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1. Introduction

In 1822 Gauss studied the problem of \representing the parts of one

given surface upon another given surface that the representation shall

be similar, in its smallest parts, to the surface represented [9]." In

the modern language of di�erential geometry, he showed that any two

surfaces are locally conformal. An equivalent way of stating this result

is to say that given any two-dimensional manifold with a Riemannian

metric, one can �nd local coordinates around each point in which the

metric looks like a real multiple of the Euclidean metric on the plane.

Such coordinates are called isothermal. The change of isothermal co-

ordinates are angle-preserving maps of the plane, hence holomorphic if

they are orientation-preserving. This shows that any orientable surface

can be equipped with a Riemann surface structure.

In late 20's the concept of quasiconformal mappings was introduced

by Gr�otzsch. These are homeomorphisms of the plane with L2
loc gen-

eralized partial derivatives which map in�nitesimal circles to ellipses

with bounded dilatations. The theory of quasiconformal mappings and

the work of Teichm�uller on the moduli space of Riemann surfaces in

30's was developed by two leading mathematicians L. Ahlfors and L.

Bers and their school in 50's and early 60's. This rapid developement

called for a version of Gauss's theorem which would treat families of

measurable Riemannian metrics on a surface as well. In 1960, using

the earlier results of Calderon and Zygmund on singular integral trans-

forms, Ahlfors and Bers proved the required version which today is

known as the \Measurable Riemann Mapping Theorem" [3]. However,

Bers realized that a version of the theorem (without dependence on

parameters) had already been proved by C.B. Morrey in 1938 [14].

The theorem of Ahlfors-Bers-Morrey soon became the basic tool in

the study of Teichm�uller spaces and Kleinian groups. Later, in early
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80's, Sullivan, Shishikura, Douady and Hubbard used the theorem in

quasiconformal surgery and the study of iteration of rational functions

on the sphere. It turned out that quasiconformality is the exact level

of regularity one needs in the course of a surgery. The fact that the

conformal structures involved in the theorem are only measurable ex-

hibits its extremely 
exible nature as a tool for surgery. This idea led

to the proof of two old conjectures in conformal dynamics [16],[18] and

was the origin of the theory of polynomial-like maps [7].

The goal of this paper is to give a self-contained expository account

of what this theorem is about, and to show a few applications.

2. Conformal Structures on Surfaces

Let us consider a C1 smooth, connected, oriented surface X. A con-

formal structure � on X is an equivalence class of measurable Rie-

mannian metrics in the following sense: If a metric g has the local

expression

g(x; y) = E(x; y)dx2 + 2F (x; y)dxdy +G(x; y)dy2;

then g is called measurable if E; F; and G are (Lebesgue) measurable

functions of x; y such that E > 0, G > 0, and EG � F 2 > 0 almost

everywhere. Two metrics g1 and g2 are said to be equivalent i� g1 = 
g2
for some positive measurable function 
 on X. Thus, the notion of the

angle between two tangent vectors at almost every point is well-de�ned

in the conformal class of a particular metric.

Now suppose in addition that X is a Riemann surface, i.e., suppose

that there is a complex structure A (a maximal C -analytic atlas) as-

sociated to X. In this case it is much more useful to choose the usual

complex-variable notation for our metrics. A metric g can then be

written as

g(z) = 
(z)jdz + �(z)d�zj2; (1)

where z = x + iy; 
 and � are measurable functions of z, 
(z) > 0

and j�(z)j < 1 for almost every z (cf. Appendix A). It is easily seen

that �(z) is not a well-de�ned function on X. However, the expression

�(z)d�z=dz is well-de�ned under holomorphic change of coordinates. In

fact, if z 7! w is a change of coordinates on X and if g in (1) has the



Measurable Riemann Mapping Theorem 3

local expression ~
(w)jdw + ~�(w)d �wj2 in w, then

~�(w) = �(z)
(dw=dz)

(dw=dz)
; (2)

from which it follows that �(z)d�z=dz = ~�(w)d �w=dw. The expression

� = �(z)
d�z

dz

is called theBeltrami di�erential of the metric g. From the de�nition

of a conformal structure and (1) it follows that � depends only on the

conformal class of g.

Conversely, given any measurable Beltrami di�erential �, we can

consider the associated conformal structure which is the conformal class

of the metric jdz+�(z)d�zj2. As a result, on a Riemann surface there is a

one-to-one correspondence between conformal structures and Beltrami

di�erentials.

Fixing the complex structure A on X, we can associate a conformal

structure to X whose Beltrami di�erential is identically zero in every

local coordinate belonging to A. This conformal structure is called the

standard conformal structure of X. We will always denote this

structure by �X . A typical metric in �X would then look like 
(z)jdzj2
in every local coordinate z in A.
We have just seen that a conformal structure on a Riemann surface

X can be described in a one-to-one fashion by a Beltrami di�erential

on X. Here is a natural question: How could one give a geometric

description of a conformal structure on X? Answer: Just take a look

at the \�eld of ellipses" of vectors of constant length on each tangent

plane. Let us elaborate this in more details.

Consider a conformal structure � on X whose Beltrami di�eren-

tial is �. For almost every z in X, we can form concentric ellipses

jjvjj =constant for v in TzX, the tangent plane to X at z (see �gure

1).

Note that these concentric ellipses depend only on � since any Rie-

mannian metric in this conformal structure is a real multiple of any

other when restricted to TzX. It is easy to understand the geome-

try of these ellipses in terms of �. Consider a tangent vector v =

u@=@x+v@=@y in TzX. Passing to complex-variable notation, the con-

dition jjvjj = c means j(u+ iv) + �(z)(u� iv)j = c (cf. Appendix A).

If u + iv = rei�, this reduces to j1 + j�(z)jei(arg �(z)�2�)j = c=r. So the
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||v||= const.

T Xz

θ

Figure 1

ratio of the major axis to the minor axis of this ellipse, measured in

the standard conformal structure �X , is

K(z) =
1 + j�(z)j
1� j�(z)j (3)

and the angle of elevation of the minor axis with respect to the hori-

zontal direction in this particular local coordinate is

�(z) =
1

2
arg�(z): (4)

From (3) it follows in particular that j�(z)j is a well-de�ned measurable

function on X (as can also be seen from the transformation rule (2)).

It also shows that we get \circles" if we consider the ellipses coming

from �X .

Conversely, given any measurable �eld of ellipses on X, i.e., a

family of concentric ellipses on almost every tangent plane varying in a

measurable way, we can �nd a conformal structure by going backward:

Measure the ratio of the major axis to the minor axis in the standard

conformal structure to obtainK and measure the angle � in a particular

local coordinate z. Then from (3) and (4) �nd �(z). The conformal

structure will then be the conformal class of jdz + �(z)d�zj2.
As a result, conformal structures on X and measurable �elds of el-

lipses on the tangent planes of X are in fact the same objects.
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A measurable �eld of ellipses is said to have bounded dilatation

with respect to �X if jjKjj1 < +1, where jj:jj1 denotes the essential

supremum over X. This means that the ellipses cannot be distorted

arbitrarily large. We are allowed to make an error in drawing our

`circles' only within a certain bounded range. From (3) it is natural to

de�ne a conformal structure of bounded dilatation with respect to �X
as one whose Beltrami di�erential satis�es

jj�jj1 < 1:

As an example, the conformal class of

jdz + z2

jzjd�zj
2 (5)

does not have bounded dilatation on the unit disk D = fz : jzj < 1g
(see �gure 2).

Figure 2

Yet another way of describing a conformal structure on a Riemann

surface is through an algebraic approach. Fix a conformal structure �

on X and consider its �eld of ellipses on almost every tangent plane

TzX. We can de�ne an R-linear isomorphism J� on TzX such that

J2
� = �identity. To this end, pick an orthogonal pair (e1; e2) as in

the �gure and let J�(e1) = e2 and J�(e2) = �e1, and extend J� by
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linearity. It is clear that J� constructed in this way does not depend

on the choice of the ellipse where (e1; e2) was picked up. Such family of

linear maps is an example of a measurable almost-complex structure.

Strictly speaking, a measurable almost-complex structure on X

is a rule z 7! J(z) which assigns to almost every z on X an R-linear

isomorphism J(z) on TzX in a measurable fashion such that J(z)2 =

�identity.
For example, the almost-complex structure induced by �X sends

@=@x to @=@y and @=@y to �@=@x in every local coordinate z = x+ iy.

In the complex-variable notation, therefore, it sends @=@z to i@=@z

(cf. Appendix A). For this reason, we usually regard it as the \mul-

tiplication by i" or the \rotation by 90Æ" in the positive direction on

TzX.

Conversely, consider a measurable almost-complex structure z 7!
J(z) such that the orientation of the pair (@=@x; J(@=@x)) is the same

as (@=@x; @=@y) for almost every z on X. Fix a typical z and pick an

R-linear isomorphism � on TzX such that ��1J(z)�(@=@x) = @=@y and

��1J(z)�(@=@y) = �@=@x. In other words, � conjugates the action of J
with the multiplication by i. Consider concentric circles on TzX coming

from �X and take their image under �. The resulting concentric ellipses

are well-de�ned since they depend neither on the local coordinate z nor

on the choice of �. Each ellipse is preserved under J(z). In this way

we obtain a �eld of ellipses, hence a conformal structure, out of an

almost-complex structure (see �gure 3).

e2
e1

T XzT Xz

φ

J(z)rotation by 90
o

Figure 3
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Now let us de�ne an operation on conformal structures which cor-

responds to pulling back the Riemannian metrics in di�erential geom-

etry. Roughly speaking, we can pull back a conformal structure by

any smooth di�eomorphism, but because of the measurable nature of

our objects, we can relax the condition of being smooth. For a mo-

ment, let X and Y be two Riemann surfaces and let f : X ! Y be an

orientation-preserving di�eomorphism. Given any conformal structure

� on Y we can pull it back to get a conformal structure f �� on X. In

fact, if � is the conformal class of jdw + �(w)d �wj2 and if w = f(z) is

the local expression of f , then f �� will be the conformal class of

jdz + f�z + �(f(z)) �f�z
fz + �(f(z)) �fz

d�zj2

where fz and f�z are complex partial derivatives of f in local coordinate

z (cf. Appendix A). In particular, if �Y is the standard conformal

structure of Y , then

f ��Y = conformal class of jdz + f�z
fz
d�zj2: (6)

The Cauchy-Riemann equations will then show that f : X ! Y is

a conformal map i� f ��Y = �X . In the language of almost-complex

structures, this means that the derivative Df(z) as an R-linear map

TzX ! Tf(z)Y commutes with the corresponding multiplications by i:

TzX
Df(z)�! Tf(z)Y

J # # J 0
TzX

Df(z)�! Tf(z)Y

Now, all conformal structures are only measurable and it seems rather

awkward to use smooth maps to pull them back. In fact, the same

kind of operations as above can be de�ned even if f is not a di�eomor-

phism. But in order to extend the class of maps for which the pull-back

of conformal structures makes sense, we have to pick up those home-

omorphisms for which the partial derivatives exist in some reasonable

sense. It turns out that such homeomorphisms do exist: They are the

so-called quasiconformal homeomorphisms.

Strictly speaking, a homeomorphism f : X ! Y is called quasi-

conformal if at almost every point it has locally square-integrable

generalized partial derivatives fz and f�z in every local coordinate z (cf.
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Appendix B) and

jjf�z
fz
jj1 < 1: (7)

Then we can imitate the case of a di�eomorphism to pull a confor-

mal structure back by f , so the formula (6) still holds. As a result,

f : X ! Y is quasiconformal i� f ��Y has bounded dilatation with

respect to �X :

What is more exciting is the fact that even for a quasiconformal home-

omorphism f : X ! Y , f ��Y = �X implies f is conformal. In other

words, a quasiconformal homeomorphism f with f�z = 0 is actually

holomorphic, which is a generalization of Cauchy-Riemann equations

for homeomorphisms. This fact is known asWeyl's Lemma. The quan-

tity on the left side of (7) is called the maximal dilatation of f . By

Weyl's lemma, f is conformal i� its maximal dilatation is zero.

Quasiconformal homeomorphisms have extraordinary analytic prop-

erties. They can also be characterized by simple geometric properties

for which we refer the reader to [2] (see also Appendix B, Theroem

B-1).

Now, let us stop for a moment and look at what we have already

constructed. From a complex structure on a surface we can construct

a (standard) conformal structure, or equivalently a �eld of ellipses, or

equivalently an almost-complex structure:

Conformal Structures Fields of Ellipses Almost-Complex Structures

Complex Structures

Figure 4

Here we come up with the most delicate question: Is it possible to

draw an arrow from downstairs to upstairs in this diagram? In other

words, is it true that given

(a) a conformal structure �, or

(b) a measurable �eld of ellipses, or
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(c) a measurable almost-complex structure J

on a surface X, one can �nd a complex structure A on X such that

(a') � is the standard conformal structure of (X;A)? or

(b') the circles in the tangent planes of (X;A) are the given ellipses?

or

(c') the action of J is the same as multiplication by i in (X;A)?

3. The Theorem

The Measurable Riemann Mapping Theorem provides a complete an-

swer to the above question. It turns out that the answer is aÆrmative

provided that we impose a boundedness condition on the given confor-

mal structure. Roughly speaking, the theorem says that the answer is

positive if the conformal structure has a reasonable deviation from the

standard conformal structure of some complex structure on the sur-

face. In other words, if there is a complex structure on X such that �

has bounded dilatation with respect to �X , then we can re-de�ne the

complex structure of X such that � is standard in the new C -analytic

atlas. In this case �, or the �eld of ellipses, or the almost-complex

structure, is called integrable.

Let us formulate this question in a more convenient language. Let X

be given a �xed complex structure and let � have bounded dilatation

with respect to �X .

Fact(y) To say that � is integrable means that there exists a Riemann

surface Y and a quasiconformal homeomorphism f : X ! Y such that

f ��Y = �.

In fact, if f is such a map, equip X with the pull-back complex struc-

ture (whose charts are f composed with the charts of Y ). Then � is

standard in this new complex structure. On the other hand, if � is

standard in some new complex structure on X, call this new Riemann

surface Y and consider the identity map id : X ! Y . Obviously,

(id)��Y = �.

Moreover, it is easy to prove the uniqueness of such Y (if any). If

g : X ! Z is another quasiconformal homeomorphism with g��Z = �,

then h = g Æ f�1 : Y ! Z satis�es h��Z = �Y , so it is conformal.

Conversely, if h : Y ! Z is a conformal homeomorphism, then g = h Æ
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f : X ! Z satis�es g��Z = �. We conclude that the solution f : X !
Y is unique up to post-composition with a conformal homeomorphism

of Y.

As the basic case, let us assume that X = D , the unit disk in the

complex plane. Let � have bounded dilatation with respect to �D ,

which means the corresponding Beltrami di�erential � satis�es jj�jj1 <

1. Then by (6) a quasiconformal homeomorphism f : D ! Y satis�es

f ��Y = � i� it is a solution of the equation

f�z
fz

= �; jj�jj1 < 1

which is called the Beltrami equation.

Local solutions of this equation were found by Gauss for a real an-

alytic �. Beltrami himself extensively used the equation in his works

on surface theory [4]. C.B. Morrey was the �rst who proved the ex-

istence of global solutions of the Beltrami equation for measurable �.

Nevertheless, his proof had been overlooked by Ahlfors and many oth-

ers for almost 20 years since it was totally written in the language of

partial di�erential equations. The early version of the proof for H�older

continuous � was already published by Ahlfors when Bers realized the

connection of Morry's work with quasiconformal mappings. In their

1960 fundamental paper, Ahlfors and Bers proved a much more power-

ful version which also gives analytic dependence on parameters. This

seemingly technical improvement turned out to be of tremendous im-

portance for the theory of Teichm�uller spaces.

According to the uniformization theorem, the Riemann surface Y

above is conformally equivalent to either D or the complex plane C .

But the theorem shows that Y can always be chosen to be D , which

means that the Beltrami equation has solutions f which are quasicon-

formal homeomorphisms D ! D . This will show that Y can never be

C , i.e., there is no quasiconformal homeomorphism between D and C

(see Corollary 1 below).

Theorem 1 (Ahlfors-Bers-Morrey). Let � be a measurable con-

formal structure of bounded dilatation on the unit disk D . Then there

exists a quasiconformal homeomorphism f : D ! D with f ��D = �. f

is unique up to post-composition with a conformal homeomorphism of

D . Moreover, if f�tg is a family of such conformal structures which

depends continuously, smoothly, or analytically on a parameter t, then
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there exists a family ff tg of quasiconformal homeomorphisms of D with

(f t)��D = �t which depends on t in the same way as f�tg does.

As a simple consequence of the theorem, we have the following

Corollary 1. There is no quasiconformal homeomorphism between

D and C .

In fact, let g : D ! C be such a homeomorphism. Then g��C has

bounded dilatation with respect to �D . By the theorem above, there

is f : D ! D such that f ��D = g��C , or (f Æ g�1)��D = �C . But this

means that f Æ g�1 : C ! D is conformal, hence constant by Liouville's

theorem.

It might seem that there are genuine global obstructions to integra-

bility for a general Riemann surface. But that is just not true. In fact

the general case is a consequence of the `local' case X = D .

Let X be an arbitrary Riemann surface with a C -analytic atlas A.
Let � be a measurable conformal structure of bounded dilatation with

respect to �X . Cover X by a countable union of charts (U; z) in A,
where z : U ! D is a homeomorphism. In each such local coordinate,

� is the conformal class of jdz+�(z)d�zj2 with z in D and jj�jj1 < 1. By

the above theorem, there is a quasiconformal homeomorphism f : D !
D such that f ��D = �: Choose (U; f Æ z) as a chart in a new atlas B. If
(V; w) is also in A with U \V 6= ; and if (V; g Æw) is the corresponding
new chart in B, then the change of coordinate (g Æ w) Æ (f Æ z)�1 is

conformal since it preserves �D :

[(g Æ w) Æ (f Æ z)�1]��D = (f�1)�(w Æ z�1)�g��D
= (f�1)�(w Æ z�1)��

= (f�1)��

= �D :

Therefore B is actually a C -analytic atlas on X with respect to which

� is standard. By fact (y) above, we have proved

Theorem 2. Let X be a Riemann surface and � be a measurable con-

formal structure of bounded dilatation with respect to �X . Then there

exists a Riemann surface Y and a quasiconformal homeomorphism

f : X ! Y such that f ��Y = �. f is unique up to post-composition

with a conformal homeomorphism of Y.
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When X is the Riemann sphere �C , it follows from the uniformiza-

tion theorem that every Riemann surface Y homeomorphic to X is in

fact conformally equivalent to X. Moreover, every conformal homeo-

morphism of the sphere is a complex M�obius transformation which is

uniquely determined by its image at 3 distinct points. Consequently,

one has

Theorem 3. Let � be a measurable conformal structure of bounded di-

latation on the Riemann sphere �C . Then there exists a unique quasicon-

formal homeomorphism f : �C ! �C with f(0) = 0; f(1) = 1; f(1) =

1 such that f ���C = �.

The proof of Theorem (2) also reveals the following fact. If we consider

a conformal class of continuous Riemannian metrics on a Riemann sur-

face, we do not have to impose any boundedness condition on it. In

fact, given any such conformal class on X, we equip X with an arbi-

trary complex structure and we take a covering of X by a bunch of

disks compactly contained in a given covering. It follows that the func-

tion j�j is uniformly less than 1 on each disk. Then we repeat the same

argument as before.

Corollary 2. Every continuous conformal structure on a smooth sur-

face is integrable.

As an example, the conformal structure (5) on D does not have

bounded dilatation with respect to �D . Nevertheless, it is continuous

and so integrable. It can be checked that the Riemann surface on

which (5) is standard is conformally equivalent to C . In fact, the func-

tion f(z) = z(1�jzj)�2 de�nes the required conformal homeomorphism

D ! C .

4. An Application: Polynomial-Like Maps

There have been several results in conformal dynamics in recent years

whose proofs use the measurable Riemann mapping theorem in an es-

sential way. These include Sullivan's proof of the no wandering do-

main conjecture [18], Shishikura's sharp estimates on the number of
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non-repelling cycles of a rational map on the sphere [16], construc-

tion of Herman rings by quasiconformal surgery [16], and the theory

of polynomial-like maps of Douady and Hubbard [7] which is an im-

portant tool for studying the quadratic family fz 7! z2 + cg and the

Mandelbrot set. Here we give a basic application of Theorem 3 in the

theory of polynomial-like maps.

Let P be a polynomial of degree d > 1 with complex coeÆcients.

For large jzj, it behaves like z 7! czd. Therefore, for large R > 0,

it maps the disk U = fz : jzj < Rg onto a larger topological disk V

with V � �U and P : U ! V is a d-to-1 proper holomorphic map. We

de�ne the �lled Julia set K(P ) as the set of all points x whose orbit

fP n(x)gn�0 remains bounded in C :

K(P ) =
\
n�0

P�n( �U):

This is a compact subset of U which is usually wild, fractal-shaped.

The behavior of polynomials for large jzj suggests that we study

the following situation: Let U and V be open topological disks with

smooth boundaries such that �U � V . Let f : U ! V be a proper

holomorphic map of degree d > 1. We call f a polynomial-like map.

Imitating the polynomial case, we de�ne the �lled Julia set K(f) as

the set of all x in U whose orbit under f never leaves U . Speci�cally,

K(f) = \n�0f
�n( �U).

We want to show that a polynomial-like map has the same iterative

behavior as an actual polynomial near the corresponding �lled Julia

sets. In fact we show that there is a quasiconformal conjugacy between

any polynomial-like map and an actual polynomial which is conformal

in the interior of the �lled Julia sets. In this case, we say that the two

maps are hybrid equivalent.

Theorem 4 (Douady-Hubbard). Let f : U ! V be a polynomial-

like map of degree d > 1. Then there exists a polynomial P of degree

d and a quasiconformal homeomorphism � : �C ! �C with �(1) = 1
which conjugates f and P in a neighborhood of their �lled Julia sets:

�(f(z)) = P (�(z)):

Moreover, ��z = 0 on K(f), so the conjugacy is conformal in the inte-

rior of K(f).
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The key point is to extend the action of f to the whole sphere by

gluing it to the polynomial z 7! zd. Then we de�ne an invariant con-

formal structure on the sphere and use Theorem 3 to show that it is

integrable. To this end, let h : �C nV ! fz : jzj � 2g be a conformal

homeomorphism with h(1) =1, and extend it in a smooth way to a

di�eomorphism h : �C nU ! fz : jzj � 21=dg such that

h(f(z)) = (h(z))d z 2 @U:

Now the smooth function

~f(z) =

�
f(z) z 2 U

h�1 Æ (h(z))d z 2 �C nU
is the desired extension of f which is conformally conjugate to z 7! zd

outside of V . De�ne a measurable conformal structure � on the sphere

as follows. Let � be ��C on �C n �V . We can pull it back from �C n �V to V n �U
by ~f to de�ne � there. Next, we de�ne � on Unf( �U) as the pull-back
of � on V n �U by ~f . This process of taking pull-backs can be continued

to de�ne � everywhere except K(f). We simply put � = ��C on K(f).

Note that � obtained in this way is invariant under ~f and has bounded

dilatation, since after the �rst step, all successive pull-backs are done

by a holomorphic map which does not change the dilatation.

V

U

K

P

f

φ

8

8

Figure 5

By Theorem 3 there is a quasiconformal homeomorphism � : �C ! �C

�xing 1 such that ����C = �. Since � is invariant under ~f , ��C will

be invariant under P = � Æ ~f Æ ��1, so P is holomorphic. Also P is a

d-to-1 proper map �xing 1. Therefore P is a polynomial of degree d.
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Note that ��z = 0 on K(f) since � was de�ned to be standard there.

5. Further Readings

This paper in only an introduction to the very basic features of the

measurable Riemann mapping theorem. Here we brie
y mention a few

references which cover most of the topics we touched in this paper.

Gauss's proof of the existence of isothermal coordinates can be found

in his collected works [9]. There is an English translation of the main

part of his paper in [17]. There is a nice proof due to Douady and

Fathi of the existence of solutions of the Beltrami equation (without

dependence on parameters) in [6]. They �rst prove the result for an

analytic � using a complex-time ordinary di�erential equation and then

they apply standard approximation techniques to �nd the solution

in the general case. The general problem of integrability of smooth

almost-complex structures is answered by a fundamental theorem of

Newlander-Nirenberg [15] which gives a simple proof in the smooth

two-dimensional case.

The most comprehensive study of quasiconformal maps can be found

in [12]. For an excellent short introduction, including a proof of The-

orem 1 in this paper and basic applications to Teichm�uller theory, see

[2]. Another topic of main interest is the theory of quasiconformal

maps in higher dimensions [10].

Teichm�uller theory is the study of the space of quasiconformal defor-

mations of a Riemann surface. It has emerged naturally as an attempt

to answer Riemann's moduli problem for compact surfaces. Good in-

troductions to this subject with applications to quadratic di�erentials

and Fuchsian groups can be found in [1], [8], and [11].

A major area in which quasiconformal maps have been successfully

applied is conformal dynamics. For an excellent introduction to clas-

sical Fatou-Julia theory, see [13]. Standard applications of quasicon-

formal maps in conformal dynamics include [7], [16], and [18]. For

a general exposition of how to use quasiconformal maps in dynamics

(and some other areas) see [19]. Techniques of Teichm�uller theory have

nice applications in renormalization theory, for which we refer to the

last chapter of [5].
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Appendix A. Complex-Variable Notations on a Surface

Let X be a C1 smooth, connected, oriented surface. TX, the real rank

2 tangent bundle of X, and its dual T �X, the real rank 2 cotangent

bundle of X, can be complexi�ed by taking the tensor products TCX =

TX 
 C and T �
C
X = T �X 
 C . Therefore, in a local coordinate (x; y)

on X, a typical section of TCX and T �
C
X can be written as

u(x; y)
@

@x
+ v(x; y)

@

@y
;

and

u(x; y)dx+ v(x; y)dy

respectively, where u and v are smooth, complex-valued functions of x

and y. We de�ne two special sections

dz = dx+ idy and d�z = dx� idy;

which form a basis for T �
C
X in every local coordinate (x; y). We use

notations @=@z and @=@�z for the dual basis in the same local coordinate:

dz(
@

@z
) = 1; dz(

@

@�z
) = 0;

d�z(
@

@z
) = 0; d�z(

@

@�z
) = 1:

Therefore

@

@z
=

1

2
(
@

@x
� i

@

@y
) and

@

@�z
=

1

2
(
@

@x
+ i

@

@y
):

We may regard @=@z and @=@�z as di�erential operators acting on

smooth functions f : U ! C , where U is the domain on which the

local coordinate (x; y) is de�ned. The action is simply de�ned by

@f

@z
=

1

2
(
@f

@x
� i

@f

@y
) and

@f

@�z
=

1

2
(
@f

@x
+ i

@f

@y
):

We usually use indices for partial derivatives, like fz for @f=@z, etc.

Now the di�erential df of a function f satis�es

df = fxdx+ fydy = fzdz + f�zd�z:

When X has a complex structure which makes it into a Riemann

surface, the complex one-dimensional subspace generated by @=@z in

every local coordinate z = x+ iy de�nes a sub-bundle of TCX which we

denote by TholX. This follows at once from the fact that the change of

coordinates are holomorphic. TholX is isomorphic to TX as a real rank
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2 bundle via @=@z 7! @=@x and i@=@z 7! @=@y. It follows from Cauchy-

Riemann equations that a function f is holomorphic i� in every local

coordinate z = x + iy, f�z = 0, or df belongs to the cotangent bundle

T �holX.

Back to the case of a smooth surface. A measurable Riemannian

metric on X can be locally written as

g = Edx2 + 2Fdxdy +Gdy2; (8)

where E; F; and G are (Lebesgue) measurable functions of x; y such

that E > 0, G > 0, and EG� F 2 > 0 almost everywhere. The length

of a tangent vector

v = u
@

@x
+ v

@

@y

is given by

jjvjj2 = Eu2 + 2Fuv +Gv2:

If we use complex notation, the vector v has a representation

v = (u+ iv)
@

@z
+ (u� iv)

@

@�z
: (9)

A direct calculation shows that g in (8) can be expressed as

g(z) = 
(z)jdz + �(z)d�zj2; (10)

where z = x + iy and


(z) =
1

2

�
E +G

2
+
p
EG� F 2

�
;

�(z) =
1


(z)

�
E �G

4
+ i

F

2

�
:

It is easy to check that 
 > 0 and j�j < 1 almost everywhere. The

expression in (10) means that the length of a tangent vector v in (9)

satis�es

jjvjj2 = 
j(u+ iv) + �(u� iv)j2:
The metric g is called conformal in the local coordinate z if �(z) �

0, so that it takes the form 
(z)jdzj2. This notion is not well-de�ned in

the case of a surface for which the change of coordinates are just smooth

di�eomorphisms. In fact, if z 7! w is such a change of coordinates, the

metric in w will take the form

g(w) = 
(w)jzwdw + z �wd �wj2 = 
(w)jzwj2jdw +
z �w

zw
d �wj2;
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which is not conformal in w. However, if X is equipped with a complex

structure which makes it into a Riemann surface, the change of coordi-

nates are holomorphic and so z �w = 0, which shows that the metric will

be conformal in w, too. Therefore, on a Riemann surface the notion

of a conformal metric does not depend on the particular choice of the

local coordinates.

Appendix B. Quasiconformal Homeomorphisms

Here we give equivalent de�nitions for quasiconformality in the planar

case. These `local' de�nitions can then be used to de�ne the concept

of quasiconformality on Riemann surfaces (cf. [2],[12]).

In what follows we always assume that f : U ! V is an orientation-

preserving homeomorphism between two regions in the plane.

The homeomorphism f is said to have generalized partial deriva-

tives if there exist integrable functions � and � such thatZ
U

�h dxdy = �
Z
U

fhz dxdy and

Z
U

�h dxdy = �
Z
U

fh�z dxdy;

for every smooth function h : U ! C with compact support. In this

case we write � = fz and � = f�z in the generalized sense.

We say that f has locally square-integrable generalized par-

tial derivatives, and we write f 2 W 1
loc, if it has generalized partial

derivatives fz and f�z in U and for every compact set E � U we haveZ
E

jfzj2 dxdy <1 and

Z
E

jf�zj2 dxdy <1:

f is called absolutely continuous on lines if its restriction to

almost every horizontal and vertical line in U is absolutely continuous.

It follows from classical real analysis that the partial derivatives fx and

fy, and so fz and f�z, exist almost everywhere in U .

An annulus is a subset of the plane homeomorphic to a `round'

annulus A(1; r) = fz : 1 < jzj < rg. We set A(1;1) = fz : jzj >
1g. It follows from the uniformization theorem that any annulus A is

conformally homeomorphic to a unique A(1; r); 1 < r � 1. We then

de�ne the modulus of A by

mod(A) =
1

2�
log r;
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where log1 =1. It follows that the modulus is a conformal invariant:

Two annuliA andA0 are conformally homeomorphic i� mod(A)=mod(A0).

The following theorem can be used as the de�nition of quasiconfor-

mality.

Theorem B-1. Let K � 1. For an orientation-preserving homeo-

morphism f : U ! V the following conditions are equivalent:

(i) f 2 W 1
loc and j

f�z
fz
j � K � 1

K + 1
almost everywhere in U,

(ii) f is absolutely continuous on lines and jf�z
fz
j � K � 1

K + 1
almost ev-

erywhere in U,

(iii) For every annulus A � U , K�1mod(A) � mod(f(A)) � Kmod(A),

(iv) For almost every x in U, lim supr!0

maxfjf(x)� f(y)j : jx� yj = rg
min fjf(x)� f(y)j : jx� yj = rg �

K:

The homeomorphism f is called K-quasiconformal if it satis�es any

(hence all) of the above conditions.

De�nition. Let f : X ! Y be an orientation-preserving homeomor-

phism between Riemann surfaces. f is called K-quasiconformal if its

local representations in charts of X and Y are all K-quasiconformal

homeomorphisms of planar regions. It is called quasiconformal if it

is K-quasiconformal for some K � 1.

It is easy to see that this de�nition coincides with one we gave earlier

in terms of the pull-back of conformal structures.

The following theorem summarizes the basic properties of quasicon-

formal homeomorphisms.

Theorem B-2.

(a) If f : X ! Y is K1-quasiconformal and g : Y ! Z is K2-

quasiconformal, then g Æ f : X ! Z is K1K2-quasiconformal.

(b) f : X ! Y is K-quasiconformal i� f�1 : Y ! X is K-quasiconformal.

(c) f : X ! Y is 1-quasiconformal i� f is conformal.
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(d) If f is quasiconformal, then fz 6= 0 almost everywhere.

(e) If f is quasiconformal, then it maps sets of measure zero to sets of

measure zero.
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