For each date, you will find the homework assignment that is due that day, any lecture notes for downloading, and the key topics that are covered that day.
This schedule is approximate and subject to change!
Sections 9.1–9.4 (3 classes)
Monday, August 28
In class:
- Material from Section 9.1 (Notes pages 0-8) ' (Mathematica notebook)
- Group discussion: What is calculus?
- Syllabus discussion.
- Parametric curves
- Sketching parametric curves
- Using your calculator, Wolfram Alpha, Mathematica (Get access through QC), Desmos.com
Wednesday, August 30
Before class:
- Email me at chanusa@qc.cuny.edu with the following five things: (1) Your name, (2) Your class (Math 201) (3) the email address where you are best contacted, (4) your graduation year, and (5) the most interesting parametric curve you were able to make using Wolfram Alpha or Mathematica. With this curve, include a sentence about why it is interesting.
- On Monday, we used the following curves. Modify these curves or experiment with something completely new!
- ParametricPlot[{t + 2 Sin[2t], t + 2 Cos[5t]}, {t, -2 Pi, 2 Pi}]
- ParametricPlot[{1.5Cos[t] - Cos[30t], 1.5Sin[t] - Sin[30t]}, {t, -2Pi, 2Pi}]
- ParametricPlot[{Sin[t + Cos[100 t]], Cos[t + Sin[100 t]]}, {t, -2 Pi, 2 Pi}]
- Thoroughly read the class web page including the syllabus and schedule. This should answer all the questions that you may have about the class. Next, take the syllabus quiz on Blackboard. Retake the quiz as many times as necessary to earn a score of 100%.
- Make sure you are able to log onto Webwork. Create and Download a PDF of your first homework assignment there on parametric equations. Your user name is your last name, first letter captialized (like Hanusa) and your initial password is your CUNYFirst ID Number (like 11235813). If you try and are unable to login, send me an email to let me know!!!
- Complete the book problems from Chapter 9.1.
- Download the course notes for Wednesday (below).
- Read through the course notes for Wednesday.
- Skim through Sections 9.2 and 9.3 of the textbook.
In class:
- Homework Discussion
- Material from Sections 9.2 and 9.3 (Notes pages 9-13) '
- Tangent lines to parametric curves
- Polar coordinates
- Polar equations and their graphs
- Tangent lines to polar curves
No class Monday, September 4.
Wednesday, September 6
Before class:
- Log onto Webwork. Complete the first homework assignment there on parametric equations. Recall that your user name is your last name, first letter captialized (like Hanusa) and your initial password is your CUNYFirst ID Number (like 11235813).
- (Remember to download the course notes. I won't be adding reminders each day.)
- Complete book problems from Chapter 9.3 and the start of Chapter 9.2.
- Read Sections 9.2 and 9.4.
In class:
- Homework Discussion
- Material from Sections 9.2 and 9.4 (Notes pages 14-18) '
- Area inside parametric curves
- Area inside polar curves
Sections 10.1–10.6 (4 classes)
Monday, September 11
Before class:
- Complete the book problems through Chapter 9.4.
- Make sure you feel comfortable with the definitions, theorems, and proofs from Sections 9.1 through 9.4.
- I suggest completing the Chapter 9 review.
In class:
- Worksheet on polar area
- Group worksheet answers
- Arc length of parametric curves
- Arc length of polar curves
- Material from Sections 10.1 and 10.2 (Notes pages 19-24) '
- Three-dimensional coordinate system
- Vectors
Wednesday, September 13
Before class:
- Complete the book problems for Sections 10.1 and 10.2.
- Start the second homework assignment on Webwork about polar and parametric equations and an introduction to vectors. (Feel free to use your calculator or Wolfram Alpha).
In class:
- Homework Discussion
- Forces in Equilibrium
- Material from Section 10.3 and 10.4 (Notes pages 25-31) '
- Dot products
Monday, September 18
Before class:
- Complete the second homework assignment on Webwork about polar and parametric equations and an introduction to vectors. (Feel free to use your calculator or Wolfram Alpha).
- Complete the book problems for Sections 10.2 and 10.3.
In class:
- Homework Discussion
- Cross products
- Applications: Work, Torque
- Equations of Lines
- Equations of Planes
No class Wednesday, September 20.
Monday, September 25
Before class:
- Complete the book problems for Sections 10.4 and 10.5.
- Start the third homework assignment on Webwork about vectors, lines, planes, and surfaces.
In class:
- Homework Discussion
- Material from Section 10.5 (Notes pages 32-37) '
Wednesday, September 27
Before class:
In class:
- Homework Discussion
- Material from Section 10.6 (Notes pages 38-41) '
- Quadric Surfaces
- Mathematica Notebook (download file) (And how to Get access to Mathematica through QC)
Exam 1 Information
- The first exam of the semester will take place during the first half of class on Wednesday, October 4. (After a short break, the second half of the class period will be new material in Chapter 10.)
- The exam covers Sections 9.1–9.4 and Sections 10.1–10.6.
- Here are more details about the first exam.
- My students often ask for an example of the style of exam that I am liable to give. I am including my exam from last semester. The topics covered by the exam are the same topics, but you should expect your exam to be very different because there are many ways for me to ask questions that test your knowledge on these topics.
Disclaimer: By clicking on the link provided, you agree to the following terms. This exam is given for informational purposes only. No guarantees of similarity are assured. All material discussed below is fair game for the exam; study everything. If you agree to these terms, click here for a previous semester's exam.
Monday, October 2
- Complete the book problems for Section 10.6.
- Complete the third homework assignment on Webwork about vectors, lines, planes, and surfaces.
- Prepare for Exam 1 on Wednesday.
In class:
- Homework Discussion
- Question and Answer Session
Sections 10.7–10.9 (2 classes)
Wednesday, October 4
Before class:
- Prepare for Exam 1 on Wednesday.
In class:
- Exam 1
- New Material in the second half of class.
- Material from Section 10.7 (Notes pages 42-48) '
- Vector functions
- Parametrizations of curves
- Tangent vectors
- Derivatives of vector functions
No class Monday, October 9.
Wednesday, October 11
Before class:
- Complete the book problems for Sections 10.7 and 10.9.
- Start working on the fourth homework assignment on Webwork about vector functions, arc length, and curvature.
In class:
- Homework Discussion
- Material from Sections 10.8 and 10.9 (Notes pages 49-53) '
- Motion in space
- Arc length, reparametrization
- Frenet Frame, Curvature
- Components of Acceleration
- See also: http://demonstrations.wolfram.com/FrenetFrame/
Sections 11.1–11.6 (6 classes)
Monday, October 16
Before class:
- Complete the book problems through Section 10.9.
In class:
- Homework Discussion
- Material from Section 11.1 (Notes pages 54-57) '
- Mathematica Notebook (download file)
- Functions of several variables
- Level curves, level surfaces
Wednesday, October 17
Before class:
- Complete the book problems through Section 11.1.
- Complete the fourth homework assignment on Webwork about vector functions, arc length, and curvature.
- Start working on the fifth homework assignment on Webwork about functions of multiple variables, limits, and tangent planes.
In class:
- Homework Discussion
- Material from Sections 11.2 and 11.3 (Notes pages 58-63) '
- Limits of functions of several variables
- Partial derivatives
Monday, October 23
Before class:
- Complete the book problems through Section 11.2.
- Continue working on the fifth homework assignment on Webwork about functions of multiple variables, limits, and tangent planes.
In class:
- Homework Discussion
- Material from Sections 11.3 and 11.4 (Notes pages 64-70) '
- Higher Partial derivatives
- Clairaut's Theorem
- Interpretation of partial derivatives
- Tangent Plane
- Differentiability
- Linear Approximations
- Differentials
Wednesday, October 25
Before class:
- Complete the book problems through Section 11.3.
- Complete the fifth homework assignment on Webwork about functions of multiple variables, limits, and tangent planes.
In class:
- Homework Discussion
- Material from Sections 11.4 and 11.5 (Notes pages 71-73) '
- Chain Rule
- The Chain Rule simplifies implicit differentiation
- Material from Section 11.6 (Notes pages 74-80) '
- Directional Derivatives
- Mathematica Notebook (download file)
- The gradient vector
Monday, October 30
Before class:
- Complete the book problems through Section 11.5.
- Start working on the sixth homework assignment on Webwork.
In class:
- Material from Section 11.6 (no new notes)
- Path of steepest ascent
- Tangent plane to a level surface
Exam 2 Information
- The second exam of the semester will take place during the first half of class on Monday, November 6. (After a short break, the second half of the class period will be new material in Chapter 11.)
- The exam covers Sections 10.7–10.9 and Sections 11.1–11.6.
- Here are more details about this exam.
- Again, I am including my exam from the last time I taught this class. The topics covered by the exam are the same topics, but you should expect your exam to be very different because there are many ways for me to ask questions that test your knowledge on these topics.
Disclaimer: By clicking on the link provided, you agree to the following terms. This exam is given for informational purposes only. No guarantees of similarity are assured. All material discussed below is fair game for the exam; study everything. If you agree to these terms, click here for the exam from last time.
Wednesday, November 1
Before class:
- Complete the book problems for Section 11.6.
- Complete the sixth homework assignment on Webwork.
- Prepare for Exam 2 on Tuesday.
In class:
- Homework Discussion
- Question and Answer Session
Sections 11.7–11.8 (2.5 classes)
Monday, November 6
In class:
- Exam 2
- Material from Section 11.7 (Notes pages 81-86) '
- Local and Global Extrema
- Second derivative test
- Extreme Value Theorem
Wednesday, November 8
Before class:
- Complete the book problems for Section 11.7.
In class:
- Material from Section 11.8 (Notes pages 87-90) '
- Optimization
- Method of Lagrange multipliers
- Examples
Sections 12.1–12.7 (5.5 classes)
Monday, November 13
Before class:
- Start the seventh homework assignment on Webwork.
- Complete the book problems for Section 11.8. (Ignore any questions involving multiple Lagrange multipliers (λ AND μ)
In class:
- Material from Sections 11.8 and 12.1 (Notes pages 91-95) '
- Riemann sums
- Double integrals
Wednesday, November 15
Before class:
- Complete the book problems for Section 12.1.
In class:
- Material from Sections 12.2 and 12.4 (Notes pages 96-103) '
- Fubini's Theorem
- Properties of double integrals
- Double integrals over any domain
- Slicing in x vs. slicing in y
Monday, November 20
Before class:
- Complete the seventh homework assignment on Webwork.
- Complete the book problems for Section 12.2.
In class:
- Material from Sections 12.3 and 12.4 (Notes pages 104-109) '
- Changing order of integration
- Mass or charge of a lamina given a density function
- Double integrals in polar coordinates
- Pirate coordinates
- Mass or charge density in polar coordinates
Wednesday, November 22
Before class:
- Start the eighth homework assignment on Webwork.
- Complete the book problems for Sections 12.3 and 12.4.
In class:
- Material from Section 12.5 (Notes pages 110-116) '
- Triple integrals
- Projecting solids onto coordinate planes
- Density and average value in three dimensions
Monday, November 27
Before class:
- Complete the eighth homework assignment on Webwork.
- Complete the book problems for Section 12.5.
In class:
- Material from Sections 12.6 and 12.7 (Notes pages 117-119) '
- Cylindrical and Spherical Coordinates
- Converting from Euclidean Coordinates w/ group work
Wednesday, November 29
Before class:
- Start the ninth homework assignment on Webwork.
- Complete the book problems for Section 12.6 and 12.7.
In class:
- More practice on Sections 12.6 and 12.7 (no new notes)
Exam 3 Information
- The third exam of the semester will take place during the first hour of class on Tuesday, December 9. The remainder of class will be spent quacking like a duck, or some other important activity.
- The exam covers Sections 11.7–11.8 and Sections 12.1–12.7.
- Here are more details about this exam.
- Again, I am including my exam from last semester. The topics covered by the exam are the same topics, but you should expect your exam to be very different because there are many ways for me to ask questions that test your knowledge on these topics.
Disclaimer: By clicking on the link provided, you agree to the following terms. This exam is given for informational purposes only. No guarantees of similarity are assured. All material discussed below is fair game for the exam; study everything. If you agree to these terms, click here for last semester's exam.
Monday, December 4
Before class:
- Complete the ninth homework assignment on Webwork.
- Prepare for Exam 3 on Tuesday.
In class:
- Homework Discussion
- Question and Answer Session
Wednesday, December 6
In class:
- Exam 3
Monday, December 11
- Final Exam Review
Monday, December 18
In class:
- Final Exam, Kiely 242, 11:00AM –1:00PM