chapter 13: 1, 5, 7(i,iii), 8(i,ii,iii,vi), 9, 13, 21, 31(a,b), 37.
chapter 14: 1(i,iii,iv,v), 3 (Hint: differentiate with respect to $x$), 4, 8, 9, 25(a).
chapter 15: 1(ii,iv), 2(i,iii,v), 4(a,b,g), 7(a), 14(a), 18, 19, 24.
chapter 18: 1(iv,ix), 4(c,d), 5(ii,iii), 6(i,iii), 13(e) (Hint: It suffices to find the limit of $\log(x^x)=x \ \log(x)$ as $x \to 0$), 14, 25.
"We present a mnemonic to memorize a constant so exciting that Euler exclaimed"
chapter 19: 1(i,iii), 2(i,ii,vi,viii), 3(ii,ix), 4(ii,vii), 5(i,ii,iv), 6(i,v), 9(iv,v).
Suggestions:
chapter 19: 24, 30(iv,v).
the appendix: 1, 3 (Answer: $4 \pi a b^2 /3$), 4 (Answer: $2 \pi^2 ab^2$).
Two ODE problems in here.
Spivak's chapter 20: 1(i,ii,v), 2(iii), 3(i)
Apostol's book, pages 290-291: 1, 8, 9, 16, 23 (Hint: Write $x = 1-t$ and compute the limit as $t \to 0$. For that, take the logarithm first).
chapter 25: 1(i,iii), 2(i,iii) (Hint: Use the quadratic formula), 4, 5
chapter 22: 1(iv,vii,viii) (Hints: For (iv), use Sandwich Lemma. For (vii), take logarithm and use Sandwich Lemma. For (viii), suppose for example that $0 \leq a \leq b$ and verify that $b \leq \sqrt[n]{a^n+b^n} \leq \sqrt[n]{2}b$), 2(i,iii,v), 5