Yi, C.,
Momentum transfer within
canopies, Journal of Applied Meteorology and Climatology,
47, 262-275, doi:10.1175/2007JAMC1667.1, 2008.
PDF
This canopy wind profile
equation has been widely used in many canopy pollutant transport models.
For instance:
Schaubroeck,
T.; Deckmyn, G.; Neirynck, J.; Staelens, J.; Adriaenssens, S.;
Dewulf, J.; Muys, B.; Verheyen, K. (2014) Multilayered modeling of
particulate matter removal by a growing forest over time, from plant
surface deposition to washoff via rainfall. Environ. Sci. Technol.
2014, 48, 10785−10794.
Wolfe,
G. M. and Thornton, J. A.: The Chemistry of AtmosphereForest
Exchange (CAFE) Model – Part 1: Model description and
characterization, Atmos. Chem. Phys., 11, 77–101,
doi:10.5194/acp-11-77-2011, 2011a.
Wolfe
GM, Thornton JA, McKay M, Goldstein AH (2011b) Forest-atmosphere
exchange of ozone: sensitivity to very reactive biogenic VOC
emissions and implications for in-canopy photochemistry. Atmospheric
Chemistry and Physics, 11, 7875–7891.
Moreno, H.
A., H. V. Gupta, D. D. White, and D. A. Sampson (2016), Modeling the
distributed effects of forest thinning on the long-term water
balance and streamflow extremes for a semi-arid basin in the
southwestern US, Hydrol. Earth Syst. Sci., 20(3), 1241–1267.
Galmarini,
S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J. O., Bellasio,
R., Bianconi, R., Bieser, J., Butler, T., Ducker, J., Flemming, J.,
Hodzic, A., Holmes, C. D., Kioutsioukis, I., Kranenburg, R.,
Lupascu, A., Perez-Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose,
R., Schwede, D., Silva, S., and Wolke, R. (2021): Technical note:
AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as
an integral part of regionalscale air quality models, Atmos. Chem.
Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021.
Queck, R.,
Bernhofer, C., Bienert, A., and Schlegel, F. (2016): The TurbEFA
Field Experiment – Measuring the Influence of a Forest Clearing on
the Turbulent Wind Field, Bound.-Lay. Meteorol., 160, 397–423.
de Souza,
C.M., Dias-Júnior, C.Q., Tóta, J., and de Abreu Sá, L.D. (2016) An
empirical-analytical model of the vertical wind speed profile above
and within an Amazon forest site. Meteorol. Appl. 23: 158–164.
doi:10.1002/met. 1543.
Santana
RAS, Dias-Júnior CQ, Vale RS, Tóta J, Fitzjarrald DR (2017)
Observing and modeling the vertical wind profile at multiple sites
in and above the Amazon rain forest canopy. Adv Meteorol.
https://doi.org/10.1155/2017/5436157
Banerjee
T, Linn R (2018) Effect of vertical canopy architecture on
transpiration, thermoregulation and carbon assimilation. Forests 9.
https://doi.org/10.3390/f9040198
Monteiro,
VC, 2018,
The
Convective Boundary Layer In The Amazon Rainforest,
A Master Thesis in Meteorology, The Pennsylvania State University.
Santos,
A B; Tota,
J; Andrade,
A M D; Carneiro,
R G. DRAG COEFFICIENT AND MODELING THE VERTICAL WIND
PROFILE IN FORESTS,
HOLOS;
Natal Vol. 35, Iss. 1, (2019):
1-13. DOI:10.15628/holos.2019.7393
Appel,
K.W., Bash, J.O., Fahey, K.M., Foley, K.M., Gilliam, R.C., Hogrefe,
C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B.N., Napelenok,
S.L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye, H.O.T., Ran, L.,
Roselle, S.J., Sarwar, G., Schwede, D.B., Sidi, F.I., Spero, T.L.,
Wong, D.C. (2021) The Community Multiscale Air Quality (CMAQ) model
versions 5.3 and 5.3.1: system updates and evaluation. Geosci. Model
Dev. 14, 2867–2897. https://doi.org/10.5194/gmd-14-2867-2021.
Bijloos,
G.; Camps, J.; Tubex, L.; Meyers, J. (2020) Parametrization of
homogeneous forested areas and effect on simulated dose rates near a
nuclear research reactor. J. Environ. Radioact., 225, 106445.