Home Personnel Research Publications Current Offering

CMT

Superstable layer

Instability

Rectifier Effect

Katabatic Flow

Complex Terrain

Advection

Analytical Model

CFD modeling

climate Control

Perfect-Deficit Approach

Black Rock Forest

Canopy Momentum Transfer (CMT) Theory

Yi, C., Momentum transfer within canopies, Journal of Applied Meteorology and Climatology, 47, 262-275, doi:10.1175/2007JAMC1667.1, 2008. PDF

This canopy wind profile equation has been widely used in many canopy pollutant transport models. For instance:

Schaubroeck, T.; Deckmyn, G.; Neirynck, J.; Staelens, J.; Adriaenssens, S.; Dewulf, J.; Muys, B.; Verheyen, K. (2014) Multilayered modeling of particulate matter removal by a growing forest over time, from plant surface deposition to washoff via rainfall. Environ. Sci. Technol. 2014, 48, 10785−10794.

Wolfe, G. M. and Thornton, J. A.: The Chemistry of AtmosphereForest Exchange (CAFE) Model – Part 1: Model description and characterization, Atmos. Chem. Phys., 11, 77–101, doi:10.5194/acp-11-77-2011, 2011a.

Wolfe GM, Thornton JA, McKay M, Goldstein AH (2011b) Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmospheric Chemistry and Physics, 11, 7875–7891.

Moreno, H. A., H. V. Gupta, D. D. White, and D. A. Sampson (2016), Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US, Hydrol. Earth Syst. Sci., 20(3), 1241–1267.

Galmarini, S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J. O., Bellasio, R., Bianconi, R., Bieser, J., Butler, T., Ducker, J., Flemming, J., Hodzic, A., Holmes, C. D., Kioutsioukis, I., Kranenburg, R., Lupascu, A., Perez-Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose, R., Schwede, D., Silva, S., and Wolke, R. (2021): Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regionalscale air quality models, Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021.

Queck, R., Bernhofer, C., Bienert, A., and Schlegel, F. (2016): The TurbEFA Field Experiment – Measuring the Influence of a Forest Clearing on the Turbulent Wind Field, Bound.-Lay. Meteorol., 160, 397–423.

 

de Souza, C.M., Dias-Júnior, C.Q., Tóta, J., and de Abreu Sá, L.D. (2016) An empirical-analytical model of the vertical wind speed profile above and within an Amazon forest site. Meteorol. Appl. 23: 158–164. doi:10.1002/met. 1543.

Santana RAS, Dias-Júnior CQ, Vale RS, Tóta J, Fitzjarrald DR (2017) Observing and modeling the vertical wind profile at multiple sites in and above the Amazon rain forest canopy. Adv Meteorol. https://doi.org/10.1155/2017/5436157

Banerjee T, Linn R (2018) Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9. https://doi.org/10.3390/f9040198

Monteiro, VC, 2018, The Convective Boundary Layer In The Amazon Rainforest, A Master Thesis in Meteorology, The Pennsylvania State University.

Santos, A BTota, JAndrade, A M DCarneiro, R G. DRAG COEFFICIENT AND MODELING THE VERTICAL WIND PROFILE IN FORESTS, HOLOS; Natal Vol. 35, Iss. 1,  (2019): 1-13. DOI:10.15628/holos.2019.7393

Appel, K.W., Bash, J.O., Fahey, K.M., Foley, K.M., Gilliam, R.C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B.N., Napelenok, S.L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye, H.O.T., Ran, L., Roselle, S.J., Sarwar, G., Schwede, D.B., Sidi, F.I., Spero, T.L., Wong, D.C. (2021) The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation. Geosci. Model Dev. 14, 2867–2897. https://doi.org/10.5194/gmd-14-2867-2021.

Bijloos, G.; Camps, J.; Tubex, L.; Meyers, J. (2020) Parametrization of homogeneous forested areas and effect on simulated dose rates near a nuclear research reactor. J. Environ. Radioact., 225, 106445.