Kolchin Seminar in Differential Algebra

Fall 2019 and Spring 2020

All talks take place at the CUNY Graduate Center, 10:15-11:30 am, in Room 5382 unless something else is specified.
The seminar activities are partially supported by the National Science Foundation.
Talks of the Spring 2019 semester are available here.
Talks of the Fall 2018 semester are available here.
Talks of the Spring 2018 semester are available here.
For earlier seminars, see the old webpage.

Upcoming talks

November 22, Thomas Dreyfus, Université de Strasbourg
Differential transcendence of solutions of difference equations (remote presentation)

A function is said to be differentially algebraic if it satisfies a non trivial algebraic differential equation. It is said to be differentially transcendent otherwise. Example of differentially transcendent functions are known, for instance, the Gamma function, or the generating series of automatic sequences. All these functions have in common to satisfy a linear functional equation. In this framework, the difference Galois theory provides tools to prove the differential transcendence of the functions. This strategy has given many recent papers presenting results that get more and more general. In this talk we are going to present a new result for which the hypothesizes are very minimal. This is a joint work with B. Adamczewki and C. Hardouin.

December 6, Sam Coogan, Georgia Tech
TBA

TBA

December 13, Yi Zhang, University of Texas at Dallas
TBA

TBA

January 31, Amir Ali Ahmadi, Princeton University
TBA

TBA

February 21, Patrick Speissegger, McMaster University
TBA

TBA

March 27, Marisa Eisenberg, University of Michigan
TBA

TBA

April 3, Gareth Jones, University of Manchester
TBA

TBA

Past talks

November 15, Jonathan Kirby, University of East Anglia
Local Definability of Holomorphic Functions (remote presentation)

Given a collection $\mathcal{F}$ of complex or real analytic functions, one can ask what other functions are obtainable from them by finitary algebraic operations. If we just mean polynomial operations we get some field of functions. If we include as algebraic operations such things as taking implicit functions, maybe in several variables, we get a much more interesting framework, which is closely related to the theory of local definability in an o-minimal setting, starting with suitable restrictions of the functions in $\mathcal{F}$. O-minimality is a setting for tame topology of real- or complex-analytic functions which does not allow for "bad" singularities. However some more tame singularities can occur. In this talk I will explain work showing what singularities we have to consider to get a characterisation of the locally definable functions in terms of complex analytic operations. Ax’s theorem on the differential algebra version of Schanuel’s conjecture is important to give one counterexample, and also for some applications to exponential and elliptic functions.

This is joint work with Gareth Jones, Olivier Le Gal, and Tamara Servi.
Slides

November 8, Léo Jimenez, University of Notre Dame
Strengthenings of C-algebraicity in differentially closed fields of characteristic zero

In model theory, the notion of internality to a fixed family of types plays an important role. During this talk, I will focus on one of its differential algebraic manifestations: being C-algebraic, where C is the field of constants of a differentially closed field. An irreducible differential-algebraic variety is C-algebraic if it is, roughly speaking, differentially birational to an algebraic variety in C. I will discuss a new property, uniform C-internality, and discuss examples, non-examples, and applications.
Slides
Video

November 1, Carsten Schneider, Johannes Kepler University
An Algorithmic Difference Ring Theory for Symbolic Summation

Inspired by Karr's pioneering work (1981) we developed an algorithmic difference ring theory for symbolic summation that enables one to rephrase indefinite nested sums and products in formal difference rings. An important outcome of this representation is that one obtains a simplified expression where the arising sums and products are algebraically independent among each other. In this talk the main ideas of these algorithmic constructions and crucial features of the underlying difference ring theory are presented. Combining such optimal representations in combination with definite summation algorithms, like creative telescoping and recurrence solving in the setting of difference rings, yield a strong summation toolbox for practical problem solving. We will demonstrate this machinery implemented in the summation package Sigma by concrete examples coming from particle physics.
Slides
Video

October 25, Fabian Immler, Carnegie Mellon University
Formal mathematics and a proof of chaos

Formal proof has been successfully applied to the verification of hardware and software systems. But formal proof is also applicable to mathematics: proofs can be checked with ultimate rigor and one can build libraries of computer-searchable, formalized mathematics.

I will talk about formalization of mathematics and my formalization of ordinary differential equations in the Isabelle/HOL theorem prover. This underpins the formal verification of the computer-assisted part of Tucker's proof of Smale's 14th problem, a proof that relies on numerical bounds to certify chaos for the Lorenz system of ordinary differential equations.
Slides

October 18, Omar Leon Sanchez, University of Manchester
Differentially large fields

Recall that a field $K$ is large if it is existentially closed in the field of Laurent series $K((t))$. Examples of such fields are the complex, the real, and the p-adic numbers. This class of fields has been exploited significantly by F. Pop and others in inverse Galois-theoretic problems. In recent work with Tressl we introduced and explored a differential analogue of largeness, that we conveniently call "differentially large". I will present some properties of such fields and characterise them using formal Laurent series and to even construct “natural” examples (which ultimately yield examples of DCFs and CODFs... acronyms that will be explained in the talk). Time permitting I will mention some applications to Parameterized PV theory.
Video

October 11, Yi Zhou, Florida State University
Algorithms on p-Curvatures of Linear Difference Operators

In the study of factoring linear difference operators, we have found p-curvature a powerful tool. I will talk about algorithms for computing p-curvatures and the math behind them.
Slides
Video

October 4, Anand Pillay, University of Notre Dame
Finiteness theorems for Kolchin's constrained cohomology

This is joint work with Omar Leon Sanchez. Working under a certain general assumption on the differential field $K$ (which includes the case where $K$ is a closed order differential field in the sense of Michael Singer) we prove finiteness of the "constrained cohomology sets" $H^{1}_{\partial}(K,G)$, for $G$ any linear differential algebraic group over $K$. I will define everything and touch on some applications.
Video

September 13, Daniel Robertz, University of Plymouth
Algorithmic Approach to Strong Consistency Analysis of Finite Difference Approximations to PDE Systems

The most common numerical method for solving partial differential equations is the finite difference method. Consistency of a finite difference scheme with a given PDE is a basic requirement for this method. Earlier work by V. P. Gerdt and the speaker introduced the notion of strong consistency that takes into account the differential ideal and the difference ideal associated with the PDE system and the approximating difference system, respectively. We present an algorithmic approach to strong consistency for polynomially nonlinear PDE systems based on a new decomposition technique for nonlinear partial difference systems that is analogous to the differential Thomas decomposition. This is joint work with Vladimir P. Gerdt (JINR, Dubna).
Slides
Video