iwn) = Iin−1 .

Let
ηn = {Iwn

| wn = i0i1 . . . in−1 ∈ Σn}.
Then ηn is also a Markov partition. That is,

(1) [0, 1] = ∪wn∈Σn
Iwn

;
(2) intervals in ηn have pairwise disjoint interiors;
(3) fn(Iwn

) = [0, 1] for every wn ∈ Σn;
(4) the restriction of fn to the interior of Iwn

is injective for every wn ∈ Σn.

Remark 1. Suppose A and B are two partitions of T . The partition

A ∨B = {A ∩B | A ∈ A, B ∈ B}
is the finer partition from A and B. Then we have that

ηn = ∨nk=1f
−kη1.

Let σ be the left-shift map and let σ∗ be the right-shift map on Σn, that is,

σ(ωn) = σ(i0i1 . . . in−2in−1) = i1 . . . in−2in−1

and
σ∗(ωn) = σ∗(i0i1 . . . in−2in−1) = i0i1 . . . in−2.

Here we assume w0 = ∅ and Iw0
= [0, 1] and σ(w1) = w0 and σ∗(w1) = w0. Then we

have
Iwn = ∪d−1

k=0Iwnk = ∪wn+1∈(σ∗)−1(wn)Iwn+1

and
f−1(Iwn

) = ∪d−1
k=0Ikωn

= ∪wn+1∈σ−1(wn)Iwn+1
.
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Figure 2. Iwn ⊂ Iσ∗(wn) and f(Iwn) = Iσ(wn).

Definition 4. A circle endomorphism f is said to have bounded geometry (refer
to [8, 10]) if there is a constant C > 1 such that

(2)
|Iσ∗(ωn)|
|Iωn |

≤ C, ∀ωn ∈ Σn, ∀n ≥ 1. (See Figure 2)

We know that a uniformly quasisymmetric circle endomorphism as well as a uni-
formly sisymmetric circle endomorphism has bounded geometry (refer to [8,10]). How-
ever, the converse is not true. For example, for any α ∈ (1/2, 1), the piecewise-linear
degree 2 circle endomorphism

fα(x) =


fα(x+ 1)− 2 if x < 0
x/α if 0 ≤ x < α
1 + (x− α)/(1− α) if α ≤ x < 1
fα(x− 1) + 2 if 1 ≤ x

has bounded geometry because

|Iσ∗(ωn)|
|Iωn
|
∈ {1/α, 1/(1− α)}, ∀ωn ∈ Σn,∀n ≥ 1.

However, fα is not uniformly quasisymmetric since for any 0 < t < 1− α,

f−nα (0 + t)− f−nα (0)

f−nα (0)− f−nα (0− t)
=

(
α

1− α

)n
→∞ as n→∞.

Remark 2. The property of uniform quasisymmetry for a circle endomorphism can
be equivalently characterized in terms of its sequence of nested partitions {ηn} alone by
saying that the circle enedomorphism has bounded nearby geometry. The precise defini-
tion of bounded nearby geometry is given and its equivalence to uniform quasisymmetry
is proved in [6, 7]. For more on circle endomorphisms with bounded geometry and/or
bounded nearby geometry, see also [1, 4, 8, 10]).

For a circle endomorphism f having bounded geometry, let

τn = max{|Iwn
| | wn ∈ Σn}.

Then from Definition 4, we have a constant 0 < τ < 1 such that

(3) τn ≤ τn, ∀n ≥ 1.
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It follows that any two circle endomorphisms f and g having bounded geometry are
topologically conjugate. That is, there is a circle homoemorphism h such that

(4) f ◦ h = h ◦ g.
Here h is called the conjugacy from f to g, and when h is symmetric we call it a
symmetric conjugacy. In the special case that both f and g are uniformly quasisym-
metric, we further know that the conjugacy h is quasisymmetric. However, as long as
at least one of the maps is not uniformly quasisymmetric, the conjugacy h may not
be quasisymmetric. Refer to [1, 4, 5, 8, 10].

3. Symmetric Rigidity, the Proof of the Main Result

We start with the following lemma.

Lemma 1. Suppose f is a circle endomorphism having bounded geometry. Let
{ηn}∞n=1 be the corresponding sequence of partitions. Suppose Iwn

∈ ηn is a fixed
partition interval for some n ≥ 1. Then

lim
k→∞

∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n···wk

n
| = 0,

where the ωin are all words of length n.

Proof. From the definition of bounded geometry (Definition 4), we have that

|Iwn
| ≥ A =

1

Cn
.

Since ⋃
w1

n 6=wn

Iw1
n

= [0, 1] \ Iwn ,

we get ∑
w1

n 6=wn

|Iw1
n
| = 1− |Iwn | ≤ 1−A.

For any w1
n, we have that Iw1

nwn
⊂ Iw1

n
. Because of bounded geometry, we further

have
|Iw1

nwn
| ≥ A|Iw1

n
|.

Since ⋃
w2

n 6=wn

Iw1
nw

2
n

= Iw1
n
\ Iw1

nwn
,

we have ∑
w2

n 6=wn

|Iw1
nw

2
n
| = |Iw1

n
| − |Iw1

nwn
| ≤ |Iω1

n
| −A|Iω1

n
| = (1−A)|Iw1

n
|.

This implies that∑
w1

n 6=wn

∑
w2

n 6=wn

|Iw1
nw

2
n
| ≤ (1−A)

∑
w1

n 6=wn

|Iw1
n
| ≤ (1−A)2.
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Inductively, suppose we know∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n...w

k−1
n
| ≤ (1−A)k−1

for k ≥ 3. Then∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n...w

k
n
| =

∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

(
|Iw1

n···w
k−1
n
| − |Iw1

n···w
k−1
n wn

|
)

=
∑

w1
n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n···w

k−1
n
|
(

1−
|Iw1

n···w
k−1
n wn

|
|Iw1

n···w
k−1
n
|

)
.

Notice that Iw1
n···w

k−1
n wn

⊂ Iw1
n···w

k−1
n

. The definition of bounded geometry implies

that
|Iw1

n···w
k−1
n wn

|
|Iw1

n···w
k−1
n
|
≥ A.

This implies that

1−
|Iw1

n···w
k−1
n wn

|
|Iw1

n···w
k−1
n
|
≤ 1−A.

Thus∑
w1

n 6=wn

· · ·
∑

wk
n 6=wn

|Iw1
n...w

k
n
| ≤ (1−A)

∑
w1

n 6=wn

· · ·
∑

wk−1
n 6=wn

|Iw1
n···w

k−1
n
| ≤ (1−A)k.

Letting k →∞, this proves the lemma. �

Given a partition interval Iwn ∈ ηn for some n ≥ 1, define

C(Iwn) = {x ∈ [0, 1] | fkn(x) 6∈ Iwn , k = 0, 1, 2, · · · } =

∞⋂
i=1

 ⋃
ωj

n 6=ωn

1≤j≤i

Iω1
n...ω

i
n

 .

A consequence of Lemma 1 is the following.

Corollary 3. Suppose f is a circle endomorphism having bounded geometry. Then
the set C(Iwn) has zero Lebesgue measure. That is, m(C(Iwn)) = 0.

Suppose f and g are both circle endomorphisms having bounded geometry and h
is the conjugacy from f to g. Define the number

1 ≤ Φ = sup
I⊆[0,1]

|h(I)|
|I|

≤ ∞

and the set

(5) X = {x ∈ [0, 1] | ∃Ixk = [ak, bk], lim
k→∞

ak = lim
k→∞

bk = x, lim
k→∞

|h(Ixk )|
|Ixk |

= Φ}
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We would like to note that, in general, Φ = ∞ and when Φ < ∞, h is a Lipschitz
conjugacy.

Remark 3. Similarly, we can also define

0 ≤ φ = inf
I⊆[0,1]

|h(I)|
|I|

≤ 1

and use φ to prove Theorem 1.

Lemma 2. Suppose f and g are both circle endomorphisms having bounded geometry.
Then X is a non-empty subset of T .

Proof. Suppose {Ik = [ak, bk]}∞k=1 is a sequence of intervals such that

lim
k→∞

|h(Ik)|
|Ik|

= Φ.

By taking a subsequence if necessary, we assume that {ak}∞k=1 and {bk}∞k=1 are two
convergent sequences of numbers and a = limk→∞ ak and b = limk→∞ bk.

If a = b = x, then x ∈ X and X 6= ∅. Note that if Φ =∞ then a = b.
If a < b, then I = [a, b] is a non-trivial interval such that

(6)
|h(I)|
|I|

= Φ.

In this case, we claim that for any non-trivial subinterval I ′ ⊂ I, |h(I ′)|/|I ′| = Φ.
The claim implies that I ⊂ X, and thus, X 6= ∅. Now we prove the claim as follows.
Let I ′ = [a′, b′] with a ≤ a′ < b′ ≤ b. Let L = [a, a′] and R = [b′, b]. Then we have
I = L ∪ I ′ ∪R and h(I) = h(L) ∪ h(I ′) ∪ h(R). Assume |h(I ′)|/|I ′| < Φ. Then, since
|h(L)| ≤ Φ|L|, and |h(R)| ≤ Φ|R|, we have

|h(I)|
|I|

=
|h(L)|+ |h(I ′)|+ |h(R)|

|L|+ |I ′|+ |R|
< Φ.

This is a contradiction. Thus we have proved the claim and completed the proof. �

Furthermore, under the assumption that both f and g preserve the Lebesgue mea-
sure m, we have the following stronger result.

Lemma 3. Suppose f and g are both circle endomorphisms having bounded geometry
and both preserve the Lebesgue measure m. Then X is dense in [0, 1]. That is, X =
[0, 1].

Proof. We will prove that for any n ≥ 1 and for any partition interval Iwn
∈ ηn,

Iwn
∩X 6= ∅. It will then follow from inequality (3) that X = [0, 1]. We prove it by

contradiction.
Assume we have a partition interval Iwn such that Iwn ∩X = ∅. Then we can find

a number D < Φ such that

(7)
|h(I)|
|I|

≤ D
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for all I ⊂ Iwn
.

Since X 6= ∅, we have an interval ID ⊆ [0, 1] such that

(8)
|h(ID)|
|ID|

> D.

We pull back ID by fn to get f−n(ID) = ∪w1
n
IDw1

n
, where IDw1

n
⊂ Iw1

n
∈ ηn and

fn(IDw1
n
) = ID.

Since both f and g preserve the Lebesgue measure m, for all k ≥ 2 we have

|ID| = |IDωn
|+

∑
ω1

n 6=ωn

|IDω1
n
| = |IDωn

|+
∑

ω1
n 6=ωn

|f−n(IDω1
n
)|

= |IDωn
|+

∑
ω1

n 6=ωn

|IDωnω1
n
|+

∑
ω2

n 6=ωn

|IDω2
nω

1
n
|


= |IDωn

|+
∑

ω1
n 6=ωn

|IDωnω1
n
|+

∑
ω2

n 6=ωn

∑
ω1

n 6=ωn

|IDω2
nω

1
n
| = . . .

= |IDwn
|+

k−1∑
l=1

∑
wl

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwnwl
n...w

1
n
|+

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwk
n...w

1
n
|(9)

and, similarly,
(10)

|h(ID)| = |h(IDwn
)|+

k−1∑
l=1

∑
wl

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwnwl
n...w

1
n
)|+

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwk
n...w

1
n
)|.

See Figure 3. Because IDwn
and IDwnwl

n...w
1
n

are sub-intervals of Iwn
, (7) says that

|h(IDwn
)|

|IDwn
|
,
|h(IDwnwl

n···w1
n
)|

|ID
wnwl

n···w1
n
|
≤ D ∀ l ≥ 1.

This implies that

(11)
|h(IDwn

)|+
∑k−1
l=1

∑
wl

n 6=wn
· · ·
∑
w1

n 6=wn
|h(IDwnwl

n...w
1
n
)|

|IDwn
|+
∑k−1
l=1

∑
wl

n 6=wn
· · ·
∑
w1

n 6=wn
|ID
wnwl

n...w
1
n
|

≤ D ∀ k ≥ 2.

From Lemma 1

(12) lim
k→∞

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|IDwk
n···w1

n
| = 0

and

(13) lim
k→∞

∑
wk

n 6=wn

· · ·
∑

w1
n 6=wn

|h(IDwk
n···w1

n
)| = 0.
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Figure 3. The interval ID has a preimage under fn composed of
dn intervals, one of which is a subset of Iωn . Similarly, each of these
preimage-intervals that is not a subset of Iωn has a preimage under fn

composed of dn intervals, one of which is a subset of Iωn
. Equation (9)

says that the length of ID is equal to the sum of the lengths of all
blue intervals belonging to the same arbitrary level plus the lengths
all pink intervals belonging to that same level or any previous level.

Now (9), (10), (11), (12), and (13) imply that

|h(ID)|
|ID|

≤ D.

This contradicts (8). Thus our assumption that there exists a partition interval Iωn

such that Iωn
∩X = ∅ is false, and this proves the lemma. �

Proof of Theorem 1. We will prove that Φ = 1. Equivalently, we will prove that Φ > 1
cannot happen, regardless of Φ <∞ or Φ =∞.

We proceed with a proof by contradiction. Assume Φ > 1 (possibly ∞). Then we
have two numbers 1 < D1 < D2 < Φ. Since h is symmetric (see definition 1), there
exists a positive bounded function ε(t) such that ε(t)→ 0 as t→ 0+ and

1

1 + ε(t)
≤ |h(I)|
|h(I ′)|

≤ 1 + ε(t)
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holds for all closed intervals I and I ′ that have the same length t > 0 and are adjacent,
i.e. the right endpoint of one interval is the left endpoint of the other. Fix t0 such
that

(14) ε(t) <
D2

D1
− 1 ∀t < t0.

Since X = [0, 1] (Lemma 3), there exists an interval I = [a, b] ⊂ (0, 1) with |I| =
b− a < t0 such that

(15)
|h(I)|
|I|

> D2.

Let L = [2a−b, a] ⊂ (0, 1) and R = [b, 2b−a] ⊂ (0, 1) (see figure 4). Then the intervals
L and R are adjacent to I and have the same length as |I|. It follows from (14) that

|h(R)|
|R|

=
|h(R)|
|h(I)|

· |h(I)|
|I|

· |I|
|R|

>
1

1 + ε(b− a)
·D2 · 1 > D1

and
|h(L)|
|L|

=
|h(L)|
|h(I)|

· |h(I)|
|I|

· |I|
|L|

>
1

1 + ε(b− a)
·D2 · 1 > D1.

 

Figure 4. h is symmetric.

Now we want to show that
|h([a, 1])|
|[a, 1]|

> D1.

Consider any interval J = [b, c] ⊃ R with 2b− a ≤ c ≤ 1 satisfying

(16)
|h(J)|
|J |

> D1.

If c = 1, we have

|h([a, 1])|
|[a, 1]|

=
|h(I ∪ J)|
|I ∪ J |

> D1.

Then we have nothing further to prove.
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If c < 1, we have a number δ > 0 such that c + δ < 1 and such that for any
x ∈ [c, c+ δ] we have

|h([b, x])|
|[b, x]|

> D1.

Since X = [0, 1] (Lemma 3), there is an interval I1 = [a1, b1] ⊂ [c, c+ δ] with |I1| < t0
such that

|h(I1)|
|I1|

> D2.

Let J1 = [b, a1]. Then we have three consecutive intervals I, J1, and I1 such that

|h([a, b1])|
|[a, b1]|

=
|h(I ∪ J1 ∪ I1)|
|I ∪ J1 ∪ I1|

> D1.

(See Figure 5.)

Figure 5. Construction of J1 and I1.

Consider I1 as a new I and repeat the above construction. We get three consecutive
intervals I1 = [a1, b1], J2 = [b1, a2], and I2 = [a2, b2] such that

|h([a1, b2])|
|[a1, b2]|

=
|h(I1 ∪ J2 ∪ I2)|
|I1 ∪ J2 ∪ I2|

> D1.

Inductively, for every integer n ≥ 2, we have three consecutive intervals In−1 =
[an−1, bn−1], Jn = [bn−1, an], and In = [an, bn] such that

|h([an−1, bn])|
|[an−1, bn]|

=
|h(In−1 ∪ Jn ∪ In)|
|In−1 ∪ Jn ∪ In|

> D1.

This implies that

|h([a, bn])|
|[a, bn]|

=
|h(I ∪ (∪ni=1(Ji ∪ Ii)))|
|I ∪ (∪ni=1(Ji ∪ Ii))|

> D1.
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If bn = 1, we have
|h([a, 1])|
|[a, 1]|

> D1.

Then we have nothing further to prove.
In the case that bn < 1 for all n ≥ 1, since {bn}∞n=1 is a strictly increasing sequence

in [0, 1), we have

b∞ = lim
n→∞

bn ≤ 1.

and
|h([a, b∞])|
|[a, b∞]|

=
|h(I ∪ (∪∞n=1(Jn ∪ In)))|
|I ∪ (∪∞n=1(Jn ∪ In))|

> D1.

Since b∞ depends on the initially chosen interval J , we write it as b∞(J). Consider
the set

B = {b∞(J) | J satisfies (16)}
Let β = supB. We claim β = 1. Otherwise, we take J = [b, β]. It satisfies (16). Then
b∞(J) > β. This contradiction proves the claim, and so

|h([a, 1])|
|[a, 1]|

> D1.

Similarly, by using L instead of R and applying the procedure above, we get

|h([0, a])|
|[0, a]|

> D1.

Finally, we get the following contradiction.

1 =
|h([0, 1])|
|[0, 1]|

=
|h([0, a)|+ |h([a, 1])|
|[0, a]|+ |[a, 1]|

> D1 > 1.

The contradiction implies that Φ = 1.
Since Φ = 1, we have that for any non-trivial interval J ⊂ [0, 1], |h(J)|/|J | = 1.

Otherwise, if there is an interval J ⊂ [0, 1] such that |h(J)|/|J | < 1, let L∪R = [0, 1]\J .
Then

1 =
|h([0, 1])|
|[0, 1]|

=
|h(L)|+ |h(J)|+ |h(R)|

|L|+ |J |+ |R|
< 1,

since |h(L)| ≤ |L| and |h(R)| ≤ |R|. This is a contradiction. Since h(0) = 0, it follows
that h = id. This completes the proof of Theorem 1. �
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